用户名: 密码: 验证码:
采动影响下断层滑移诱发煤岩冲击机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
断层冲击矿压是由于采矿活动引起断层突然相对错动而猛烈释放能量的现象。目前对断层冲击矿压的研究,工程实录较多,理论或试验研究很少。针对目前研究存在的问题,采用相似模拟试验、FLAC5.02D数值模拟、理论分析和工程实践等方法进行研究,研究了采动影响下断层冲击矿压危险性变化规律,建立了断层滑移诱发煤岩冲击的力学模型,揭示了断层冲击矿压力学机制,分析了采动影响下断层活化矿震活动规律,进行了断层冲击矿压现场防治实践,并对顶板卸压爆破技术参数进行了优化设计。
     通过断层冲击矿压相似模拟试验和FLAC5.02D数值模拟软件,研究了采动影响下断层冲击矿压危险性。研究表明,工作面由断层下盘向断层推进:在采动影响下断层正应力下降,剪应力上升,断层发生“活化”,顶板稳定性变差,工作面支承压力增加;工作面过断层后,矿压显现不明显。工作面由断层上盘向断层推进:断层面正应力上升,顶板易于形成平衡结构;工作面推过断层后,断层正应力迅速下降,断层滑移量增加,顶板稳定性差,工作面支承压力增加。不同微震信号具有不同的频谱特征。
     采用FLAC5.02D数值模拟软件研究了断层、顶板物理力学属性对工作面支承压力的影响。研究表明:工作面在断层下盘向断层推进时,顶板强度对工作面支承压力影响最显著;工作面在断层上盘向断层推进时,断层倾角对工作面支承压力影响最显著。当工作面在断层下盘向断层推进时冲击矿压危险性远高于工作面从上盘向断层推进时的危险性。
     基于“砌体梁”理论,研究了断层倾向对顶板平衡结构和工作面支承压力的影响。建立了断层滑移诱发煤岩冲击的粘滑-粘弹脆性体突变模型,断层滑移诱发煤岩冲击分为两种力学机制,一是在断层活动条件下“断层滑移失稳动态诱发冲击矿压机理”;二是在断层相对稳定条件下“断层滑移稳态诱发冲击矿压机理”。断层滑移失稳动态诱发冲击矿压强度更猛烈,断层滑移速度与工作面推进速度、工作面距断层距离、断层力学性质、断层正压力和开采深度有关。
     采用微震监测系统对工作面过断层时的矿震活动规律进行了重点分区监测,研究表明:当工作面接近断层时,在采动影响下,断层发生“活化”,矿震活动频繁,矿震震动能量和震动次数均有所增加。当工作面处于断层线时,矿震活动处于峰值位置。工作面离开断层后,矿震活动迅速降低。
     以济三煤矿6303工作面为现场实践点,进行断层冲击矿压防治研究。采用矿井地质构造预测数理统计法对矿井断层展布进行了预测评价。对危险区域采用钻孔卸压、煤体卸压爆破和顶板卸压爆破等措施同时治理煤层和顶板,从而降低冲击危险性。
     该论文有图98幅,表21个,参考文献158篇。
The fault rockburst is a serious natural disaster in coal mine operation. At present, many fault rockburst have been recorded in practice. However, the studies of theory and experiment were deficient. Aiming at the insufficiencies, the research methods of similar material simulation experiment in laboratory, FLAC5.02D numerical simulation, theory analysis and engineering research have been carried out in this dissertation. The rules of risk of fault rockburst were researched during coal mining operation. A mechanics model is established of fault slip induced rockburst, and the criterion was discovered. The evolvement rules of micro-seismic(MS) signals were analyzed when working face advancing to the fault. The practices of prevention and cure about fault rockburst have been carried out in-situ, and optimized the parametes of relieving shot in roof.
