用户名: 密码: 验证码:
金川镍矿柱式短流程分选研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
镍是我国国民经济建设和发展高新技术的重要有色金属原材料,被称为“工业维生素”。近些年,随着我国矿产工业的发展,镍矿资源开发力度逐步加大,易选富矿石逐年减少,贫细杂难处理的镍矿石比例不断增加。金川镍矿是我国最大的硫化镍矿床,其硫化镍矿石的选矿工艺是以浮选机为主体的“阶段磨浮”工艺,长期以来浮选机暴露出细粒回收能力不足,分选选择性差的弊端,因而限制了贫细镍矿资源的进一步高效开发和利用。浮选柱与浮选机相比具有细粒分选效果好、精矿品位高的特点,因而它在国内外硫化镍矿选厂的精选作业提高精矿品位方面获得了成功的应用,但是在贫细难选矿回收及粗选和扫选作业上应用的较少,究其原因是目前的浮选柱大多缺乏强化分选回收手段,总体回收率难以得到有效的保证。因此,采用先进高效的分选方法、设备和工艺来开发利用贫细硫化镍矿,提高硫化镍矿的回收率和分选效率是镍矿选矿行业十分迫切与重要的研究课题。
     为了实现对贫细难选硫化镍矿的高效分选,本文系统的开展了硫化镍矿的基础理论与可浮性的研究,并结合金川镍矿石的工艺矿物学性质,分析了微细难选镍矿的难选原因。金川硫化镍矿石中以镍黄铁矿和紫硫镍铁矿最为普遍,部分镍黄铁矿的粒度细小,此外还有少量镍黄铁矿呈细小粒状或脉状嵌布于脉石矿物中,细粒嵌布的镍黄铁矿在磨矿过程中难于单体解离,造成磁黄铁矿和脉石矿物中含镍,且直接影响选矿指标。紫硫镍铁矿化学成分波动大,易氧化,易过粉碎,因此可浮性十分复杂。矿石中各种硫化矿物嵌布粒度极不均匀,磨矿后总体粒度和镍铜金属分布呈“哑铃型”,难于浮选。金川镍矿石中含有大量的蛇纹石,蛇纹石是一种硬度低、密度小的含镁脉石矿物,在磨矿过程中易碎、易泥化,沉降困难,在浮选过程中易与气泡粘附一起进入泡沫产品,因此蛇纹石对选矿工艺的影响较大,蛇纹石矿泥的存在影响矿浆粘度,包裹细粒硫化矿粒并对粗颗粒硫化矿表面形成强的矿泥覆盖,从而破坏浮选过程的选择性,致使精矿中氧化镁的含量超标。
     基于金川硫化镍矿石的工艺矿物学特点,本论文针对性地进行了硫化镍矿的可浮性特征研究,在此基础上开展了金川镍矿气泡矿化及矿化后气絮团在旋流力场下的分离研究,通过研究提出了基于矿物物理特性和可浮性综合效应的旋流分离。表明在旋流力场下镍黄铁矿经过药剂作用与气泡接触矿化后,可以更多的富集于旋流中矿,实现镍黄铁矿与脉石矿物的有效分离和多重循环高效回收。针对金川镍矿“哑铃型”的粒度组成和金属分布,为实现短流程高效分选,论文针对金川难选镍矿的细度控制强化浮选进行了研究,利用细磨改善粒度组成和金属分布,使入浮矿物粒度组成和金属分布更接近于精矿的粒度组成和金属分布,通过细粒高效的分选设备和工艺来浮出更多的镍黄铁矿,进而提高镍精矿的总体回收率,并根据研究提出了匹配高效浮选的粒度分布曲线和回收率曲线。
     在金川硫化镍矿浮选特性和分选过程研究的基础上,本论文进行了详细的柱式分选过程强化研究,通过旋流-静态微泡浮选柱多重矿化分选方式强化和营造适于细粒难选镍矿分选过程的流体分选环境,来强化细粒贫镍矿的气泡碰撞矿化和矿化气泡的选择性升浮。论文详细研究和论证了微泡、旋流力场、管流矿化紊流度等对细粒分离分选的影响,合理的确定了微泡强化方式、循环旋流分选压力、逆流碰撞高度等影响镍矿分选的设备参数和理论模型。
     论文最后进行了金川镍矿柱式分选研究,针对金川细粒硫化镍矿难选的特点,逐步进行了基于金川镍尾矿的浮选柱强化分选、基于二段作业的浮选柱强化分选和基于一段二段作业联合的柱式强化分选研究。通过各种方式的柱式分选,采用强化的分选条件与柱式分选过程,回收率和精矿品位等工艺指标在浮选机分选的基础上都获得了明显的提升,表明柱式分选设备和工艺适于细粒难选贫镍矿的分选。通过不同强化分选研究,最终确定应用了强化细磨条件下的基于二段作业的柱式短流程高效分选,为细粒难选镍矿的高效开发利用奠定了基础。
     通过合理的分选研究,半工业试验的连续运行,细磨-机-柱联合分选工艺与原有生产系统同期相比精矿品位提高3个百分点,回收率提高3个百分点,实现了柱式分选设备和工艺的在微细难选硫化镍矿分选的应用。通过对细磨-机-柱联合分选工艺的矿物学分析和比较,表明机-柱联合工艺强化了微细镍黄铁矿的富集与回收,并有效的控制了含镁硅酸盐类脉石的上浮,明显提高了金川镍矿的选矿效率。在半工业的基础上,进行了工业的设计,通过半工业的应用结果和工业设计表明,细粒难选镍矿柱式分选工艺可大大缩减工艺流程,降低能耗,节约生产成本。
     细粒难选镍矿的柱式分选设备和工艺克服了常规浮选设备矿化方式单一、缺乏细粒强化分选机制等弊端,在提高矿物浮选效率的同时,简化浮选工艺配置、节约生产成本,为我国细粒难选矿的高效开发利用提供了有利的支撑。
Nickel, also called“Vitamin for Industry,”is a very important nonferrous metal for China's national economic and high-tech development. In recent years, with the development of China’s minerals industry, the exploration of nickel resources has been gradually enhanced, however, easy-to-separate ores have been decreasing year by year while the proportion of poor quality and difficult-to-separate nickel ores is rising steadily. The laregest nickel reserve in China is called Jinchuan nickel sulfide ore, and cell-type flotation technology has been used for nickel separation at Jinchuan. Due to the inherent inefficiencies associated with traditional flotation machines including the single mineralized separation and low mineralization efficiency, the separation technology of nickel sulfide using flotation machine has its problems such as