用户名: 密码: 验证码:
煤岩体水力致裂弱化的理论与应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
煤岩体水力致裂弱化技术是改善坚硬厚(高瓦斯)顶煤冒放性、处理坚硬顶板、防治冲击矿压、改善煤层透气性和防治煤与瓦斯突出等的有效技术途径,是一项煤矿安全高效开采的保障技术。本文以煤岩体强度弱化(结构改造)为工程背景,采用实验研究、理论分析、数值模拟和现场试验等研究方法对煤岩体水力致裂弱化的理论和技术进行了较为系统的研究,具有重要理论意义和广泛工程应用前景。
     研制了4000kN真三轴岩体水力致裂模拟实验系统。能实现试块尺寸最大为500×500×500mm的真三轴地应力场模拟。设计了具有增压功能的油水加载转换器。实验分析了煤岩力学性质及含水量的影响。基于与煤岩体的全应力应变曲线形态等相似,确定了型煤(煤∶水泥∶石膏)和水泥砂浆的材料配比。
     应用大尺寸真三轴水力致裂模拟实验系统开展了煤岩体水力致裂裂缝扩展规律研究。实验结果表明,水力致裂裂缝的前沿为椭圆形态,且以钻孔致裂段为中心;水压裂缝前沿椭圆曲线方程(x~2)/(a~2)+ (y~2)/(b~2) = 1的长短轴之比a/b保持不变。水力致裂裂缝垂直于最小主应力方向扩展。当中间主应力越接近最小主应力,则钻孔孔底水压裂缝越易向垂直于中间主应力的方向偏转;且其扩展方向平行于σ_2和σ_3确定的矢量面。发现了孔底水压裂缝存在分叉现象,分叉后水压裂缝破裂面的走向与σ_3、σ_2均垂直。煤岩体水力致裂除了水压主裂缝形成主破裂面外,渗透水压力对主裂缝两侧煤体形成渗透水楔作用,裂隙和层理面等发生了张开和扩展。同时,由于节理裂隙等缺陷的存在,煤体水力致裂破裂面的粗糙度明显比一般岩石材料要大。考虑水力致裂过程水向岩石内的渗透滤失引起的孔隙水压力(水力梯度)作用,使水压裂缝尖端扩张的净水压力等于缝尖水压力减去滤失水压力和原岩孔隙流体压力。采用流体力学分析得出了钻孔和水压裂缝内的水力衰减规律。当原生裂隙与最小主应力夹角大于一定值,且水压翼型裂纹与水压主裂缝间的岩桥较短时,水压裂缝沿原生裂隙及其翼型分支裂纹继续向前扩展。
     固液耦合作用下裂隙煤岩体细观结构破坏研究。在调查煤层裂隙分布规律的基础上,基于断裂力学得出了煤岩体内水压裂隙起裂的最小裂隙水压力与水压翼型分支裂纹的扩展长度。采用RFPA软件模拟了成组原生裂隙条件下,水力致裂弱化的结构改造形态。在岩块为各向同性的前提下,基于能量耗散损伤得出了裂隙煤岩体细观结构破坏与宏观力学性能弱化的关系。
     煤岩体水力致裂弱化的控制技术研究。结合水力割缝和水力致裂的优势,提出预先水力割缝定向致裂技术。基于钻孔及钻孔水压力的叠加影响,通过多钻孔及其注液方式的组合来控制水压裂缝的扩展方向。结合水压爆破和水力致裂的优点,采用水压爆破致裂对煤岩体的结构进行改造,使裂隙煤岩体形成多个水压主裂缝和沿水压主破裂面的致裂裂缝带。在爆生压力作用下,煤岩体节理裂隙张开扩展,导致结构面的粘结力降低,煤岩体切割加剧,弱化了煤岩体的整体力学性能。实验证明是一种增加水压裂缝数目和改善煤层透气性的有效方法。
     采动煤岩体水力致裂弱化的时空关系研究。实验研究了煤体自然吸水湿润与时间的关系,分析了干燥煤样和自然煤样的吸水湿润差异。依据渗流的起始水力坡度和水力致裂径向水力坡度衰减规律,得出了水力致裂弱化注水的渗透半径。水力致裂弱化水压主裂缝扩展阶段必须超前支承压力峰值区完成。
     高瓦斯坚硬厚顶煤弱化的现场试验表明,水力致裂弱化了煤体的整体力学性能,顶煤破碎块度明显降低,工作面回收率提高了23%;预先释放瓦斯,降低了工作面瓦斯浓度,粉尘浓度降低21%,抑制了煤自然发火。
Hydraulic fracture weakening technology for coal-rock mass is an efficient means to improve hard thickness top coal(high gas) caving property,deal with hard roof,prevent rook burst,increase coal seam permeability and avoid coal-gas outburst,which is safeguard technology for safety and high efficiency mining of coal mine. Based on the engineering background of coal-rock mass strength weakening (stucture reform) , research methods including experiment research,theory analysis,numerical simulation and test on site have been used to study hydraulic fracture weakening theory and technology of coal-rock mass systematically,which has important theoretic meaning and widespread engineering application prospect.