     The effect of coal mining operation on fault rockburst is studied by using similar material simulation and FLAC5.02D numerical simulation. The results indicate that when the working face advances from the footwall to the fault itself, the slip displacement increases due to the decrease of normal stress and the increase of shear stress, the fault begins to activate, roof rock-mass is broken and with poor stability, the abutment pressure ahead of working face obviously increases. The underground pressure is low when the working face has passed the fault. However, when the working face advances from the hanging wall to the fault itself, it is difficult for the fault to activate due to the increase of normal stress, the roof rock-mass is ease to become balance structure. The slip displacement increases due to the decrease of normal stress and the increase of shear stress after the fault have passed the fault, the stability of roof becomes weak and the abutment pressure increases. The different MS such as coal mining operation, roof collapse, fault activation, are different frequency spectra.
     The FLAC5.02D software is used to study the effect of fault and roof on abutment pressure. The results indicate that the effect of roof strength on abutment pressure is obvious when the working face advances from the footwall to the fault itself, and the effect of fault dip angle on abutment pressure is obvious when the working face advances from the footwall to the fault itself. The risk of a fault rockburst is higher when the working face advances from the footwall to the fault itself than when the face advances from the hanging wall to the fault.
     The voussior beam theory was used to explain the effects of faults with different dip direction on roof balance structure and underground pressure. A mechanics model of Strike-Slip and Viscous-Elastic-Brittle is established in order to study the mechanism of fault slip induced rockburst. According to damage mechanism, the fault slip induced rockburst can be analyzed by the following two mechanics criterion. The first mechanism is fault slip dynamically induce rockburst when the fault with a high slip velocity, such as fault slip destabilization. The second mechanism is fault slip statically induce rockburst when the fault with a low slip velocity. In the first kind, more energy is violently released comparability. The velocity of fault slip is related to the velocity of working face advancing, the distance from working face to the fault, strength property of fault, normal stress of fault plane and the mining depth.
     A zoning monitoring method is applied to study the evolvement rules of MS signals when the working face advancing to the fault based on the Seismological Observation System. The results indicate that the fault begins to activate when the working face approach to the fault, MS signals is activity with the increase of total energy, maximum energy and frequency. The MS signals reach peak value when working face in fault zone. The MS signals quickly decrease when the working face far away from the fault.
     The researches of prevention and cure about fault rockburst have been carried out in the No.6303 working face of the Jining No.3 Coal Mine. The forecasting technique of mine geological structure was applied to forecast the fault. The strength of coal and rock mass can be weakened in risk range by using some active measures of rockburst such as unload with borehole, relieving shot in coal seam, relieving shot in roof. So, the danger of fault rockburst can be avoided or reduced.
引文
[1]窦林名,何学秋.冲击矿压防治理论与技术[M].徐州:中国矿业大学出版社,2001:1-17.
    [2]窦林名,何学秋.采矿地球物理学[M].北京:中国科学文化出版社,2002:20-37.
    [3]赵本均.冲击矿压及防治[M].北京:煤炭工业出版社,1995:1-23.
    [4]潘立友,钟亚平.深井冲击地压及其防治[M].北京:煤炭工业出版社,1997:14-20.
    [5]窦林名,赵从国,杨思光,等.煤矿开采冲击矿压灾害防治[M].徐州:中国矿业大学出版社,2006:36-44.
    [6]何满潮,谢和平,彭苏萍,等.深部开采岩体力学[J].岩石力学与工程学报,2005,24(16):2803-2813.
    [7]钱鸣高.20年来采场围岩控制理论和实践的回顾[J].中国矿业大学学报,2000,19(1):1-4.
    [8] Sellers E J,Klerck P.Modeling of the effect of discontinuities on the extent of the fracture zone surrounding deep tunnels[J].Tunneling and Underground Space Technology,2000,15(4):463–469.
    [9]何满潮.深部的概念体系及工程评价指标[J].岩石力学与工程学报,2005,24(16):2854-2858.
    [10]李铁,蔡美峰,张少泉,等.我国的采矿诱发地震[J].东北地震研究,2005,21(3):1-26.
    [11]唐春安.岩石破裂过程中的灾变[M].北京:煤炭工业出版社,1993:31-41.
    [12]徐曾和,徐小荷,唐春安.坚硬顶板下煤柱岩爆的尖点突变理论分析[J].煤炭学报,1995,20(5):485-491.
