用户名: 密码: 验证码:
基于ISS的薄煤层采空边界探测理论与试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在煤矿生产中,很多透水事故都是由于地质资料的缺失或不精确而意外打通废旧矿井、含水空硐造成的。据统计,近年来国内60%以上的淹井事故是由于老空区突水引起的。因此,需要一种行之有效的探测空硐和煤柱未知边界的方法以解决此类问题。在以往的研究中,由于对槽波形成的机理认识不足、在槽波数据处理的理论与方法上不够成熟,且采用基于ISS(In-seam Seismic)反射界面的探测技术,拘泥于传统的地震地质勘探方法,所以造成槽波探测技术在90年代后一直处于停滞状态。
     为了解决煤层空硐探测技术难题,美国MSHA资助8个机构进行各种空硐探测方法的可行性研究,其中包括宾夕法尼亚州立大学采用的煤层间槽波微震法ISS。作者参加了课题组在Black King Mine和Cumberland Mine两个煤矿的研究,结果显示采用寻找可识别埃里震相的保守方法在定位煤层空硐反射边界时,其探测范围和精度上均优于采用其它技术所获得的效果。
     据研究可知,煤层越薄,槽波频散特征越强,而槽波的速度很大程度上依赖于频率,因此很难精确确定槽波速度。并且煤层越薄,槽波的频率越高,阻抗越大,槽波在介质中传播的距离越短,探测的范围越小,识别反射波的难度越大。这些给利用槽波定位薄煤层的空硐边界造成了很大难度。
     本论文以Black King Mine煤矿厚度为0.9m薄煤层条件下所作的研究为工程背景,系统分析了薄煤层槽波的频散特征,并在理论上解释了薄煤层槽波高频域和低频域形成的主要原因。在推导出薄煤层槽波相速度和群速度关系方程的基础上,采用数值分析法求得薄煤层槽波在基阶模式、第一高阶模式和第二高阶模式下的频散曲线。
     在厚度为0.9m的薄煤层中使用放炮法做微震震源,通过分析所记录的薄煤层槽波信号发现,薄煤层槽波在频域中存在着高频和低频两个独立且不连续的波段。通过小波分析,可以看到这两个频域几乎在同一时刻触发,并且其小波相关系数的分布在同一时域中表现出一定的相似性。这些是薄煤层槽波不同于厚煤层槽波的显著特点。
     由于震源布置于煤层中心,炸药的能量对顶板的扰动对第二高阶对称波形模式下槽波高频部分的形成起着关键作用,因此,在这一对称高阶波形模式下的槽波的波速基本上和煤层顶底板S波的波速一致,对实验点确定顶低板岩层中S波的波速起着重要的作用。
     论文详细介绍了采用基于ISS的薄煤层空硐探测方法,对薄煤层空硐的探测范围和精度进行了研究,达到了预期的效果。论文还验证了采用保守的可识别埃里震相方法的有效性,提出并验证了槽波第二高阶对称波形模式存在的理论。建议采用小波分析法提高实验的精度,在工程实际应用中可以考虑通过对比槽波在未知边界煤柱与已知边界煤柱中反射槽波的时频图,来提高评估未知边界的范围的精度。
     论文作为基于ISS的煤层空硐探测方法的一部分,与厚煤层、中厚煤层空硐探测方法结合在一起,将组成较为完整的煤层空硐探测方法,计划今后将尽快纳入到数字矿井系统中,在工程实际推广应用中不断完善。
Many coal mine inundations would happen when pillars protecting water were broken through to active mine due to absence of necessary geological data or using inaccurate map. According to statistic, 60% of mine inundations were caused by water inrush from goafs. Thus, it is necessary to develop an effective method that can detect void or uncertain boundary of pillar between two adjacent coal or active sites and goafs. In preceding researches, because mechanics of channel waves have not been developed fully and methods of processing channel wave have been limited to traditional seismic geological exploration to indentify reflecting interfaces, the in-seam seismic (ISS) technology has been jammed since 1990s.
