用户名: 密码: 验证码:
最大水平应力对冲击矿压的作用机制及其应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
冲击矿压是矿山开采中发生的煤岩动力灾害之一,特别是在褶皱区因地应力异常,冲击矿压致灾的强度及其危害越显突出。论文在褶皱区地应力实测和地质调研的基础上,分别采用实验、理论分析、数值模拟和工程实践等研究方法,进行了应力场中试件降压冲击破坏效应的实验,提出了冲击矿压发生的临界最大主应力机理,探讨了褶皱区最大水平应力和采动应力分布规律,分析了褶皱区应力场分布规律与冲击矿压的关系以及巷道围岩冲击危险性的关键影响因素,最后给出了适合褶皱区的工作面及巷道防冲优化布置方案和解危对策,并在现场进行了实践。
     设计了降压破坏实验装置,并利用SANS材料实验机进行了应力场中试件降压冲击破坏效应的实验研究,研究表明,试件降压破坏时脆性破坏特征明显,降压破坏具有突然性,且试样降压破坏时与冲击破坏效应密切相关的应力降、应力降速率以及声电信号强度均与初始轴向应力、初始侧向应力和试样强度呈正相关的关系,即试样所承受的初始轴向应力、初始侧向应力或强度越高,发生降压破坏时其破坏越剧烈,能量释放也越大。
     从能量耗散与释放的原理出发,分析了煤岩体冲击破坏的应力判据和能量准则,提出了冲击矿压发生的临界最大主应力机理。在此基础上,通过侧压力系数λ对巷道两帮和底板围岩体临界最大主应力的影响分析,研究了最大水平应力对冲击矿压的作用机制,认为随着侧压力系数λ的增大,巷道两帮实际承受的最大主应力减小,而其发生冲击破坏的临界最大主应力却在增长,帮部冲击危险性随之减弱;巷道底板发生冲击破坏的临界最大主应力虽在增大,但其实际承受的最大主应力也在增大,且增长速率更快,冲击危险性增大。
     采用FLAC数值模拟软件对褶皱区的最大水平应力和采动应力分布规律进行了模拟,研究表明,褶皱核部的最大水平应力比翼部大,翼部的最大水平应力比背斜处大,且最大水平应力集中在坚硬岩层中,夹在坚硬岩层中间的较软岩层应力相对较低。与仰采推进相比较,从背斜往向斜的方向俯采推进时,煤岩体内应力集中程度更高;先开采位于褶皱向斜附近的工作面,再开采位于翼部的工作面后,前者内侧的水平应力、支承压力集中程度降低,且最大水平应力影响范围减小。而先开采位于褶皱翼部的工作面,再开采位于向斜附近的工作面后,后者内侧的应力集中程度更高。
     探讨了褶皱区应力场分布规律与冲击矿压的关系,并分析了支承压力、扰动应力波等影响褶皱区巷道围岩冲击危险性的关键影响因素,解释了褶皱区众多冲击矿压现象。基于以上研究成果,提出了适合褶皱区的工作面及巷道防冲优化布置方案和解危措施。
     以褶皱区两个冲击矿压灾害严重的煤矿为例,通过地应力实测和数值模拟方法研究了原岩应力分布状态,得到了最大水平应力的分布状况;应用提出的防冲思路及对策,进行了工作面防冲优化布置以及弱化顶板岩层和帮部煤体防治冲击矿压的工程实践研究。
Rockburst is one of the dynamic catastrophe phenomena during coal mining. Especially in fold areas, the catastrophe intensity and the harm induced by rockbursts are more obviously prominent. Through in-situ stress measure and geological survey, research approaches such as numerical simulation, experiments, theoretical analysis and engineering practice were adopted. Experiment on rockburst failure effect of samples under unloading condition in stress field was conducted, mechanism of the critical maximum principal stress on rockburst was presented, rules of distribution of the maximum horizontal stress and mine-induced stress field were studied, and relation between stress field in fold areas and rockburst along with other key influential factors on rockburst of strata of roadway in fold areas were analyzed. Finally, design project of optimizing coalface and roadway layout for preventing rockburst in fold areas were presented and its practice application was given.