    [13]何满潮.深部花岗岩试样岩爆过程实验研究[J].岩石力学与工程学报,2007,26(5):865-876.
    [14] Hua An-zeng,You Ming-qing.Rock failure due to energy release during unloading and application to underground rockburst control[J].Tunneling and Underground Space Technology,2001,16(3):241-246.
    [15]刘建新,唐春安,朱万成,等.煤岩串联组合模型及冲击地压机理的研究[J].岩土工程学报,2004,26(2):276-280.
    [16]窦林名,陆菜平,牟宗龙,等.组合煤岩冲击倾向性特性试验研究[J].采矿与安全工程学报,2006,23(1):43-46.
    [17]刘波,杨仁树,郭东明,等.孙村煤矿1100m水平深部煤岩冲击倾向性组合试验研究[J].岩石力学与工程学报,2004,23(14):2402-2408.
    [18]王淑坤,张万斌.复合模型力学性质试验研究[J].矿山压力与顶板管理,1994,(1):51-54.
    [19]李铁,蔡美峰,左艳,等.采矿诱发地震的震源机制特征[J].地质通报,2005,24(2):136-144.
    [20]李铁,蔡美峰,蔡明.采矿诱发地震三个特征震源深度的探讨[J].岩石力学与工程学报,2007,26(8):1546-1552.
    [21]张晓春,缪协兴,翟明华,等.三河尖煤矿冲击矿压发生机制分析[J].岩石力学与工程学报,1998,17(5):508-513.
    [22]缪协兴,安里千,翟明华,等.岩(煤)壁中滑移裂纹扩展的冲击矿压模型[J].中国矿业大学学报,1999,28(2):113-117.
    [23]张晓春,张东升,缪协兴.井巷围岩的延迟失稳机理分析[J].岩石力学与工程学报,2001,20(6):830-833.
    [24]黄庆享,高召宁.巷道冲击地压的损伤断裂力学模型[J].煤炭学报,2001,26(2):156-159.
    [25]窦林名,何学秋,王恩元,等.由煤岩变形破坏所产生的电磁辐射[J].清华大学学报(自然科学版),2001,41(12):86-88.
    [26]窦林名,曹其伟,何学秋,等.冲击矿压危险的电磁辐射监测技术[J].矿山压力与顶板管理,2002,(4):89-92.
    [27]窦林名,何学秋.声发射监测隧道围岩活动性[J].应用声学,2002,21(5):25-29.
    [28]窦林名,曹胜根,刘贞堂,等.三河尖煤矿坚硬顶板对冲击矿压的影响分析[J].中国矿业大学学报,2003,32(4):388-392.
    [29]窦林名.深部开采冲击矿压防治研究[J].矿山压力与顶板管理,2003,(3):58-60.
    [30]窦林名,何烨,张卫东.孤岛工作面冲击矿压危险及其控制[J].岩石力学与工程学报,2003,22(11):1866-1869.
    [31]窦林名,刘贞堂,曹胜根,等.坚硬顶板对冲击矿压危险的影响分析[J].煤矿开采,2003,8(2):58-66.
    [32]窦林名,何学秋,王恩元.冲击矿压预测的电磁辐射技术及应用[J].煤炭学报,2004,29(4):396-399.
    [33]聂百胜,何学秋,王恩元,等.电磁辐射法预测煤矿冲击矿压[J].太原理工大学学报,2000,31(6):609-611.
    [34]窦林名,何学秋,王恩元.电磁辐射监测冲击矿压灾害危险[J].煤矿开采,2004,9(1):1-4.
    [35]王恩元,何学秋,窦林名,等.煤矿采掘过程中煤岩体电磁辐射特征及应用[J].地球物理学报,2005,48(1):216-221.
    [36]王恩元,何学秋,刘贞堂,等.煤岩动力灾害电磁辐射监测仪及其应用[J].煤炭学报,2003,28(4):366-369.
    [37]王恩元,何学秋,刘贞堂,等.受载岩石电磁辐射特性及其应用研究[J].岩石力学与工程学报,2002,21(10):1473-1477.