     True triaxial hydraulic fracture experiment system with 4000kN anchorage force was developed,which can perform the stress field simulation in-situ with the greatest size 500×500×500mm in true triaxial test. Designed boil-water loading converter has increasing pressure function. Coal mechanical property and influence of water content have been analyzed. For similar form with complete stress-strain curve of (coal) rock mass,material mixture ratio of analogue coal(coal: cement: plaster) and sanded cement grout has been obtained.
     Crack propagation law of hydraulic fracture in coal-rock mass has been studied. Hydraulic fracture simulation experiment with greatest size in true triaxial test indicates that front hydraulic fracture shape is elliptic and its center is the part of drillhole fracture. Ratio a/b of major axis to minor axis in hydraulic fracture front elliptic curve equation (x~2)/(a~2)+ (y~2)/(b~2) = 1 keeps unchanged. Hydraulic fracture crack is expands vertically to the direction of minimum principal stress. The closer medium principal stress is to minimum principal stress,the more prone drill hole bottom hydraulic fracture is to deflect vertically to the direction of medium principal stress;its propagating direction is parallel to vector surface ofσ_2 andσ_3. Bifurcation phenomenon has been found in the hydraulic fracture of drillhole bottom. Strike of hydraulic fracture failure surface is vertical of bothσ_2 andσ_3 after bifurcation.
     Besides hydraulic fracture technology for coal-rock mass leads to main hydraulic crack to produce main failure surface, the seepage water pressure forms seepage water wedge in coal both sides of main hydraulic crack. Then, fissure and bedding plane will open and propagate. Meanwhile, because of shortcoming of fissure in coal mass, hydraulic fracture failure surface roughness of coal mass is larger than common rock material obviously. Consideration of pore water pressure (hydraulic gradient)caused by seepage filtration from water to rock in the process of hydraulic fracture, expansion net water pressure in crack-tip is equal to crack-tip water pressure subtract filtration water pressure and original rock pore water pressure. Hydraulic decay laws between drillhole and hydraulic crack have been analyzed by fluid mechanics.When the angle between initial fissure and minimum principal stress is more than some value and rock bridge between hydraulic wing crack and hydraulic main crack is shorter,hydraulic crack along the direction of initial fissure and wing crack will keep on propagating constantly.
     Research on microscopic structure destroy of fissured rock mass has been made under solid and liquid coupling condition. According to coal seam crack distribution laws, minimum fissure water pressure and hydraulic wing crack propagation length of initial fissure in the rock mass have been gained by fracture mechanics. Structure reformation form of hydraulic fracture weakening has been simulated by RFPA software under the condition of a group of initial fissure. According to energy dissipation damage theory,relation between microscopic structure failure of fissured rock mass and macroscopic mechanical property weaken has been obtained under the precondition of rock block isotropy.