     Rockburst failure effect of samples under unloading condition in stress field was studied with unloading experimental equipment designed and SANS materials testing machine chose. The results show that brittle fracture characteristics of the samples is obvious and sudden under unloading condition. Furthermore, the stress drop, the stress drop rate and intensity of AE&EME signals which closely related to rockburst failure effect are positive correlated to the initial axial stress, the initial lateral stress and uniaxial compressive strength of the samples. That is, much higher the value of the initial axial stress, the initial lateral stress and uniaxial compressive Strength of the samples are , more severe the failure is, the greater energy of the samples releases under unloading condition.
     From energy dissipation and energy release principles, stress criterion and energy criterion of rockburst failure were analyzed and mechanism of the critical maximum principal stress on rockburst was presented. Based on this, through analysis on variation of the critical maximum principal stress of both sides and floor of roadway under different lateral stress coefficientλ, mechanism of the maximum horizontal stress on rockburst was studied. The results show that, along with increase of the different lateral stress coefficientλ, the value of actual maximum principal stress of both sides of roadway decreases, but the critical maximum principal stress on rockburst increases, so danger of rockburst of both of roadway weakens. The critical maximum principal stress of floor of roadway on rockburst increases, but the value of actual maximum principal stress also increases and increases faster, so danger of rockburst of floor of roadway augments.
     By FLAC numerical simulation software, rules of distribution of the maximum horizontal stress and mine-induced stress field were studied. The results indicate that the maximum horizontal stress of the axis of fold structure is higher than that of the wing parts and the maximum horizontal stress of the wing parts is higher than that of anticline. The maximum horizontal stress concentrates at hard rock seam, but stress in soft rock seam in the middle of hard rock is correspondingly low. The results also indicate that convergence of stress is more higher when advancing downhill from anticline to syncline compared to advance in the direction of rising. In addition, Mining the coalface near the syncline firstly,then mining the coalface near the wing parts,the concentration of the horizontal stress and abutment stress inboard the coalface near the syncline decreases with different degrees and the affected area of the horizontal stress reduces. Mining the coalface near the wing parts firstly,then mining the coalface near the syncline, the concentration of the horizontal stress and abutment stress inboard the coalface near the syncline are higher.
     Relation between stress field in fold areas and rockburst was analyzed and other key influential factors on rockburst of strata of roadway in fold areas were analyzed, such as rock compressive strength, the abutment stress and stress waves disturbance. Many rockburst phenomena in fold areas were explained. Based on the above research results, design project of optimizing coalface and roadway layout for preventing rockburst and countermeasure of structure type rockburst prevention in fold areas were presented.
     Finally, acted as the application example of two coal mines with serious rockburst hazard in fold areas, the distribution of initial stress was studied by the measurement of in-situ stress and numeric simulation, the distribution of the maximum horizontal stress was obtained. Applied the presented idea and countermeasure of structure type rockburst prevention, engineering practice of optimized coalface and roadway layout design as well as weakening roof and coal side for preventing rockburst were studied.
引文
[1]钱鸣高,许家林.煤炭工业发展面临几个问题的讨论[J].采矿与安全工程学报,2006,23(2):127-132.
    [2]赵生才.深部高应力下的资源开采与地下工程——香山会议第175次综述[J].地球科学进展,2002,17(2):295-298.
    [3]高森克,何晓东,杨宏伟.老虎台矿特厚煤层冲击地压成因分析[J].煤矿安全,2006-01,29-31.
    [4]石强,潘一山,李英杰.我国冲击矿压典型案例及分析[J].煤矿开采,2005,10(2):13-17.
    [5]尹光志,鲜学福,金立平.地应力对冲击地压的影响及冲击危险区域评价的研究[J].煤炭学报,1997,22(2):132-137.
    [6]唐建新,代高飞,尹光志等.砚石台矿动力现象的工程实录与特征分析[J].重庆大学学报(自然科学版) ,2002,25(6):109-112.
    [7]贺永年,韩立军,邵鹏等.深部巷道稳定的若干岩石力学问题[J].中国矿业大学学报,2006,35(3):288-295.
    [8]何满潮,谢和平,彭苏萍等.深部开采岩体力学研究[J].岩石力学与工程学报,2005,24(16):2803-2813.
    [9]谢和平.深部高应力下的资源开采—现状、基础科学问题与展望[A].科学前沿与未来(第六集)[C],北京:中国环境科学出版社,2002.