    [38]陆菜平,窦林名.电磁辐射检验卸压爆破效果技术[J].煤炭科学技术,2004,32(1):15-18.
    [39]陆菜平,窦林名.煤岩体电磁效应的影响因素[J].矿山压力与顶板管理,2004,(1):83-86.
    [40]陆菜平,窦林名,吴兴荣,等.基于能量机理的卸压爆破效果电磁辐射检验法[J].岩石力学与工程学报,2005,24(6):1014-1017.
    [41]秦玉红,陆菜平,窦林名,等.巷道掘进期间冲击矿压电磁辐射监测[J].中国煤炭, 2004,30(1):33-34.
    [42]窦林名,田京城,陆菜平.组合煤岩冲击破坏电磁辐射规律研究[J].岩石力学与工程学报,2005,24(19):3541-3544.
    [43]窦林名,王云海,何学秋,等.煤样变形破坏峰值前后电磁辐射特征研究[J].岩石力学与工程学报,2007,26(5):908-914.
    [44]姜福兴,XUN Lou.微震监测技术在矿井岩层破裂监测中的应用[J].岩土工程学报,2002,24(2):147-149.
    [45]成云海,姜福兴,程久龙,等.关键层运动诱发矿震的微震探测初步研究[J].煤炭学报,2006,31(3):273-277.
    [46]钱鸣高,石平五.矿石压力与岩层控制[M].徐州:中国矿业大学出版社,2003:309-312.
    [47]蔡美峰,李治平,纪洪广,等.神经网络在开采与矿山地震活动性关系研究中的应用[J].中国矿业,2002,11(2):6-9.
    [48]蔡美峰,王金安,王双红.玲珑金矿深部开采岩体能量分析与岩爆综合预测[J].岩石力学与工程学报,2001,20(1):38-42.
    [49]蔡美峰,王双红.玲珑金矿地应力场测量结果及其分析[J].中国矿业,2000,9(5):46-51.
    [50]李长洪,张吉良,张磊,等.煤矿冲击性灾害类型实验研究[J].北京科技大学学报,2009,31(1):1-9.
    [51]蒋金泉,李洪.基于混沌时序预测方法的冲击地压预测研究[J].岩石力学与工程学报,2006,25(5):889-895.
    [52]李洪,戴仁竹,蒋金泉,等.基于最大Lyapunov指数的冲击地压预测模型[J].采矿与安全工程学报,2006,23(2):215-219.
    [53]宋维源,潘一山,苏荣华,等.冲击地压的混沌学模型及预测预报[J].煤炭学报,2001,26(1):26-30.
    [54]潘一山,赵扬锋,官福海,等.矿震监测定位系统的研究及应用[J].岩石力学与工程学报,2007,26(5):1002-1011.
    [55]陆菜平,窦林名,吴兴荣,等.岩体微震监测的频谱分析与信号识别[J].岩土工程学报,2005,27(7):772-775.
    [56]陆菜平,窦林名,吴兴荣,等.煤岩冲击前兆微震频谱演变规律的试验与实证研究[J].岩石力学与工程学报,2008,27(3):519-525.
    [57]曹安业,窦林名,秦玉红,等.高应力区微震监测信号特征分析[J].采矿与安全工程学报,2007,24(2):146-149.
    [58] CAO An-ye,DOU Lin-ming,CHEN Guo-xiang,et al.Focal mechanism caused by fracture or burst of a coal pillar[J].Journal of China University of Mining and Technology,2008,18(1):153-158.
    [59]窦林名,何学秋.煤岩冲击矿压的分级预测研究[J].中国矿业大学学报,2007,36(6):717-722.
    [60]陈国祥,窦林名,乔中栋,等.褶皱区应力场分布规律及其对冲击矿压的影响[J].中国矿业大学学报,2008,37(6):751-755.
    [61]窦林名,许家林,陆菜平,等.离层注浆控制冲击矿压危险机理探讨[J].中国矿业大学学报,2004,33(2):145-149.