     Control technology of rock mass hydraulic fracture weakening has been made in this paper. With the advantages both hydraulic slotting and hydraulic fracture, guide orientation technology of beforehand hydraulic slotting has been put forward. Because of superposed influence of drillhole and its water pressure, propagating direction of hydraulic fracture is controlled by combination multi drillholes with its liquid injection mode. Combining the advantage of hydraulic blasting and hydraulic fracture,structure reforming technology of hydraulic blasting fracture for coal-rock mass has been presented. The experiment result shows that crack coal-rock mass will generate multiple water pressure main fracture and fracture zone along the water pressure failure surface. Under pressure of explosion,coal joint fissure will open and propagate so that structure plane cohesion stress decreases. As a result, coal cutting becomes serious and whole mechanical property of rock mass has been weakened. It has been proved to be a useful method to increase water pressure crack numbers and coal seam permeability.
     Research has been made on temporal spatial relation of hydraulic fracture weakening for mining coal-rock mass. Tests have been carried out to study the relation between coal natural water absorption and time,and to analyze the water absorption difference between dry coal sample and natural one. By seepage initial hydraulic slope degree and radial hydraulic fracture slope degree decay laws, seepage radius of injecting water has been acquired by hydraulic fracture weakening. Base on moving abutment pressure distribution and failure character of surrounding rock, rational distance advancing wall of hydraulic fracture weakening has been obtained.
     Weakening tests of hard thickness top coal with high gas in situ have shown that,hydraulic fracture weakens the whole mechanical property of coal mass and reduces the size of top coal broken and increases recovery ratio of top coal by 23%. It can release gas in advance , reduce gas concentration, reduce 21 % of dust concentration,and suppress coal spontaneous combustion.
引文
[1]邓广哲.煤体致裂软化理论与应用[M].西安:陕西科学技术出版社,2003.
    [2]黄炳香.坚硬煤岩体水力致裂裂缝扩展特征研究[D].西安科技大学学位论文,2004.
    [3] R.G.Jefferey,K.W.Mills. Hydraulic fracture applies to inducing longwall coal mine goal falls[C],PaeifieRoek2000,Girard,Liebman,Breed&doe,Balkema,ISBN90 5809 155 4,423-430.
    [4]巴内吉A,雷A K,辛格G.高压注水控制坚硬顶板[J].中国煤炭,2004,30(12):73-74.
    [5]孙守山,宁宇,葛钧.波兰煤矿坚硬顶板定向水力压裂技术[J].煤炭科学技术,1999,27(2):51-52.
    [6]刘英学.清水灌注抑制易燃采空区遗煤氧化及自燃的机理研究与应用[J].煤炭学报,2002,27(3):237~241.
    [7]田水承,李新东,徐精彩.煤自燃环境及其影响因素[J].西安矿业学院学报,1994,(2):107-111.
    [8]谢兴华,速宝玉.裂隙岩体水力劈裂研究综述[J].岩土力学,2004,25(2):330-336.
    [9] Hubbret M.K.,Willis D G. Mechanics of hydraulic fracturing,Trans Am Inst Min Engre[J]. 1957,210:153-168.
    [10] Detournay E, Carbonell R. Fracture mechanics analysis of break-down process in minifrac or leak of tests[A]. Proceeding of Eu-rock’94[C]. Rotterdam: Balkema,1994,399-407.
    [11] Zhao Z, Kim H, Haimson B. Hydraulic fracturing initiation in granite [A ]. Rock Mechanics [M ]. Aubertin,Hassani and Mitri (eds). Balkema Publishers,Rotterdam,1996:1279-1284.
    [12] M.M.Hossain,M.K.Rahman,S.S.Rahman. A comprehensive monograph for hydrnulic fracture initiation from deviated wellbores under arbitrary stress regimes[J]. SPE,54360,1999.
    [13] M.M.Hossain,M.k.Rahman. Hydraulic fracture initiation and propagation:roles of wellbore trajectory,perforation and stress regmes[J]. J.Pet.Sci.Eng,2000,(27):129-149.