     In order to solve the problem of void detection in a coal seam, the Mine Safety and Health Administration (MSHA) has funded 8 organizations to study the feasibility of void detection using all kinds of methods, including Pennsylvania State University. The research team of Pennsylvania State University is going to use the in-seam seismic method to detect voids in a coal seam. Author has attended two researches in Black King Mine and Cumberland Mine as a member of research team. When the distinguishable Airy phase method was used, the result of research showed that the detecting range and accuracy are better than ones of other technologies using in void detection.
     According to the result of research, the effectiveness of dispersion is stronger when the coal seam becomes thinner. The velocity of channel wave depends on the frequency, so it is difficult to get exact speed of channel wave in a thin coal seam. In addition, the range of propagation of channel wave decreases because of high frequency. As a result, it will be difficult to indentify the reflected signal from the reflection survey in a thin coal seam.
     The dissertation focused on the feasibility of void detection in a 0.9m-thin coal seam of Black King Mine, analyzed systematically the dispersion characteristics of channel wave in a thin coal seam, and explained the reason of high and low frequency domain in theory. Based on the deduced equation of phase velocity and group velocity, the dispersion curves of fundemental order, first higher order and second higher order were plotted using numerical method.
     According to study the seismic signal recorded in the 0.9m-thin coal seam in the condition of dynamite as seismic sources, two frequency bands are shown in energy spectrum. After using wavelet transform, the two frequency bands almost started on the same moment. Furthermore, the wavelet coefficients distribution shows a certain similar behavior in a thin coal, which is outstanding feature that is different from channel waves recorded in a 2.1m-thin coal seam
     Because the seismic source set in the middle of coal seam, the vibration of roof and floor caused by dynamite has played an important role to form a second higher order of symmetrical wave shape. The velocity of channel wave in second higher mode is the same as the one of S wave in roof and floor, which is important to confirm the velocity of S wave in rock.
     The dissertation has detailed the method of void detection using ISS in a thin coal seam, and the results are positive. The research has verified the effectiveness of the distinguishable Airy method, and proved the theory of existence of second higher mode in channel wave. Because channel waves in a coal seam have a distinctive characteristic of dispersion and a wide frequency domain, uncertain boundary of pillar or reflecting interface could be decided using the method of analogy in practical engineering case.
     The dissertation is part of void detection using ISS technology. If combing with the result studied in a thick coal seam, it will be formed to a systematical method. Author will integrate this technology to the Digital Mine System in future, and this technology will be developed quickly in practical engineering case.
引文
[1] MHA Quecreek #1 Mine Inundation Investigation Report[R], Mine Safety and Health Administration office of the Administrator Coal Mine Safety and Health, August 12, 2003
    [2]汪理全,范中启,杨真等.采矿工程案例[M].徐州:中国矿业大学出版社,2008.
    [3] Gardner, H. G. and Wu, K. K. Use of available and emerging methods for location of air and water filled cavities in mines, Status report on MSHA demonstration projects, 2005[C], SME annual meeting, Salt Lake City.
    [4]郝向斌刘志勇. 2008年煤炭市场回顾及2009年展望[J].中国煤炭市场, 2009, (1): 5-7.
    [5] 2007-2008煤矿事故统计表及对策分析[EB/OL]. http://hi.baidu.com/haikoing/blog/item/fef338ef05a20231adafd576.html
    [6]张福英.煤矿安全事故频发的原因及建议[J].煤, 2006,(3): 76-78.
    [7]马维强.煤矿水灾事故处理方法[J].科技咨询导报, 2007,(13): 19.
    [8]国家煤矿安全监察,局事故通报. http://www.chinacoal-safety.gov.cn/mkaj/
    [9] Void Detection Demonstrations at the Colorado School of Mines Edgar Experimental Mine[R], Mine Safety and Health Administration, Arlington, VA, 2007.