    [10]何满潮.深部开采工程岩石力学的现状及其展望[A].第八次全国岩石力学与工程学术大会论文集[C],北京:科学出版社,2004,88-94.
    [11]钱七虎.非线性岩石力学的新进展—深部岩体力学的若干问题[A].第八次全国岩石力学与工程学术大会论文集[C],北京:科学出版社,2004,10-17.
    [12]何满潮.深部的概念体系及工程评价指标[J].岩石力学与工程学报,2005,24(16):2854-2858.
    [13] [英]J·G·兰姆赛,单文琅,宋鸿林,蒋荫昌译.岩石的褶皱作用和断裂作用[M].地质出版社,1985.
    [14]朱志澄,韦必则,张旺生等.构造地质学[M].中国地质大学出版社,1999.
    [15] Zbigniew Zembaty. Rockburst induced ground motion-a comparative study[J]. Soil Dynamics and Earthquake Engineering 24 (2004) 11–23.
    [16] L. Driad-Lebeau, F. Lahaie, M. Al Heib, etc. Seismic and geotechnical investigations following a rockburst in a complex French mining district[J]. International Journal of Coal Geology 64 (2005) :66– 78.
    [17] Cook NGW. The application of seismic techniques to problems in rock mechanics [J]. Int Journ Rock Mesh and Min Science 1964,1:169-179.
    [18] Cook NGW. A note on rockbursts considered as a problem of stability [J]. Journ SA Inst Min and Met 1965, 437-446.
    [19] Obert, L. & Duvall, W.I, 1967, Rock Mechanics and the Design of Structures in Rock [J]. John Wiley & Sons, 650.
    [20]窦林名,何学秋.冲击矿压防治理论与技术[M].徐州:中国矿业大学出版社,2001.
    [21]潘一山,李忠华,章梦涛.我国冲击地压分布、类型、机理及防治研究[J].岩石力学与工程学报,2003,22(11):1844-1851.
    [22]齐庆新,窦林名.冲击地压理论与技术[M].徐州:中国矿业大学出版社,2008.
    [23]李铁,蔡美峰,蔡明.采矿诱发地震分类的探讨[J].岩石力学与工程学报,2006,25(增2):3679-3686.
    [24]赵本均.冲击矿压及防治[M].煤炭工业出版社,1995.
    [25]王淑坤.冲击矿压机理[J].岩石力学与工程学报. 1996年10月第15卷增刊:500-503.
    [26]李新元.“围岩-煤体”系统失稳及冲击地压预测的探讨[J].中国矿业大学学报,2000,29(6):633-636.
    [27]齐庆新,刘天泉,史元伟.冲击地压摩擦滑动失稳机理[J].矿山压力与顶板管理.1995,(4):174-177.
    [28]周晓军,鲜学福.煤矿冲击矿压理论与工程应用研究的进展[J].重庆大学学报(自然科学版):1988,21(1):126-132.
    [29]章梦涛等.冲击矿压、煤和瓦斯突出的统一失稳理论初探.第二届全国岩石动力学学术会议论文集,1990.
    [30]章梦涛.冲击矿压和突出的统一失稳理论[J].煤炭学报,1991,16(4):25-31.
    [31] I.Vardoulakis.Rock bursting as a surface instability phenomenon [J].Int.J.Rock Mech. Sci.&Geomech. Abstr. 1984, 21(3):137-144.
    [32] Dyskin A.V., et al .Model of rockburst caused by crack growing near free surface [J] .In:Young ed.rockburst and seismicity in mines.Rotterdam:A.A.Balkema, 1993, 169-174.
    [33]黄庆享,高召宁.巷道冲击地压的损伤断裂力学模型[J].煤炭学报,2001,26(2):156-159.
    [34]张晓春,缪协兴,翟明华等.三河尖煤矿冲击矿压发生机制分析[J].岩石力学与工程学报,1998, 17(5):508-513.
    [35]缪协兴,张晓春等.岩(煤)壁中滑移裂纹扩展的冲击矿压模型[J],中国矿业大学学报,1999,28(2):113-117.
    [36]齐庆新,高作志,王升.层状煤岩体结构破坏的冲击矿压理论[J].煤矿开采,1998年第二期:14-17.