    [14]邓广哲,黄炳香,王广地,等.圆孔孔壁裂缝水压扩张的压力参数理论分析[J].西安科技学院学,2003,23(24):361-364.
    [15]邓广哲,王世斌,黄炳香.煤岩水压裂缝扩展行为特性研究[J].岩石力学与工程学报,2004,23(20):3489-3493.
    [16] I. Berchenko,E. Detournay,N. Chandler, etal. An in-situ thermo-hydraulic experiment in a saturated granite I: design and results[J]. International Journal of Rock Mechanics & Mining Sciences,2004,41:1377-1394.
    [17] E. Detournay,T. Senjuntichai,I. Berchenko. An in situ thermo–hydraulic experiment in asaturated granite II:analysis and parameter estimation[J]. International Journal of Rock Mechanics & Mining Sciences,2004,41:1395-1411.
    [18] B.C. Haimson. Hydraulic fracturing and rock characterization[J]. International Journal of Rock Mechanics and Mining Sciences,2004,41(3):1-6.
    [19]鲁连军,孙逢春,安申法,等.水力裂缝内流场分布的有限元分析[J].北京理工大学学报,2004,24(1):27-30.
    [20] Andrei Sergiu Popa. Automatic hydraulic fracturing design for low permeability reservoirs using rrtificial intelligence[D]. Doctor dissertation of West Virginia University,2004.
    [21]李同林,乌效鸣,屠厚泽.煤岩力学性质测试分析与应用[J].地质与勘探,2000,36(2):85-88.
    [22] Morten Gj?nnes,Antonio M.G.L. Cruz,Per Horsrud,et al. Leak-off tests for horizontal stress determination? [J]. Journal of Petroleum Science and Engineering,1998,20:63-71.
    [23] Andrew R. Piggott. Static and dynamic calculation of formation fluid displacement induced by hydraulic fracturing[J]. Appl. Math. Modelling,1996,20:714-718.
    [24] Riaz Khan. A study of the mechanisms of internal cake formation during drilling, well completion and hydraulic fracturing operations[D]. Dissertation of graduate studies in University of Alberta,2004.
    [25] Takatoshi Ito. Effect of pore pressure gradient on fracture initiation in fluid saturated porous media: Rock[J]. Engineering Fracture Mechanics,2008,75:1753-1762.
    [26] Ruiting Wu. Some Fundamental Mechanisms of Hydraulic Fracturing[D]. Doctor thesis of philosophy in Georgia Institute of Technology. 2006.
    [27] P. C. PAPANASTASIOU. A coupled elastoplastic hydraulic fracturing model[J]. International Journal of Rock Mechanics & Mining Sciences,1997,34(3/4):240-431.
    [28]陈勉,庞飞,金衍.大尺寸真三轴水力压裂模拟与分析[J].岩石力学与工程学报,2000,19(增):868-872.
    [29]邓广哲.封闭型煤层裂隙地应力场控制水压致裂特性[J].煤炭学报,2001,26(5):478-482.
    [30] ZIFENG MA. Experimental studies of rock fracture behavior related to hydraulic fracture[D]. Doctor thesis of philosophy in material engineering of the University of Illinois at Chicago,2000.
    [31] B. Bohloli,C.J. de Pater. Experimental study on hydraulic fracturing of soft rocks: Influence of fluid rheology and confining stress[J]. Journal of Petroleum Science and Engineering,2006,53:1-12.
    [32] B. Legarth,E. Huenges,G. Zimmermann. Hydraulic fracturing in a sedimentary geothermal reservoir: Results and implications[J]. International Journal of Rock Mechanics & MiningSciences,2005,42:1028-1041.
    [33]中国地震局地壳应力研究所,日本电力中央研究所.水压致裂裂缝的形成和扩展研究[M].北京:地震出版社,1999.
    [34]阳友奎,肖长富,邱贤德,等.水力压裂裂缝形态与缝内压力分布[J].重庆大学(自然科学版),1995,18(3):20-26.