    [10] Final Report Demonstration Project–Mine Void Detection, Time Domain Electromagnetic, Surface Geophysical Method, Lots Branch Tailing Impoundment site[R], Prenter, West Virginia, Mine Safety and Health Administration, Arlington, VA, 2006.
    [11] Michel Lavergne. Seismic Methods[M], Kluwer Academic Publishers, London, 1988.
    [12] Zapata Engineering, P.A., Blackhawk Division. Geophysical Void Detection Demonstrations Riola Mine Complex, Black Beauty Coal Company, ear Georgetown[R], Vermilion County, Illinois, Mine Safety and Health Administration, Arlington, VA, 2006.
    [13] Stolar Research Corporation. Void Detection Technology Delta ElectroMagnetic Gradiometer[R], Pittsburgh, Pennsylvania, Oct. 2006.
    [14] L. Dresen and H. Ruter. Seismic coal exploration part B: In-Seam seismic[M], Pergamon, 1994.
    [15] Evison, F. F. A coal seam as a guide for seismic energy, Nature 176, 1955, 1224-1225.
    [16] Krey, T. Channel waves as a tool of applied Geophysics in coal mining, Geophysics 28, 1963, 701-714.
    [17] Buchanan, D.J. The propagation of attenuated SH-channel waves, Geophysical Prospecting 26, 1978. 16-28
    [18] Buchanan, D.J. The location of faults by underground seismology, Colliery Guardian Annual Review, 1979. 419-427
    [19] Buchanan, D.J., Davis, R., Jackson, P.J. and Taylor, P.M. The use of channel wave seismology to find faults in coal seams. Paper presented at the 50th Annual Meeting of the Society of exploration Geophysicists, 1980. Houston, USA.
    [20] Buchanan, D.J., Davis, R., Jackson, P.J. and Taylor, P.M. Fault location by channel wave seismology in United Kingdom coal seams, Geophysics 46, 1981a, 994-1002.
    [21] Buchanan, D.J., Davis, R., Jackson, P.J. and Taylor, P.M. Fault location in coal by channel wave seismology: Some case histories, Bulletin of the Australian Society of Exploration Geophysicists 12, 1981b, 13-19.
    [22] Buchanan, D.J., Jackson, P.J., Taylor, P.M. and Doyle, J.F. The use of channel wave seismology to find faults in coal seams. Proceedings of the 50th SEG Meeting, 1981, Houston 5, USA, 2985-3018.
    [23] Buchanan, D.J., Jackson, P.J., Taylor, P.M. and Doyle, J.F. The application of the in-seam seismic method in Australian coal mines, Proceedings of the Australian Institute of Mining and Metallurgy, 1982.
    [24] Buchanan, D.J. and Jackson, P.J. Dispersion relation extraction by multi-trace analysis, Bulletin of the Seismological Society of America 73, 1983, 391-404.
    [25] Buchanan, D.J. and Jackson, P.J. and Davis, R. Attenuation and anisotropy of channel waves in coal seams, Geophysics 48, 1983, 133-147.
    [26] Buchanan, D.J. The scattering of SH-channel waves by a fault in a coal seam, Geophysical Prospecting 34, 1986, 342-365.
    [27] Buchanan, D.J. Dispersion calculations for SH and P-SV waves in multi-layered coal seams, Geophysics Prospecting 35, 1987, 62-70.
    [28] Cox, K.B. and Mason, I.M. Maximum entropy analysis of dispersion seismic signals, Geophysics 51, 1986, 2225-2234.
    [29] Cox, K.B. and Mason, I.M. Velocity analysis of the SH channel wave in the Schwalbach seam at Ensdorf colliery, Geophysical Prospecting 36, 1988, 298-317.
    [30] Lagasse, P.E. and Mason, I.M. Guided modes in coal seams and their application to underground seismic surveying, Ultrasonic Symposium Proceeding IEEE Cat. 75 CHO 994-4SU, 1975, 64-67.
    [31] Liu, E., Crampin, S. and Roth, B. Modeling channel waves with synthetic seismograms in an anisotropic in-seam seismic survey, Geophysical Prospecting 40, 1992, 513-540.