complex process and high processing cost. Compared with flotation machine, flotation column has many advantages including simple structure, energy saving, high efficiency, and efficient separation of micro-fine mineral, etc. Thus, it is applied in cleaning flotation to improve the concentrate grade in nickel sulfide ore dressing plants; however it has been rarely used in hard-to-separate ores, rough and scavenging operations due to the lack of an intensified separation mechanism in most present flotation columns, which cannot guarantee high efficient recovery rate. Consequently, using highly efficient separation methods, equipment and technologies to explore nickel sulfide ores and improve their recovery rate and separation efficiency is a very urgent and important research project in nickel separating industry.
     In order to achieve the highly efficient separation of nickel sulfide ores, the basic theory and flotation characteristics of nickel sulfide ores were systematically investigated in this dissertation, combined with the mineralogical characterization of Jinchuan nickel ores. The reasons of poor floatability of this ultra-fine nickel ores were analyzed and an improved separation process was designed. Mineralogical analysis indicated that the Jinchuan nickel sulfide ores consist of mostly pentlandite and violarite and the particle size of some pentlandite is quite small; in addition, there is also little pentlandite inlayed in gangue minerals in the form of fine particles or nervation. In the two parts the small size of pentlandite makes dissociation difficult in grinding, which results in some nickel residues in pyrrhotite and veinstone minerals and this directly affects the mineral separation performance. Violarite has high volatility and is easy to be oxidized and overgrinded, so its floation nature is quite complicated. The inlaid degree of all kinds of sulfide minerals in ores forms irregularly. After grinding the whole grade size and distribution of nickel and copper are in the form of“dumbbell-shaped”and the separation is difficult. The Jinchuan nickel ores contain large amount of ophiolite which has great effects on separation and mainly leads to the above-norm level of magnesium oxide in flotation concentrate. In addition, ophiolite is a kind of veinstone mineral containing of low hardness and density magnesium; it is easy to break down into fine clay particles and hard to settle down; ophiolite slime also can easily adhere to air bubbles and enter into froth pulp. In the same time, ophiolite has greater superficial free ability, and easily adheres to the bubble generator in flotation; the existence of ophiolite slime affects the viscosity of ore pulp, packs the fine grain sulfide ores and forms strong cover of slime to the surface of rough grain sulfide ores, which in turn adversely affect the selectivity of flotation process.