    [35]乌效鸣,屠厚泽.煤层水力压裂典型裂缝形态分析与基本尺寸确定[J].地球科学—中国地质大学学报,1995,20(1):112-116.
    [36] IVAN GIL. Hydraulic fracturing of poorly consolidated formations:considerations on rock properties and failure mechanisms[D]. Doctor dissertation of philosophy at the University of OKLAHOMA,2005.
    [37] Hong Chang. Hydraulic fracturing in particulate materials[D]. Doctor thesis of philosophy in Georgia Institute of Technology,2004.
    [38] Hyun Moon,B.S.,M.S. Mathematical modeling and simulation analysis of hydraulic fracture propagation in three-layered poro-elastic media[D]. Doctor thesis of philosophy in the Ohio State University,1992.
    [39] Andrew P. Bunger. Near-surface hydraulic fracture[D]. Minneapolis:Doctor thesis of philosophy at University of Minnesota,2005.
    [40] Hanson M E,Anderson G D, Shaffer, R J.Theoretical and experimental research on hydraulic fracturing. Transactions of the ASME. Journal of Energy Resources Technology[J]. 1980,102(2):92-98.
    [41] Fowler AC.,Scott D R. Hydraulic crack propagation in a porous medium[J]. Geophysical Journal International,1996,127(3):595-604.
    [42] Juncal Fan. Computer modeling of SCC in gas pipe steel and hydraulic fracture in stratified poro-elastic media[D]. Thesis for the degree of doctor of philosophy in materials engineering of the University of Illinois at Chicago,2001.
    [43] Philippe R.B. Devlooa,Paulo Dore Fernandesb,S?onia M. Gomesc,?,et al. A finite element model for three dimensional hydraulic fracturing[J]. Mathematics and Computers in Simulation,2006,73:142-155.
    [44] J. Adachi,E. Siebrits,A. Peirce,et al. Computer simulation of hydraulic fractures[J]. International Journal of Rock Mechanics & Mining Sciences,2007,44:739-757.
    [45]申晋,赵阳升,段康廉.低渗透煤岩体水力压裂的数值模拟[J].煤炭学报,1997,22(6):580-584.
    [46] Matthew Jacklin Kennedy. Finite element calculations of hydraulic fracturing during horizontal directional drilling[D]. Doctor thesis of master of science(engineering)in Queen’s University,2004.
    [47] Yaochen Li,B.S.,M.S. Finite element simulation of hydraulic fracturing in porous media[D]. Indiana:Doctor thesis of philosophy in University of Notre Dame,1991.
    [48] AHMAD GHASSEMI. Three-dimensional poroelastic hydraulic fracture simulation using the displacement discontinuity method[D]. Norman:Doctor dissertation of geological engineering in University of Oklahoma,1996.
    [49]冷雪峰,唐春安,杨天鸿等.岩石水压致裂过程的数值模拟分析[J].东北大学学报(自然科学版),2002,23(11):1104-1107.
    [50] Teufel L W,Clark J A. Hydraulic fracture propagation in layered rock: Experimental studies of fracture containment[J]. Society of Petroleum Engineers Journal,1984,24(1): 19-32.
    [51]陈治喜,陈勉,黄荣樽等.层状介质中水力裂缝的垂向扩展[J].石油大学学报(自然科学版),1997,21(4):23-26.
    [52]张广清,陈勉.水平井水压致裂裂缝非平面扩展模型研究[J].工程力学,2006,23(4):160-165.
    [53]赵阳升,杨栋,郑少河等.三维应力作用下岩石裂缝水渗流物性规律的实验研究[J].中国科学(E辑),1999,29(1):82-86.
    [54]杨天鸿,唐春安,朱万成等.岩石破裂过程渗流与应力耦合分析[J].岩土工程学报,2001,23(4):489-493.
    [55] OUYANG Zhi-hua,ELSWORTH Derek,LI Qiang. Characterization of hydraulic fracture with inflated dislocation moving within a semi-infinite medium[J]. Journal of China University of Mining & Technology,2007,17(2):0220-0225.