    [62]蒋金泉,张开智.综放开采矿震的成因及防治对策[J].岩石力学与工程学报,2006,25(1):3276-3282.
    [63]高明仕,窦林名,张农,等.岩土介质中冲击震动波传播规律的微震试验研究[J].岩石力学与工程学报,2007,26(7):1365-1371.
    [64]高明仕.冲击矿压巷道围岩的强弱强结构控制机制研究[博士学位论文][D].徐州:中国矿业大学,2006.
    [65] GAO Ming-shi,DOU Lin-ming,ZHANG Nong,et al.Simulation of the relationship between roadway dynamic destruction and hypocenter parameters[J].Journal of China University of Mining and Technology,2008,18(1):93-97.
    [66]牟宗龙,窦林名.坚硬顶板突然断裂过程中的突变模型[J].矿山压力与顶板管理,2004,(4):90-92.
    [67]牟宗龙,窦林名,张广文,等.坚硬顶板型冲击矿压灾害防治研究[J].中国矿业大学学报,2006,35(6):737-741.
    [68]牟宗龙.顶板岩层诱发冲击的冲能原理及其应用研究[博士学位论文][D].徐州:中国矿业大学,2007.
    [69]窦林名,陆菜平,牟宗龙,等.煤岩体的强度弱化减冲理论[J].河南理工大学学报,2005,24(3):169-175.
    [70]窦林名,陆菜平,牟宗龙,等.冲击矿压的强度弱化减冲理论及其应用[J].煤炭学报,2005,30(5):690-694.
    [71]陆菜平,窦林名,吴兴荣.煤岩动力灾害的弱化控制机理及其实践[J].中国矿业大学学报,2006,35(3):301-305.
    [72]齐庆新,史元伟,刘天泉.冲击地压粘滑失稳机理的实验研究[J].煤炭学报,1997,22(2):144-148.
    [73]齐庆新,刘天泉,史元伟.冲击地压摩擦滑动失稳机理[J].矿山压力与顶板管理,1995,(4):174-177.
    [74]潘一山,章梦涛.冲击矿压失稳理论的解析分析[J].岩石力学与工程学报,1996,15(增):504-510.
    [75]潘一山,王来贵,章梦涛,等.断层冲击地压发生的理论与试验研究[J].岩石力学与工程学报,1998,17(6):642-649.
    [76]李忠华,潘一山.采煤工作面冲击矿压的解析分析[J].辽宁工程技术大学学报(自然科学版),2002,21(1):40-42.
    [77]王学滨,潘一山,海龙.基于剪切应变梯度塑性理论的断层岩爆失稳判据[J].岩石力学与工程学报,2004,23(4):588-591.
    [78]王学滨,宋维源,黄梅,等.考虑水致弱化及应变梯度的断层岩爆分析[J].岩石力学与工程学报,2004,23(11):1815-1818.
    [79]王来贵,潘一山,梁冰,等.矿井不连续面冲击地压发生过程分析[J].辽宁工程技术大学学报(自然科学版),1996,5(3):61-64.
    [80]潘岳,刘英,顾善发.矿井断层冲击地压的折迭突变模型[J].岩石力学与工程学报,2001,20(1):43-48.
    [81]孟召平,彭苏萍,冯玉,等.断裂结构面对回采工作面矿压及顶板稳定性的影响[J].煤田地质与勘探,2006,34(3):24-27.
    [82]孟召平,彭苏萍,黎洪.正断层附近煤的物理力学性质变化及其对矿压分布的影响[J].煤炭学报,2001,26(6):561-566.
    [83]彭苏萍,孟召平,李玉林.断层对顶板稳定性影响相似模拟试验研究[J].煤田地质与勘探,2001,29(3):1-4.
    [84]勾攀峰,胡有光.断层附近回采巷道顶板岩层运动特征研究[J].采矿与安全工程学报,2006,23(3):285-288.
    [85]冯国才,姚永明.断裂活动与矿山岩体地质动力灾害研究[J].辽宁工程技术大学学报(自然科学版),2002,21(5):571-573.