    [37]齐庆新,刘天泉,史元伟.冲击地压摩擦滑动失稳机理[J].矿山压力与顶板管理.1995,(4):174-177.
    [38]窦林名,何学秋.煤岩混凝土冲击破坏的弹塑脆性模型[C].第七界全国岩石力学大会论文,中国科学技术出版社,2002,9:158-160.
    [39]陆菜平.组合煤岩的强度弱化减冲原理及其应用[D].徐州:中国矿业大学,2008.
    [40]高明仕.冲击矿压巷道围岩的强弱强结构控制机理研究[D].徐州:中国矿业大学,2006.
    [41]牟宗龙.顶板岩层诱发冲击的冲能原理及其应用研究[D].徐州:中国矿业大学,2007.
    [42]尹光志,鲜学福,代高飞.岩石非线性动力学理论及其应用[M].重庆大学出版社,2004.
    [43]蒋金泉,李洪.基于混沌时序预测方法的冲击地压预测研究[J].岩石力学与工程学报,2006,25(5):889-895.
    [44]李天珍,茅献彪,缪协兴等.三软煤层冲击矿压防治技术[J].矿山压力与顶板管理,1998,(4):70-73.
    [45]王金安等.建筑物下厚煤层特殊开采的三维数值模拟分析[J] .岩石力学与工程学报,1999年01期.
    [46]王树仁,王金安等.大倾角厚煤层综放开采顶煤移动规律与破坏机理的离散元分析[J].北京科技大学学报,2005年01期.
    [47] Nelder J.A., Mead R., 1965. A simplex method for function minimization [J]. Comput. J. 7,308-313.
    [48] Leighton, F., Blake, W., 1970. Rock noise source location techniques [J]. USBM RI 7432.
    [49] Leighton, F., Duvall, W.I., 1972. A least squares method for improving rock noise source location techniques [J]. USBM RI 7626.
    [50] Obert L., 1975. The microseismic method: discovery and early history. Proc. 1st Conference of Acoustic Emission/Microseismic Activity in Geological Structures and Materials [J]. Trans.Tech. Publications, Clausthal-Zellerfeld, pp. 11-12.
    [51]陆菜平,窦林名.隧道围岩的损伤与声电监测[J].煤炭学报,2004,29(1):41-44.
    [52]窦林名,何学秋.采矿地球物理学[M].徐州:中国矿业大学出版社,2001.
    [53]窦林名,何学秋,王恩元等.由煤岩变形破坏所产生的电磁辐射[J].清华大学学报(自然科学版),2001,41 (12):86-88.
    [54]窦林名,何学秋.煤岩冲击破坏模型及声电前兆判据研究[J].中国矿业大学学报,2004,33(5):504-508.
    [55]窦林名,曹其伟,何学秋.冲击矿压危险的电磁辐射监测技术[J].矿山压力与顶板管理,2002,19(4):89-91,98.
    [56]窦林名,何学秋.冲击矿压危险预测的电磁辐射原理[J].地球物理学进展,2005,20(2):427-431.
    [57]窦林名,何学秋,王恩元.电磁辐射监测冲击矿压灾害危险[J].煤矿开采,2004,9(1):1-3,6.
    [58]窦林名何学秋.煤岩冲击破坏模型及声电前兆判据研究[J].中国矿业大学学报,2004,33(5):504-508.
    [59]窦林名,陆菜平,牟宗龙.顶板运动的电磁辐射规律探讨[J].矿山压力与顶板管理,2005,(3):40-42.
    [60]王恩元何学秋.煤炭变形破裂电磁辐射的实验研究[J].地球物理学报,2000,43(1):131-137.
    [61]高明仕,窦林名,张农等.电磁辐射测定深部煤岩动力倾向性临界值[J].煤炭科学技术,2005,33(11):49-51.
    [62]王恩元,何学秋,刘贞堂.受载岩石电磁辐射特性及其应用研究[J].岩石力学与工程学报,2002,21(10):1473-1477.
    [63]聂百胜,何学秋,王恩元.电磁辐射法预测煤矿冲击地压[J].太原理工大学学报,2000,31(6):609-611.