    [56] Oda M.,Takemura T., Aoki T. Damage growth and permeability change in triaxial compression tests of Inada granite[J]. Mechanics of Materials,2002,34(6):313-331.
    [57]朱珍德,徐卫亚.裂隙岩体渗流场与损伤场耦合模型研究[J].河海大学学报(自然科学版),2003,31(2):156-160.
    [58]郑少河,姚海林,葛修润.渗透压力对裂隙岩体损伤破坏的研究[J].岩土力学2002,23(6):687-690.
    [59] Jonny Rutqvist·Ove Stephansson. The role of hydromechanical coupling in fractured rock engineering[J]. Hydrogeology Journal,2003,11:7-40.
    [60] Howarth D F,Rowlands,J C. Quantitative assessment of rock texture and correlation with drillability and strength properties[J]. Rock Mechanics and Rock Engineering,1987,20 (1):57-85.
    [61] Y. Ichikawa,K. Kawamura,K. Uesugi,etal. Micro- and macrobehavior of granitic rock:observations and viscoelastic homogenization analysis[J]. Comput. Methods Appl. Mech. Engrg.,2001,191:47-72.
    [62]王德喜,罗敏,齐羲.水力割缝套管应力与强度分析[J].大庆石油学院学报,2007,31(2):51-54.
    [63]剑万禧,李炜.控制致裂岩体应力量测的模型试验研究[J].实验力学,1996,11(2):121-128.
    [64]李连崇,唐春安,杨天鸿,等. FSD耦合模型在多孔水压致裂试验中的应用[J].岩石力学与工程学报,2004,23(19):3240-3244.
    [65]胡耀青,段康廉,赵阳升.煤层动压注水的现场实验研究[J].太原理工大学学报,1998,29(2):156-162.
    [66] A.M. Raaena,E. Skomedal,H. Kjφrholt,etal. Stress determination from hydraulic fracturing tests: the system stiffness approach[J]. International Journal of Rock Mechanics & Mining Sciences,2001,38:529-541.
    [67]聂百胜,何学秋,王恩元,等.煤吸附水的微观机理[J].中国矿业大学学报,2004,33(4):379-383.
    [68]张延松.煤层注水湿润煤体的研究[J].煤炭学报,1995,20(增刊):1-7.
    [69]金龙哲,宋存义,蒋仲安,等.压力渗流润湿煤体的实验研究[J].安全与环境学报,2001,1(5):19-21.
    [70]王青松,金龙哲,孙金华.煤层注水过程分析和煤体润湿机理研究[J].安全与环境学报,2004,4(1):70-73.
    [71]李大广,宋维源,石强.平面径向流注水工艺参数的确定[J].煤矿开采,2005,10(5):6-9.
    [72]李宗翔,孙平,刘海义.注水煤体应力能转化与释放机理研究[J].中国地质灾害与防治学报,2005,16(2):67-70.
    [73]章梦涛,宋维源,潘一山.煤层注水预防冲击地压的研究[J].中国安全科学学报,2003,13(10):69-73.
    [74]宋维源,章梦涛,潘一山.煤层注水中的水渗流规律研究[J].地质灾害与环境保护,2004,15(2):85-88.
    [75] JUN-MO KIM,R. R. PARIZEK,D. ELSWORTH. Evaluation of fully-coupled strata deformation and groundwater flow in response to longwall mining[J]. International Journal of Rock Mechanics and Mining Sciences. 1997,34(8):1187-1199.
    [76]康天合,张建平,白世伟.综放开采预注水弱化顶煤的理论研究及其工程应用[J].岩石力学与工程学报,2004,23(15):2615-2621.
    [77]张子安,陈学习.“三软”煤层注水封孔技术的试验研究[J].中国安全科学学报,2000,10(3):54-57.
    [78]蒋曙光,成军农,李旭东,等.煤层注水流量监测监控装置的研制[J].煤矿自动化,1999,3:13-15.