    [86]陈学华,段克信,陈长华.地质动力区划与矿井动力现象区域预测[J].煤矿开采,2003,8(2):55-57.
    [87]王金安,刘航,李铁.临近断层开采动力危险区划分数值模拟研究[J].岩石力学与工程学报,2007,26(1):28-35.
    [88]姜福兴,杨淑华,成云海,等.煤矿冲击地压的微地震监测研究[J].地球物理学报,2006,49(5):1511-1516.
    [89] R.A.Stewart,W.U.Reimold,E.G.Charlesworth,et al.The nature of a deformation zone and fault rock related to a recent rockburst at Western Deep Levels Gold Mine[J].Tectonophysics,2001,337(3-4):173-190.
    [90] L.R. Myer.Fractures as collections of cracks[J].International Journal of Rock Mechanics and Mining Sciences,2000,37(1-2):231-243.
    [91] L.N. Germanovicha , A.V. Dyskin . Fracture mechanisms and instability of openings in compression[J].International Journal of Rock Mechanics and Mining Sciences,2000,37(1-2):263-284.
    [92] A.F. Duranda,E.A. Vargas Jr.b,L.E. Vaz.Applications of numerical limit analysis (NLA) to stability problems of rock and soil masses[J].International Journal of Rock Mechanics & Mining Sciences,2006,43(3):408-425.
    [93] D.J. Reddish,L.R. Stace,P. Vanichkobchinda,et al.Numerical simulation of the dynamic Effect breakage testing of rock[J].International Journal of Rock Mechanics & Mining Sciences,2005,42(2):167-176.
    [94] T. Backers,S. Stanchits,G. Dresen.Tensile fracture propagation and acoustic emission activity in sandstone:The effect of loading rate[J].International Journal of Rock Mechanics & Mining Sciences,2005,42(7-8):1094-1101.
    [95] V. Rudajev,J. Vilhelm,T. Lokajicek.Laboratory studies of acoustic emission prior to uniaxial compressive rock failure[J].International Journal of Rock Mechanics and Mining Sciences,2000,37(4):699-704.
    [96] D. Eccles,P.R. Sammonds,O.C. Clint.Laboratory studies of electrical potential during rock failure[J].International Journal of Rock Mechanics & Mining Sciences,2005,42(7):933-949.
    [97] N. Cho,C.D. Martin,D.C. Sego.Development of a shear zone in brittle rock subjected to direct shear[J].International Journal of Rock Mechanics & Mining Sciences,2008,45(8):1335-1346.
    [98] T. Koyama,B. Li,Y. Jiang,et al.Numerical simulations for the effects of normal loading on particle transport in rock fractures during shear[J].International Journal of Rock Mechanics & Mining Sciences,2008,45(8):1403-1419.
    [99]徐则民,黄润秋,罗杏春.静荷载理论在岩爆研究中的局限性及岩爆岩石动力学机理的初步分析[J].岩石力学与工程学报,2003,22(8):1255-1262.
    [100]谭忠盛,杨小林,王梦恕.复线隧道施工对既有隧道的影响分析[J].岩石力学与工程学报,2003,22(2):281-285.
    [101]薛亚东,张世平,康天合.回采巷道锚秆动载响应的数值模拟分析[J].岩石力学与工程学报,2003,22(11):1903-1906.
    [102]邹德蕴,姜福兴.煤岩体中储存能量与冲击地压孕育机理及预测方法的研究[J].煤炭学报,2004,29(2):91-93.
    [103]张平,李宁,贺若兰.动载下两条断续预制裂隙贯通机制研究[J].岩石力学与工程学报,2006,25(6):1210-1217.
    [104]左宇军,李夕兵,唐春安.二维动静组合加载下岩石破坏的试验研究[J].岩石力学与工程学报,2006,25(9):1809-1820.
    [105]朱万成,唐春安,黄志平.静态和动态载荷作用下岩石劈裂破坏模式的数值模拟[J].岩石力学与工程学报,2006,24(1):1-7.
    [106]朱万成,左宇军,尚世明.动态扰动触发深部巷道发生失稳破裂的数值模拟[J].岩石力学与工程学报,2007,26(5):915-921.