    [32] Lou, M. and Crampin, S. Dispersion of guided waves in thin anisotropic waveguides, Geophysical Journal International 107, 1991, 545-555.
    [33] Darken, W.H. A finite difference model of channel waves in coal seams, Golden, Colorado School of Mines, 1975, USA, Master’s thesis.
    [34] Guu, J.Y. Study of seismic guided waves in the continuity of coal seams, Golden Colorado School of Mines, USA, PhD thesis, 1975, No. T 1770.
    [35] Dziewonski, A.M. and Hales, A.L. Numerical analysis of dispersed seismic wave, Computational Physics, Vol. 11, 1972.
    [36] Breitzke, M. and Dresen L. Love type seam waves in washout models of coal seams, Geophysical Prospecting 34, 1986. 1167-1184.
    [37] Breitzke, M. Seismogram synthesis and recompression of dispersive in-seam seismic multimode data using a normal-mode superposition approach, Geophysical Prospecting 40, 1992. 31-70.
    [38] Bodoky, T., Ciller, E. and Kormendy, A. Simple technique for recompression of SH-type channel wave, Geophysical Transactions 28, 1982. 21-32.
    [39] Bodoky, T., and Bodoky, A. Numerical modeling of seismic seam waves, Geophysical transactions 28, 1982. 129-140.
    [40] Dobroka, M. and Ormos, T. Absorption dispersion relations for Love channel waves, Geophysical Transaction 29, 1983, 117-127.
    [41] Dobroka, M. Love seam waves in an inhomogeneous 3-layered medium, Geophysical Transaction 30, 1984, 237-251.
    [42] Dobroka, M. Love channel waves in coal seams of varying thickness, Paper presented at the 48th meeting of the European Association of Exploration Geophysics, 1986, Budapest, Hungaria.
    [43] Dobroka, M. Love seam-waves in a horizontally inhomogeneous three-layered medium, Geophysical Prospecting 35, 1987, 502-516.
    [44] Dobroka, M. and Gacsalyi, M. The detecting of fractured zones by means of in-seam seismic absorption tomography (in Hungarian), Journal of Mining and Metallurgy, BKL, Banyaszat 120, 1987, 108-110.
    [45] Dobroka, M. On the absorption-dispersion characteristics of channel waves propagating in coal seams of varying thickness, 1988, Geophysical Prospecting 36, 1988, 318-332.
    [46] Krey, T., Arnetzl, H. and Knecht, M. Theoretical and practical aspects of absorption in the application of in-seam seismic coal exploration, Geophysics 47, 1982, 1645-1656.
    [47] Su, F.C. Seismic effects of faulting in coal seams: numerical modeling, Golden, Colorado School of Mines, USA, 1976, PhD thesis No. 1869.
    [48] Geldmacher, I.M., Dresen, L. and Sturznickel, T. Seismic modeling with channel waves in seam structures influenced by Mylonite zones, Geophysical Prospecting 38, 1990, 889-911.
    [49] Gritto, R. and Dresen, L. Seismic modeling of seam waves exited by energy transmission into a seam, Geophysical Prospecting 40, 671-699
    [50] Kodera, K., De Villedary, C. and Gendrin, R. A new method for the numerical analysis of non-stationary signals, Physics of the Earth and Planetary Interiors 12, 1976, 142-150.
    [51] Reynolds, A.C. Boundary conditions for the numerical solution of wave propagation problems, Geophysics 43, 1978, 1099-1110.
    [52] Franssens, G., Lagasse, P.E. and Mason, I.M. Study of the leaking channel modes of in-seam exploration seismology by means of synthetic seismograms, Geophysics 50, 414-424.
    [53] Fuchs, K. and Muller, G. Computation of synthetic seismograms with the reflectivity method and comparison with observations, Geophysical Journal of the Royal Astronomical Society 23, 1971, 417-433.
    [54] Schultz, P.S. and Claerbout, J.F. Velocity estimation and downward continuation by wavefront synthesis, Geophysics 42, 1978, 691-714.