     Base on the technological mineralogy characteristics of Jinchuan nickel sulfide ores, the flotation characteristics of nickel sulfide ores were studied in this dissertation. The bubble mineralization of Jinchuan nickel ores and the separation of mineralized floccules under centrifugal force field enviroment were investigated. And it has found that the centrifugal force field separation does not separate with the particles and density of ores but with the density of mineralized air floccules. In order to obtain better separation efficiency, based on previous studies this dissertation in further forms grade composition in the form of“dumbbell-shaped”and ores separation theory of metal distribution--fineness controlled optimized floatation theory of the hard-to-separate nickel ores. In this theory, it uses fine grinding to improve the grade composition and metal distribution. The floating grade composition and the distribution should be closer to the grade composition and metal distribution of concentrate not tailing, which is useful to the flotation recovery of nickel concentrate. After fine grinding, the grade distribution transmits to fine grade distribution, so highly efficient fine floatation and separation methods shall be employed to realize the effective recovery of fine particle. Highly efficient separation equipment and technology shall be used to improve the overall separation performance and based on the research put forward matched highly efficient floatation grade distribution curve and recovery rate curve. Aiming at the hard separation characteristics of fine grade nickel ores and analysis of the floatation process of nickel sulfide ores, this dissertation studied column separation theory in details. Using cyclonic static micro-bubble flotation column multi-mineralization separation method to strengthen and create suitable fluid separation environment for separation process of the fine grade hard-to-separate nickel ores to strengthen the bubble collision and mineralization of the fine poor nickel ores and the selective floation of mineralized bubbles.
     The dissertation studied and demonstrated that micro-bubble, centrifugal force field and the pipe flow mineralized turbulence degree have significant effects of on fine particle separation. Based on detailed research, this dissertation reasonably demonstrates some parameters which affect nickel ore separation such as strengthening means of micro-bubble, circular separation pressure, and the height of flotation column and theoretical model.
     The existing problems of the separation of Jinchuan nickel ores were identified. To efficiently separate the difficult-to-separate Jinchuan nickel sulfide ores, nickel tailing re-separation column separation and the second-stage highly efficient column separation and two-stages united Column separation was developed. Under fortified separation condition, through proper technological adjustments, separation performance indicators such as recovery rate and concentrate grade, etc. have been measurably increased compared with floatation machine separation. And that justifies the application of column separation equipment and technology in the separation of fine grade hard-to-separate nickel ores. Comparison and optimized different technology finally demonstrate the most proper the second-stage column flotation column under optimized fine grinding condition, which lays a fundamental base to the highly efficient exploration and utilization of fine grade hard-to-separate poor nickel ores.
     Through technological development and pilot-scale testing, a combined process using fine grinding + flotation machine + column flotation has increased 3% of concentrate grade compared with original process, and the recovery rate has also increased 3%. This new process strengthened the gathering and recovery of micro-fine pentlandite, effectively controlled the floatation of magnesium silicate gangue, and measurably improved the mineral separation efficiency of Jinchuan nickel ores. Based on pilot testing, industrial-scale flotation columns were designed, and the application results indicate that column separation technology of fine grade hard-to-separate nickel ore can greatly simplify the separation process circuit, reduce energy consumption and save processing cost.
     The column separation equipment and technology proposed in this research for fine hard-to-separate nickel ores treatment overcomes the shortcomings of conventional flotation equipment including single means of bubble mineralization and the lack of intense separation mechanism. Application of the proposed technology also resulted in simplified flotation process, lower processing cost, and improved the flotation efficiency, which lays a strong base for our country’s highly efficient exploration and utilization of finely sized hard-to-separate ores.
引文
[1]曹异生.国内外镍工业现状及前景展望[J].世界有色金属,2005(10):67-71.
    [2]甲斌.控制开采总量合理开发与利用镍矿资源[J].国土资源,2008(9):58-60.
    [3]侍爱国,郭忠林,包国忠,等.金川镍贫矿资源综合利用的意义[J].稀有金属与硬质合金,2005(3):45-47.
    [4]曹异生.国际镍矿业进展及发展前景预测[J].世界有色金属,2007(8):34-39.
    [5]黄开国,甘肃金川镍矿可持续发展选矿问题浅谈[J].国外金属矿选矿,2001(1):31-32.
    [6]刘炯天,周晓华,王永田,等.浮选设备评述[J].选煤技术,2003(6):25-33.
    [7]刘广龙.浮选机特点与研发方向[J].金川科技,2004(2) :27-33.
    [8]杜岩.国外浮选设备的发展与应用[J].金属矿山,1993(3):52-55.