    [79]李宏,张伯崇.水压致裂试验过程中自然电位测量研究[J].岩石力学与工程学报,2006,25(7):1425-1429.
    [80]陈宝华,史磷华,骆永妙.水压致裂试验过程中的地电效应研究[J].地震学报,1989,11(3):309-318.
    [81]高福旺,船国玉,韩风银,等.用电测深法在水压致裂实验中确定岩石破裂方向的实验研究[J].西北地震学报,1989,11(2):87-90.
    [82] B.Cassell G.M .Bol L.Stewart.水压致裂期间的声发射观测[J].世界地震译丛,1993,2:69-74.
    [83] Cornet, F.H. Microseismic and acoustic activity associated with hydraulic fracture propagationSource: Advances in European Geothermal Research[A]. Proceedings of the Second International Seminar on the Results of EC Geothermal Energy Research[C]. 1980: 967-976.
    [84]刘建中,高龙生,张雪.水压致裂室内模拟实验的声发射观测[J].石油学报,1990,11(2):72-78.
    [85] Tsuyoshi Ishida. Acoustic emission monitoring of hydraulic fracturing in laboratory and field[J]. Construction and Building Materials,2001,15:283-295.
    [86] H. Moriya,T. Fujitaa,H. Niitsuma,etal. Analysis of fracture propagation behavior using hydraulically induced acoustic emissions in the Bernburg salt mine, Germany[J]. International Journal of Rock Mechanics & Mining Sciences,2006,43:49-57.
    [87] V. Frid. Electromagnetic radiation method water-infusion control in rockburst-prone strata[J]. Journal of Applied Geophysics,2000,43:5-13.
    [88]李应平.微震分析水压致裂的破裂过程[J].地震学报1996,18(3):292-300.
    [89] C.J. de Pater,J. Groenenboom,D.B. van Dam,et al. Active seismic monitoring of hydraulic fractures in laboratory experiments[J]. International Journal of Rock Mechanics & Mining Sciences,2001,38:777-785.
    [90] C.J. de Pater,J. Groenenboom,D.B. van Dam,etal. Active seismic monitoring of hydraulic fractures in laboratory experiments[J]. International Journal of Rock Mechanics & Mining Sciences,2001,38:777-785.
    [91] T. Ito,K. Evans,K. Kawai,et al. Hydraulic fracture reopening pressure and the estimation of maximum horizontal stress[J]. International Journal of Rock Mechanics and Mining Sciences,1999,36:811-826.
    [92]何学秋,刘明举.含瓦斯煤岩破坏电磁动力学[M].徐州:中国矿业大学出版社,1995.
    [93]窦林名,陆菜平,牟宗龙,等.顶板运动的电磁辐射规律探讨[J].矿山压力与顶板管理,2005,3:40-42.
    [94]王鸿勋,张士诚.水力压裂设计数值计算方法[M].北京:石油工业出版社,1998.
    [95]连志龙.水力压裂扩展的流固耦合数值模拟研究[D].中国科学技术大学博士论文,2007.
    [96] J.C.耶格,N.G.W.库克.岩石力学基础[M].北京:科学出版社,1981,306-348.
    [97]王鸿勋.水力压裂原理[M].北京.石油工业出版社,1987.
    [98]丁遂栋,孙利民.断裂力学[M].北京:机械工业出版社,1997.
    [99]程靳,赵树山.断裂力学[M].北京:科学出版社,2006.
    [100] Tang CA,Tham LG,Lee PKK,eta1.Coupling analysis of flow,stess and damagc(FSD) in rock failure[J].International Joumal of Rock Mechanics and Mining Sciences,2002,39(4):477-489.
    [101]朱维申.节理岩体破坏机理和锚固效应及工程应用[M].北京:科学出版社,2002.
    [102]赵阳升,杨栋,冯增朝,等.多孔介质多场耦合作用理论及其在资源与能源工程中的应用[J].岩石力学与工程学报,2008,27(7):1321-1328.