    [55] Dresen, L. and Freystatter, S. Model seismic investigations on the use of Rayleigh channel waves for the in-mine seismic detection of discontinuities, Proceedings of Coal Seam Discontinuities Symposium, Pittsburgh, Pennsylvania, USA, 1976a, 15/1-15/21.
    [56] Dresen, L. and Freysatter, S. Rayleigh channel waves for the in-seam seismic detection of discontinuities, Journal of Geophysics 42, 1976b, 111-129.
    [57] Greenhalgh, S.A., Supragitno, M. and King, D.W. Shallow seismic reflection of coal in the Sidney Basin, Geophysics 51, 1986, 1426-1437.
    [58] Kerner, C. and Dresen, L. The influence of dirt bands and faults on the propagation of Love seam waves, Journal of Geophysics 57, 1985, 77-89.
    [59] Schwatzer, T. Geophysical studies of the continuity of coal seams, International Journal of Rock Mechanics Mining Science 2, 1965, 167-196.
    [60] Suhler, S.A Owen, T.E. and Duff, M.B. Geophysical hazard detection from the working face, Final Technical Report, Southwest Research Institute Department of Geoscience, 1981, P.O.Drawer 28510, San Antonio, TX, 78284, USA.
    [61] Wilson, R.G., Scaife, P.H. and Leung, L. In-seam seismic studies for coal exploration, Broken Hill Proprietary Technical Bulletin, 1982, Australia.
    [62] Ziolkowski, A.M. High resolution seismic reflection developments in U.K. coal exploration, Paper Presented at the Proceedings of the Coal Seam Discontinuities Symposium, Pittsburgh, 1976, Pennsylvania, USA.
    [63] Greenhalgh, S.A., Burns, D. and Mason, I. A cross-hole and face-to-borehole in-seam seismic experiment at Invincible Colliery, Australia, Geophysical Prospecting 34, 1986, 30-35.
    [64] Crampin, S. An introduction to wave propagation in anisotropic media, Geophysical Journal of the Royal Astronomical Society 76, 1984a, 17-28.
    [65] Beresford-Smith, G. Signal analysis of in-seam seismic data, PhD dissertation, 1980. St. John’s College, Oxford.
    [66] Booer, A.K. Underground Geophysics of coal seams, Developments in Geophysical Exploration Methods Vol. 3, 1982. A.A. Fitch, Applied Science.
    [67] Arnetzl, H. and Krye, T. Progress and problems in using channel waves for coal mining prospection, Vortrag, 33, 1971. Tagung der European Association of Exploration Geophysics, Hannover, Germany
    [68] Denny, M.D. and Chin, R.C.Y. Gaussian filter for determining group velocities, Geophysical Journal of the Royal Astronomical Society 45, 1976, 495-525.
    [69] Crampin, S. Seismic wave propagation through a cracked solid: polarization as a possible dilatancy diagnostic, Geophysical Journal of the Royal Astronomical Society 53, 1978, 467-496.
    [70] Hudson, J.A. Wave speeds and attenuation of elastic waves in material containing cracks, Geophysical Journal of the Royal Astronomical Society 64, 1981, 133-150.
    [71] McMechan, G. and Yedlin, M.J. Analysis of dispersive wave by wave field transformation, Geophysics 46, 1981, 869-874.
    [72] Muller, G. Rheological properties and velocity dispersion of a medium with power-law dependence of Q on frequency, Journal of Geophysics 54, 1983, 20-29.
    [73] Kennett, B.L.N. and Clarke. Rapid calculation of surface wave dispersion, Geophysical Journal of the Royal Astronomical Society 72, 1983, 619-631.
    [74] Krajewski, P., Dresen, L., Schott, W. and Ruter, H. Studies of roadway modes in a coal seams by dispersion and polarization analysis: A case history, Geophysical Prospecting 35, 1987, 767-786.