    [107]李夕兵,李地元,郭雷.动力扰动下深部高应力矿柱力学响应研究[J].岩石力学与工程学报,2007,26(5):922-928.
    [108] Zheming Zhu,Bibhu Mohanty,Heping Xie.Numerical investigation of blasting-induced crack initiation and propagation in rocks[J].International Journal of Rock Mechanics & Mining Sciences,2007,44(3):412-424.
    [109] D. Galic,S.D. Glaser,R.E. Goodman.A Lagrangian dynamic analysis of end effects in a generalized shear experiment[J].International Journal of Rock Mechanics & Mining Sciences,2008,45(4):495-512.
    [110] Shiro Kubota,Yuji Ogata,Yuji Wada.Estimation of dynamic tensile strength of sandstone [J].International Journal of Rock Mechanics & Mining Sciences,2008,45(3):397-406.
    [111] G.W. Ma,X.M. An.Numerical simulation of blasting-induced rock fractures[J].International Journal of Rock Mechanics & Mining Sciences,2008,45(6):966-975.
    [112]张小涛,窦林名,李志华.煤岩体蠕变突变模型[J].中国煤炭,2005,31(1):37-40.
    [113]陈国祥,窦林名.煤岩体内储能的变化及冲击破坏模型分析[J].煤炭工程,2006,(2):43-45.
    [114]陈庆宣,王维襄,孙叶等.岩石力学与构造应力场分析[M].地质出版社,1998.
    [115]苏生瑞,黄润秋,王士天.断裂构造对地应力场的影响及其工程应用[M].科学出版社,2002.
    [116]朱广轶,李强,郭仁东.老虎台井田构造应力分析[J].辽宁工程技术大学学报(自然科学版),2004,23(5):591-593.
    [117]孙宗颀,张景和.地应力在地质断层构造发生前后的变化[J].岩石力学与工程学报,2004,23(23):3964-3969.
    [118]孙宗颀,张国报,张景和.在地质断层构造中地应力状态演变研究[J].石油勘探与开发,2000,27(1):102-105.
    [119]沈明荣.岩体力学[M].上海:同济大学出版社,1999:8-43.
    [120]潘立友,张立俊,刘先贵.冲击地压预测与防治实用技术[M].中国矿业大学出版社,2006,132-142.
    [121]王永秀,齐庆新,徐刚,等.华丰矿保护层开采数值模拟研究[J].煤矿开采,2003,8(4):4-7.
    [122]宋卫东,赵增山,王浩.断层破碎带与采准巷道围岩作用机理模拟研究[J].金属矿山,2004,(332):11-13.
    [123]王泽利,何昌荣,周永胜,等.断层摩擦实验中的应力状态及摩擦强度[J].岩石力学与工程学报,2004,23(23):4079-4083.
    [124]李全晓,姜福兴,王存文,等.微震监测结果在矿图上的定位合成以及应用[J].采矿与安全工程学报,2007,24(2):165-168.
    [125] [美]S.达斯等.地震震动力学[M].地震出版社,1991,37-47.
    [126] [波]Slawomir Jerzy Gibowicz,Andrzej Kijko.矿山地震学引论[M].地震出版社,1998,18-22.
    [127]傅征祥.中国大陆地震活动性力学研究[M].地震出版社,1997,235-237.
    [128]王来贵,黄润秋,张倬元,等.岩石试件沿弱面滑动的动力学分析[J].中国有色金属学报,1997,7(4):10-13.
    [129] L. Driad-Lebeau,F. Lahaie,M. Al Heib.Seismic and geotechnical investigations following a rockburst in a complex French mining district[J].International Journal of Coal Geology,2005,64(1-2):66-78.
    [130] Maochen Ge.Efficient mine microseismic monitoring[J].International Journal of Coal Geology,2005,64(1-2):44-56.
    [131] T. Li,M.F. Cai,M. Cai.A review of mining-induced seismicity in China [J].International Journal of Rock Mechanics & Mining Sciences,2007,44(8):1149-1171.