    [64]邹喜正,窦林名,徐方军.分维在电磁幅射技术预测冲击矿压中的应用[J].辽宁工程技术大学学报,2002,21(4):452-455.
    [65] Fajklewicz, Z., University of Mining & Metallurgy, Geophysical Inst, Cracow, Pol.ROCK-BURST FORECASTING AND GENETIC RESEARCH IN COAL-MINES BY MICROGRAVITY METHOD, 1983, 31(5):748-745.
    [66]窦林名,何学秋,煤矿冲击矿压的分级技术预测研究[J].中国矿业大学学报,2007,36(6):717-722.
    [67]窦林名,许家林,陆菜平.离层注浆控制冲击矿压危险机理探讨[J].中国矿业大学学报,2004,33(2):145-149.
    [68]孙守山,宁宇,葛钧.波兰煤矿坚硬顶板定向水力压裂技术[J].煤炭科学技术,1999,27(2):51-52.
    [69]窦林名,陆菜平等.冲击矿压的强度弱化理论及其应用[J].煤矿支护,2005,第2期:1-6.
    [70]陆菜平,窦林名,吴兴荣.煤岩动力灾害的弱化控制机理及其实践[J].中国矿业大学学报,2006,35(3):301-305.
    [71] DouLinming, XuFangjun, ZhangXiufeng. EME rock burst monitoring in Coal Mine Huafeng[A]. International Scientific-Technical Symposium Rock burst 2002 Research and Prevention Systems Proceedings[C].Poland: Glowny Instytute Gorniczy Press,2002.261-267.
    [72]窦林名,赵从国,杨思光等.煤矿开采冲击矿压灾害防治[M].中国矿业大学出版社,2006.
    [73]闵长江,卜凡启,周廷振,等.煤矿冲击矿压及防治技术[M].中国矿业大学出版社,1998.
    [74] S.M. Lee,B.S. Park,S.W. Lee. ANALYSIS OF ROCKBURSTS THAT HAVE OCCURRED IN A WATERWAY TUNNEL IN KOREA[J]. Int. J. Rock Mech. Min. Sci. 2004,3(41):1-6
    [75]尹光志,鲜学福,代高飞.岩石非线性理论及其应力:岩石失稳破坏与冲击地压发生机理及预测[M].重庆大学出版社,2004.
    [76]谭云亮.门头沟井田构造应力场与冲击地压的关系[J].山东矿业学院学报,1990,9(3):264-267.
    [77]梁政国,孙步洲,齐庆新.陶庄煤矿构造应力作用及冲击地压力源分析[J].阜新矿业学院学报, 1990,9 (4):69-72.
    [78]孙步洲等.矿井构造应力场和冲击地压[J].山东矿业学院学报,1992,11(1): 21-26.
    [79]齐庆新,梁政国.陶庄煤矿的冲击地压与构造应力[J].煤矿开采1993(2): 48-51.
    [80]潘一山,徐秉业等.断层冲击地压发生的理论与试验研究[J].岩石力学与工程学报,1998,17 (6):642-649.
    [81]段克信.北票矿区地质动力区划分[J].煤炭学报,1995,20(4):337-341.
    [82]张宏伟等.矿井动力现象区域预测研究[J].煤炭学报,1998,42(4):383-387.
    [83]张宏伟等.地质动力区划方法在煤与瓦斯突出区域预测中的应用[J].岩石力学与工程学报,2003,22(4):621-624.
    [84]张宏伟,马义飞,段克信.构造应力与矿区地震[J].辽宁工程技术大学学报1998,17(1):1-5.
    [85]张宏伟,张文军,段克信.现代矿井构造应力场与矿井冲击地压[J].山东矿业学院学报,1996,15(3): 13-15.
    [86]陈学华.构造应力型冲击地压发生条件研究[D].辽宁:辽宁工程技术大学,2004.
    [87] Li Zhihua, Dou Linming, Lu Caiping, Mu Zonglong, CAO Anye. Study of fault induced rock bursts[J]. Journal of China University of Mining and Technology, 2008,18(3): 321-326.
    [88] Hast, N., 1969, The state of stresses in the upper part of the Earth's crust, Technophysics, 8: 169-211.
    [89]陈彭年,陈宏德,尚利青.世界地应力实测资料汇编[M],地震出版社,1990.