    [75] Cara, M. Filtering of dispersed wavetrains, Geophysical Journal of the Royal Astronomical Society 33, 1973, 65-80.
    [76] Ge, M. An in-seam seismic (ISS) method based mine void detection technique, Final report for phase I, Inner report, 2006.
    [77] Ge, M. ISS based void detection technique manual, Inner report, 2006.
    [78] Hardy, H.R. Acoustic Emission, Microseismic Activity: Principles, Techniques and Geotechnical Application, Taylor & Francis, 2003.
    [79] Florsch, N., Fah, D., Suhadolc P. and Panza G. F. Complet synthetic seismograms for high-frequency multimode SH-waves, Pure and applied geophysics 136, 1991, 529-560.
    [80] Pratt R. G. Seismic waveform inversion in the frequency domain, part 1: theory and verification in a physical scale model, Geophysics 64, 1999, 888-901.
    [81] Wu, R., Jin S. and Xie, X. Seismic wave propagation and scattering in Heterogeneous crustalwaveguides using screen propagators: I SH waves, Bulletin of the Seismological Society of America, 90, 2000, 401-413.
    [82] Antoniou, A. Digital Filters: Analysis, Design, and Applications. McGraw-Hill, New York, 1993.
    [83] Rabiner, L.R. Gold, B. Theory and application of digital signal processing, Prentice-Hall, 1975.
    [84] Mitra, S.K. Digital signal processing: a computer-based approach, McGraw-Hill, New York, 1998.
    [85] Kanasewich E.R. Time sequence analysis in geophysics, University of Alberta, 1981.
    [86] Oppenheim, A.V., Schafer, R.W. and Buck, J.R. Discrete-time signal processing, Prentice-Hall, 1999.
    [87]刘天放潘东明等.槽波地震勘探[J],中国矿业大学出版社,1994.
    [88] Schneider, W. A. The common depth point stack, Proceedings of the IEEE, 72, 1984, 1238-1254.
    [89] Ge, M. Void Detection in bituminous mines with an in-seam seismic technique: phase II, The Pennsylvania State University Department of Energy and Mineral Engineering, June 15, 2008.
    [90] Graff, K. F. Wave motion in elastic solids, Dover Publications, 1991.
    [91] Achenbach, J. D. Wave propagation in elastic solids, North-Holland, 2007.
    [92] Buchanan, D. J., Davis, R., Jackson, P. J. and Taylor, P. M. Fault detection in coal by channel wave seismology: some case histories, Bulletin of the Australian Society of Exploration Geophysicists, 12, 1981, 13-19.
    [93] Liu, E., Crampin, S. and Hudson, J. A. Diffraction of seismic waves by cracks with application to hydraulic fracturing, Geophysics, 62, 1997, 253-265.
    [94] Hatton, L., Worthington, M. H. and Markin, J. Seismic Data Processing: Theory and Practice, Blackwell Science, 1986.
    [95] Kleyn, A. H. Seismic Reflection Interpretation, Applied Science Publishers Ltd, 2007.
    [96] Gurtin, M. E. An Introduction to Continuum Mechanics, Academic Press, 1981.
    [97] Dziewonski, A., Bloch, S., Landisman, M. A technique for the analysis of transient seismic signals. Bulletin of the Seismological Society of America, 59, 1969, 427-444.
    [98] Morlet, J., Arens, G., Fourgeau, E. and Giard, D. Wave propagation and sampling theory-Part I: Complex signal and scattering in multilayered media, Geophysics 47, 1982, 203-221.
    [99] Morlet, J., Arens, G., Fourgeau, E. and Giard, D. Wave propagation and sampling theory-Part II: Sampling theory and complex waves, Geophysics 47, 1982, 222-236.
    [100] Wigner, E.P. On the quantum correction for thermodynamic equilibrium, Phys. Rev. 40, 1932, 749-759
    [101] Proakis, J. G., and Manolakis. Digital Signal Processing: Principles, Algorithms, and Applications. Upper Saddle River, NJ: Prentice Hall, 1996.