    [103]郑少河,姚海林,葛修润.渗透压力对裂隙岩体损伤破坏的研究[J].岩土力学,2002,23(6):687-690.
    [104]朱珍德,胡定.裂隙水压力对岩体强度的影响[J].岩土力学,2000,21(1):64-67.
    [105]朱维申,张强勇.节理岩体脆弹性断裂损伤模型及工程应用[J].岩石力学与工程学报,1999,18(3):245-249.
    [106] Ashby M F, Hallam S D. The failure of brittle solids containing small cracks under compressive stress states[J]. Acta Metall., 1986,34(3):497-510.
    [107]李建林,哈秋瓴.节理岩体拉剪断裂与强度研究[J].岩石力学与工程学报,1998,17(3):259-266.
    [108]范景伟,何江达.含定向闭合断续节理岩体的强度特性[J].岩石力学与工程学报,1992,11(2):190-199.
    [109] Kemeny J,Cook N G W. Effective moduli non-linear deformation and strength of a cracked elastic solid[J]. Int. J. Rock Mech. Min. Sci. &Geomech. Abstr.,1986,23(2):107-118.
    [110] Laws N, Brockenbroyh J R. The effect of microcrack systems on the loss of stiffness of brittle solids[J]. Solids &Struts.,1987,23(3):621-623.
    [111]伍法权.统计岩体力学原理[M].武汉:中国地质大学出版社,1993.
    [112] N. Petford,G. Davidson,J. A. Miller. Pore structure determination using confocal scanning laser microscopy[J]. Phys. Chem. Earth(A),1999,24(7):563-567.
    [113] Liaqat Ali a, Maria A. Barrufet. Study of pore structure modification using Environmental Scanning Electron Microscopy[J]. Journal of Petroleum Science and Engineering,1995,12:323-338.
    [114] L. Veneva, V. Hoffmann, D. Jordanova , etal. Rock magnetic, mineralogical and microstructural characterization of fly ashes from Bulgarian power plants and the nearby anthropogenic soils[J]. Physics and Chemistry of the Earth,2004,29:1011-1023.
    [115] J.P. Callot,X. Guichet. Rock texture and magnetic lineation in dykes:a simple analytical model[J]. Tectonophysics,2003,366:207-222.
    [116] Quan Chen, Andrew E. Marble, Bruce G. Colpitts,et al. The internal magnetic field distribution, and single exponential magnetic resonance free induction decay, in rocks[J]. Journal of Magnetic Resonance,2005,175:300-308.
    [117]肖立志.核磁共振成像测井与岩石核磁共振及其应用[M].北京:科学出版社,1998.
    [118] M.S. Bruno,F.M. Nakagawa. Bore pressure influence on tensile fracture propagation in sedimentary rock[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts,1991,28(4):261-273.
    [119] F. V. DONZE,J. BOUCHEZ,S. A. MAGNIER. Modeling Fractures in Rock Blasting[J]. International Journal of Rock Mechanics and Mining Sciences,1997,34(8):1153-1163.
    [120]陈士海.水压爆破装药研究[J].西部探矿工程,1996,8(1):60-67.
    [121]韩治龙.矿山开采新技术-深孔水压爆破[J].西部探矿工程,2000,1:76-78.
    [122]邵晓宁.炮孔水压爆破孔壁压力计算[J].煤矿爆破,2005,4:10-12.
    [123]尹根成,张英华.水压爆破造缝提高煤层瓦斯抽放率技术[J].煤炭工程,2006,12:73-74.
    [124]樊少武.提高煤层透气性的理论研究[J].煤炭工程,2005,9:61-63.
    [125]罗天雨.水力压裂多裂缝基础理论研究[D].西南石油大学博士学位论文,2006.
    [126] Z.A.Erguler,R.Ulusay. Water-induced variations in mechanical properties of clay-bearing rocks[J]. International Journal of Rock Mechanics & Mining Sciences,2009,46:355-370.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700