    [132] B. Shen,A. King,H. Guo.Displacement stress and seismicity in roadway roofs during mining-induced failure[J].International Journal of Rock Mechanics & Mining Sciences,2008,45(5):672-688.
    [133]王桂梁,龙荣生,徐凤银,等.矿井构造预测[M].北京:煤炭工业出版社,1993.
    [134]高永成.影响综采的地质因素及其评价[J].煤炭科学技术,1994,22(3):52-56.
    [135]王树常,李佩民.兖州煤田地质构造对瓦斯的控制作用[J].焦作工学院学报,1997,16(2):28-32.
    [136]刘文明,鲁江,张登龙.皖北前岭煤矿地质构造及其对煤层破坏的影响[J].淮南工业学院学报,2001,21(2):1-4.
    [137]徐凤银,魏铭康.矿井构造预测与评价的理论、方法及其应用[M].徐州:中国矿业大学出版社,1993,12:55-66.
    [138]徐凤银,王桂梁.矿井构造预测与评价的发展途径[J].中国矿业大学学报,1995,24(3):68-73.
    [139]赵明鹏,刘俊杰.矿井地质工作方法及其新进展[M].北京:地质出版社,1996.
    [140]俞鸿年,卢华复.构造地质学原理[M].南京:南京大学出版社,1998.
    [141]李志华,窦林名,张卫东.矿井地质构造预测与应用[J].煤炭工程,2005,(2):40-43.
    [142]李志华,窦林名,张小涛,等.坚硬顶板卸压爆破对冲击矿压的数值分析[J].中国煤炭,2006,32(2):38-41.
    [143]牟宗龙,窦林名,张广文,等.坚硬顶板型冲击矿压灾害防治研究[J].中国矿业大学学报,2006,35(6):737-741.
    [144]牟宗龙,窦林名,陆菜平,等.巷道两帮煤岩体电磁辐射信号差异分析[J].采矿与安全工程学报,2006,23(4):427-431.
    [145]张小涛,窦林名.煤层硬度与厚度对冲击矿压影响的数值模拟[J].采矿与安全工程学报,2006,23(3):277-280.
    [146]曹安业,窦林名,张小涛,等.某矿孤岛工作面冲击危险分析及其监测[J].煤炭工程,2007,(2):70-73.
    [147]方新秋,窦林名,柳俊仓.大采深条带开采坚硬顶板工作面冲击矿压治理研究[J].中国矿业大学学报,2006,35(5):602-606.
    [148]李志华,窦林名,张士斌,等.某矿工作面辅助运输平巷冲击矿压技术分析[J].煤炭科学技术,2006,34(增):20-23.
    [149]许东俊,章光,李廷芥.岩爆应力状态研究[J].岩石力学与工程学报,2000,19(2):169-172.
    [150]顾大钊.相似材料和相似模型[M].徐州:中国矿业大学出版社,1995,5:91-97.
    [151]周英,顾明,李化敏,等.综放开采上覆岩层运动规律相似材料模拟分析[J].煤炭工程,2004,2:43-45.
    [152]王亮,张永利.木城涧矿三槽底部采动条件下模拟实验研究[J].煤矿开采,2007,12(1):63-65.
    [153]杨科,谢广祥.综放开采煤层应力分布规律的相似模拟研究[J].矿山压力与顶板管理,2004,2:26-28.
    [154]张诚.地震分析基础[M].北京:地震出版社,1986:1-2.
    [155]李志华,窦林名,陈国祥,等.采动影响下断层冲击地压能量积聚演化规律[C].煤矿高效开采与冲击地压新技术,2008:81-88.
    [156]李志华,窦林名,牟宗龙,等.断层对顶板型冲击矿压的影响[J].采矿与安全工程学报,2008,25(2):154-158.
    [157] Li Zhihua,Dou Linming,Lu Caiping,et al.Study of fault induced rockbursts[J].Journal of China University of Mining and Technology,2008,18(3):321-326.
    [158]李志华,窦林名,管向清.矿震前兆分区监测方法及应用[J].煤炭学报,2009,34(5):614-618.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700