    [90] Zoback, M.L. and Zoback, M.D. State of stress in the Conterminous United State, J.Geophy.Res., 1980, 85(B11):6113-6156.
    [91] Leeman, E.R.,1969,The measurement of stress in rock. A review of recent developments, Proc.Int.Symp. on Determination of Stresses in Rock Masses, Laboratorio Nacional de Engenharia Civil, Lisbon:200-229.
    [92] Leeman, E.R.,1968,The determination of the complete state of stress in rock in a single borehole. Laboratory and underground measurement, Int.I.Rock.Mech.Min.Sci., 5:31-56.
    [93]李四光.地质力学概论[M].科学出版社,1973.
    [94]李铁汉,潘别桐.岩体力学[M].地质出版社,1980.
    [95]李方全.重大工程建设中原地应力测量的意义,地壳构造与地壳应力文集,地震出版社,1986, 123-131.
    [96]彭苏萍,孟召平.矿井工程地质理论与实践[M].地质出版社,2002.1: 214-218.
    [97]黄醒春,夏小和,卢海星.鹤壁六矿-300m水平地应力场与矿压显现特征[J].矿冶工程,1999,l9(2): 20-23.
    [98]李泽光等.开滦矿区吕家坨矿现今构造应力场的三维有限元数值模拟水文地质[J].工程地质,2002年第二期:18-21.
    [99]李本军,刘晓芳,王福龙. ABAQUS在向斜构造三维地应力场模拟研究中的应用[J].煤,2007,16(2):76-78.
    [100]程瑞端,许江,陈海焱,等.矿区地应力测量及非线性有限元计算的研究[J].西南工学院学报,1997年第三期:43-48.
    [101]徐林生,王兰生,李天斌.卸荷状态下岩爆岩石变形破裂机制的试验岩石力学研究[J].山地学报, 2000,18(4):102-107.
    [102]徐林生.卸荷状态下岩爆岩石力学试验[J].重庆交通学院学报,2003,22(1):1-4.
    [103]何满潮,苗金丽,李德建,等.深部花岗岩试样岩爆实验过程研究[J].岩石力学与工程学报, 2007,26(5):865-876.
    [104]张黎明,王在泉,王建新,等.岩石卸荷破坏的试验研究[J].四川大学学报,2006,38(3):34-37.
    [105]吴刚.岩体在加、卸荷条件下破坏效应的对比分析[J].岩土力学,1997,18(2):13-16.
    [106]曾秋生.中国地壳应力状态[M].北京:地震出版社.
    [107] Aythmtov I.T., 1986, On virgin stress state of a rock in mobile folded areas, In:Stephansson (ed.), Proceedings of the International Symposium on Rock Stress and Rock Stress Measurements, Stockholm, September, Centek Publishers, Lulea. 55-59.
    [108]安延恺.板块构造概论[M].北京:石油工业出版社,1979:1-10.
    [109] ZOBACK M.L. First-and second-order patterns of stress in the lithosphere: The world stress map project[J]. J Geophys Res, 1992, 97(138):11703-11728.
    [110]谢富仁,崔效锋,赵建涛.全球应力场与构造分析[J].地学前缘,2003,10(特刊):22-30.
    [111]谢富仁,崔效锋,赵建涛,等.中国大陆及邻区现代构造应力场分区[J].地球物理学报,2007,47(4):654-662.
    [112] Kuznetsov, S.V., Trofimov,V.A. Anomalous stress fields in the vicinity of tectonic disturbances in the rock mass[J]. Journal of Mining Science, 2002, 38(1):1-8.
    [113] Riccardo Caputo. Stress variability and brittle tectonic structure [J]. Earth-Science Reviews, 2005, 70(1-2):103-127.
    [114]张永兴.岩石力学[M].北京:中国建筑工业出版社,2004:119-120.
    [115]苏生瑞,黄润秋,王士天.断裂构造对地应力场的影响及其工程应用[M].北京:科学出版社,2002:16-18,53-127.
    [116] Bruno, Michael S.,Winterstein, Don F. Some influences of stratigraphy and structure on reservoir stress orientation[J]. Geophysics, 6(59):954-962.
    [117]沈明荣.岩体力学[M].上海:同济大学出版社,1999:109-126.