    [9]刘炯天,王永田,曹亦俊,等.浮选柱技术的研究现状与发展趋势[J].选煤技术,2006(5):25-29.
    [10]今井哲男.浮选柱浮选技术的发展[J].锡业科技,2000(4):67-72.
    [11] J. A. Finch, G. s. Dobby. Column flotation[M]. Pergamon press, 1989:1-4.
    [12] I.Bilgesu, T.P.Meloy, M.C.williams. Packed column froth flotation of copper minerals in columns[J].Minerals Engineering, 2005,18(7):731-733.
    [13]高祖昌,王永其,袁永健.充填式静态浮选柱及其分选细粒煤的实践[J].选煤技术,1999(2):11-14.
    [14] Yang D C. A New Packed Column Flotation System[C].Column Flotation’88: Society of mining engineers, INC, Littleton, Colorado, 1988:257-260.
    [15] R.Clayton, G.J.Jameson, E.V.Manlapig. The development and application of the Jameson cell[J]. Minerals Engineering, 1994, 4(1):925-933.
    [16] G.J.Jameson, E.V.Manlapig. Applications of the Jameson flotation cell[C]. Column Flotation’91: Canada Cominco Engineering Services Ltd, 1991,4(1):673-687.
    [17] G.J.harbort, B.R.Jackson, E.V.Manlapig. Recent advances in Jameson flotation cell technology[J]. Minerals Engineering, 1994, 7(2):319-332.
    [18]路阳.金川选厂浮选柱分流工业试验研究[D].徐州:中国矿业大学,2007.
    [19]张守卫,谢曙斌,徐爱东.镍的资源、生产及消费状况[J].世界有色金属,2003(11):9-14,42.
    [20]曾新民.金川硫化铜镍矿矿石特性与可浮性关系[J].矿冶,2005,14(3):16-19.
    [21]许荣华.硫化镍及硫化铜镍矿石选矿概述[J].昆明理工大学学报,2000(4):16-18.
    [22]矿产资源综合利用手册编委会.矿产资源综合利用手册[M].北京:科学技术出版社,1999:94-95.
    [23]李学博.镍矿选矿现状及进展[J].金川科技,1992(3):31.
    [24]陈家模.多金属硫化矿浮选分离[M],贵阳:贵州科技出版社,2001: 9,159.
    [25]胡秀梅.金平镍矿Ⅰ号岩体贫镍矿石工艺矿物学研究[D].昆明:昆明理工大学,2006.
    [26]郭昌槐,胡熙庚.蛇蚊石矿泥对金川含镍磁黄铁矿浮选特性的影响[J].矿业工程, 1984,4(2):28-32.
    [27]李治华.含镁脉石矿物对镍黄铁矿浮选的影响[J].中南矿冶学院学报, 1993,24(1):36-44.
    [28]冯其明,张国范,卢毅屏.蛇纹石对镍黄铁矿的影响及其抑制研究现状[J].矿产保护与利用,1997(10):19-22.
    [29]邱显扬,戴子林,俞继华,等.镍黄铁矿浮选中抑制剂的作用[J].广东有色金属学报,1999(11):86-89.
    [30]王毓华.黄铜矿和镍黄铁矿浮选特性研究[J].有色矿冶,1990(4):15-17.
    [31] E.E.奥斯特洛兹娜娅.硫代硫酸盐的金属络合物对含磁黄铁矿的硫化铜镍矿石中主要矿物浮选的影响[J].国外金属矿选矿,2000(5):42-44.
    [32]师建忠,李成必.镍选矿评述[C].第九届全国选矿年评学术会议论文集,2004:79-89.
    [33] V. Bozkurt, Z. Xu, J.A.Finch. Pentlandite/pyrrhotite interaction and xanthate adsorption[J]. Int. j. Miner. process. 52(1998):203-214.
    [34]唐敏,张文彬.微细粒硫化矿浮选的电化学调控[J].有色矿冶.2003(5):12-14,50.
    [35]邱显扬,夏启斌,戴子林,等.镍黄铁矿浮选中的电化学作用[J].广东有色金属学报,2000(11):79-83.
    [36]邵伟华.金平镍矿Ⅰ号岩体贫镍矿石的分选工艺研究[D].昆明:昆明理工大学,2006.
    [37]徐凤平,周兴龙,尤腾胜,等.我国硫化铜镍矿石的选矿现状[J].矿业快报, 2007(10):1-4.
    [38]夏启斌.金川镍镁分离浮选新药剂的研究[D].长沙:中南工业大学. 2001.
    [39]选矿手册编委会.选矿手册第八卷第一分册[M].北京:冶金工业出版社,1989:333-409.