    [102] Daubechies, I. Ten lectures on wavelets, SIAM: Society for Industrial and Applied Mathematics, 1992.
    [103] Torrence, C. and Compo, G.P. A practical guide to wavelet analysis, Bulletin of the American Meteorological Society, 79, 1998, 61-78.
    [104] Grossmann, A. and Morlet, J. Decomposition of Hardy functions into square integrable wavelets of constant shape, SLAM J. Math. Anal, 15, 1984, 723-736.
    [105] Rader, D., Schott, W., Dresen, L. and Ruter, H. Calculation of dispersion curves and amplitude-depth distributions of love channel waves in horizontally-layered media, Geophysical Prospecting 33, 1985, 800-816.
    [106]王文德.煤层的槽波赋存状况及其分类[J].煤炭学报, 1997, 22 (4):366-369.
    [107]刘玉忠.采区槽波探测的适应性分类[J].煤田地质与勘探, 1997, 25:54-57.
    [108]林红涛.槽波地震在东北地区的应用[J].东北煤炭技术, 1998, (3):11-14.
    [109]王连元,苗富林,苗日民.槽波勘探技术在鸡西杏花煤矿的应用[J].黑龙江矿业学院学, 1997, 2:1-4.
    [110]洪雷,高宇平,张仲礼,齐文恒.大同四台井田地质小构造综合探测[J].煤田地质与勘探, 2001, 29 (6):59-61.
    [112]宋玉平,刘天放,陈德行等.大同侏罗纪煤层槽波频散特性及振幅特征[J].煤田地质与勘探, 24 (6):49-53.
    [113]王文德,刘玉忠.钻孔槽波地震勘探的研究[J].煤田地质与勘探, 1997, 25 (5):20-23.
    [114]冯宏,文柱展,张仲礼等.槽波地震仪的发展和DYSD-III型矿井数字地震仪[J].煤田地质与勘探, 1994, 22 (3):55-57.
    [115]史保生,肖建华,黄赵侃等.导波地震勘探与导波地震仪[J].中国煤田地质, 1997, 9(增刊):7-11.
    [116]卫金善,张晋武.综合勘探方法在成庄矿井地质构造探测中的应用[J].中国煤田地, 2002, 4:19-20.
    [117]王文德,赵炯,王谊,李天元.槽波反射法探测效果的影响因素及改进措施[J].煤田地质与勘, 1997, 1:57-59.
    [118]孙瑞霞,张雯霁,黄晓玲.煤田地震勘探的新方法一一槽波地震勘探[J].河北建筑科技学院学报, 1998, 15 (3):59-62.
    [119]胡运兵,吴燕清,宋劲.薄层状介质中反射地震超前探测的特性分析[J].河南理工大学学报,2006,25(6):469-473.
    [120]程久龙. LOVE型槽波理论地震图的计算[J].山东矿业学院学报, 1993, 13 (4):349-353.
    [121]杨文强,槽波地震勘探的数学模型研究[J].地质与勘探, 2001, 37 (3):58-60.
    [122]王谊,李天元.槽波用速度检波器高频谐振的研究[J].煤田地质与勘探, 1998, 26 (4):66-68.
    [123]涂兴子,林在康.基于CAD的数字矿井模型及应用[M],中国矿业大学出版社,2005.1.
    [124]林在康,丘福新等.采矿软件技术基础[M],中国矿业大学出版社,2006.1.
    [125]杨真,林在康等.瓦斯浓度超限动态图形显示系统的研制[J],矿山压力与顶板管理,2003,(20):85-87
    [126] Zaikang Lin, Yuejin Zhou etc., The research of dynamic electric three-dimension mine maps[C], Proceedings of the 5th international symposium on mining science and Technology, Xuzhou, Jiangsu, China, 2004.10:141-145.
    [127]杨真,林在康等.基于Intranet和CAD的数字矿井系统研究[C],第十届全国矿山系统工程学术会议(MSE’2006)论文集,2006.8:158-161

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700