    [118]孙广忠.工程地质与地质工程[M].北京:地震出版社,1993:101-105.
    [119]赵其华,王兰生.边坡地质工程理论与实践[M].成都:四川大学出版社,2000:24-48.
    [120]抚顺矿务局龙凤矿和阜新矿业学院冲击地压研究组.龙凤矿一水平地应力测量[J].阜新矿业学院学报,1985年6月增刊:57-64.
    [121]抚顺矿务局龙凤矿和阜新矿业学院冲击地压研究组.龙凤矿冲击地压成因规律的分析研究[J].阜新矿业学院学报,1985年6月增刊:1-12.
    [122]木城涧煤矿,中国矿业大学.《+450水平2-4石门3槽围岩的地质力学测试研究报告》.2007年12月.
    [123]梁政国,李国臻,安红亮.门头沟煤矿和九龙盆地现今构造应力研究[J].阜新矿业学院学报,1990,9(4):58-61.
    [124]李熔华,熊仁钦,丁时宝.开滦赵各庄矿井下岩体地应力测量的研究[J].湘潭矿业学院学报,1992,7(2):111-118.
    [125]姜耀东,刘文岗,赵毅鑫,等.开滦矿区深部开采中巷道围岩稳定性研究[J].岩石力学与工程学报,2005,24(11):1857-1862.
    [126]田利军,魏宏轩.大同矿区煤体地应力测量与分析[J].阜新矿业学院学报,1990,9(4):62-68.
    [127]倪新华.地应力研究与应用[M].北京:煤炭工业出版社,2006.
    [128]李信,周华强,庞国钊.砚石台煤矿冲击地压发生原因的分析[J].重庆大学学报,1984(1):1-13.
    [129]金立平,鲜学福.砚石台煤矿地应力测量与分析[J].煤矿工程师,1994(2):32-35.
    [130]华亭煤矿,砚北煤矿,天地科技股份有限公司开采所事业部.《华砚煤矿近水平煤层巷道围岩地质力学测试研究报告》.2006年6月.
    [131] Minster J B, Jordan T H. Present-day Plate Motions, J.G.R., 1978, 83:5331-5354.
    [132]何秀琴,王多杰.甘肃及邻近地区构造应力场特征研究及有关问题的讨论[J].甘肃地质学报,1994,3(2):31-40.
    [133]黄贤能,黄润秋.岩石降压破坏特征与岩爆效应[J].山地研究,1998,16(4):73-78.
    [134]林韵梅.实验岩石力学模拟研究[M].北京:煤炭工业出版社,1984.
    [135]顾大钊.相似材料和相似模型[M].徐州:中国矿业大学出版社,1995.
    [136]谢和平,鞠杨,黎立云.基于能量耗散与释放原理的岩石强度与整体破坏准则[J].岩石力学与工程学报,24(17):3003-3010.
    [137]赵阳升,冯增朝,常宗旭.试论岩体动力破坏的最小能量原理[J].岩石力学与工程学报,2002,21(增):1931-1933.
    [138]赵阳升,冯增朝,万志军.岩体动力破坏的最小能量原理[J].岩石力学与工程学报,2003,22(11):1781-1783.
    [139] Horii H, Nemat-Nasser S. Compression-induced microcrack growth in brittle solids: axial splitting and shear failure[J]. Geophy. Res, 1985(B):3105-3125.
    [140]大型地下洞室开挖围岩降压变形机理用稳定性研究[D].成都:成都理工大学,2007.
    [141]李术才.加锚断裂节理岩体断裂损伤模型及其应用[D].武汉:中科院武汉岩土力学研究所,1996.
    [142]华安增.地下工程周围岩体能量分析[J].岩石力学与工程学报,2003,22(7):1054-1059.
    [143]靳钟铭,徐林生.煤矿坚硬顶板控制[M].北京:煤炭工业出版社,1994.
    [144]雷光宇,卢爱红,茅献彪.应力波作用下巷道层裂破坏的数值模拟研究[J].岩石力学,2005,26(9):1477-1480.
    [145]姜耀东,赵毅鑫,宋彦琦,等.放炮震动诱发煤矿巷道动力失稳机理分析[J].岩石力学与工程学报,2005,24(17):3131-3136.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700