    [40]王淀佐.矿物浮选和浮选剂[M].长沙:中南工业大学出版社,1986:236.
    [41]王伟东.硫化镍矿石浮选工艺和药剂[J].矿产保护与利用,1989(4):40-43.
    [42]王伟东.金川二矿区硫化镍矿石浮选新工艺及机理研究.第二届全国选矿学术讨论会论文集[C].1990,262-268.
    [43] Teoh. E. C. Selective flotation of nickel-bearing minerals with use specific dioxide surfactants[J]. Transactions of The Institution of Mining And Metallurgy, 1982:142-147.
    [44]向平,欧乐明,刘继忠.金川富矿新组合捕收起泡药剂试验研究[J].矿冶工程,2003(5):33-35.
    [45]彭先淦,黄开国,晓晰.金川镍矿的选矿技术进步[J].国外金属矿选矿. 1998(4):30-32.
    [46] Blackwel.K. Recovery of ultrafine pentlandite shear flocculation. AusIMM extractive metallurgy conference proceedings of the international conference on extractive metallurgy of gold and base metals[C]. 1992(10):247-251.
    [47]曾新民.金川镍矿二期选矿工艺研究与生产实践[J].有色金属(选矿部分),1998(2):1-6.
    [48]向平,李永战.高效硫化矿捕收起泡剂PN405[J].国外金属矿选矿,2002,39(5):24-26.
    [49]张文翰.BF系列捕收剂在金川公司选矿厂的应用[J].甘肃冶金,2003(增刊),57-59.
    [50] B.A.钱图利亚.在磁黄铁矿与丁基黄药作用时二甲基二硫代氨基甲酸盐的影响[J].国外金属矿选矿,2003(2):4-11.
    [51]朱建光.2003年浮选药剂的进展[J].国外金属矿选矿,2003(2):4-11.
    [52]王德燕,戈保梁.硫化铜镍矿浮选中蛇纹石脉石矿物的行为研究[J].有色矿冶. 2003(8):15-17.
    [53]王淀佐.浮选剂作用原理及应用[M].北京:冶金工业出版社,1982:329-346.
    [54] J.Y.Witner, D.S.Yan. Reduction of magnesia in nickel concentrates by modification by the froth zone in column flotation[J].Minerals Enging, 1996, 8(26-28):139-154.
    [55]胡为柏.浮选[M].北京:冶金工业出版社,1989.
    [56]旃习涵.国外蛇纹石抑制剂的研究[J].国外金属矿选矿,1984(7):28-32.
    [57] Zhou Shibao, Fang Qixue. Investigation on improvement of concentrate quality of the rich nickel ores in NO.1 mining area in Jinchuan. Proc. Int. Conf. Min. Metall. Complex. LAP[C].1993,208-215.
    [58]翟爱峰.基于可浮性过程特征的硫化铜矿柱式分选研究[D].徐州:中国矿业大学,2008.
    [59] J.B.Yianatos, F. H.Henriquez, A.G.Oroz. Characterization of large size flotation cells[J].Minerals Engineering, 2006, 19(6):531-538.
    [60]Π·M·巴斯柯耶夫,张兴仁.俄罗斯塔尔纳赫斯克铜镍选矿厂[J].国外金属矿选矿,2000(5):42-44.
    [61]樊晓鹏. CCF浮选柱在金川铜镍硫化物选矿中的应用研究[D].西安:长安大学, 2006.
    [62]曾新民,潘竞虎,周建立.陶瓷过滤机在金川铜镍精矿生产中的应用[J].有色金属. 2001(2):29-34.
    [63]杨丽君. KYF-160浮选机工业试验研究[D].北京:北京科技大学硕士论文,2006.
    [64]尚旭,张文彬,刘殿文等.微细粒矿物的分选技术及设备探讨[J].矿产保护与利用.2007(1)31-34.
    [65]周凌锋,张强.气泡尺寸变化对微细粒浮选效果的研究[J].有色金属(选矿部分)2005(3):21-23.
    [66]何廷树,陈炳辰.微细粒浮选设备探讨[J].中国矿业. 1994, (7).
    [67]尚旭.微细粒难处理氧化铜矿物浮选机理探讨[D].昆明:昆明理工大学,2007.
    [68]唐敏,张文彬.低品位铜镍硫化矿浮选中蛇纹石的行为研究[J].昆明理工大学学报.2001(6):74-77.
    [69]刘谷山,冯其明,张国范.某铜镍硫化矿浮选脱除滑石的研究[J].金属矿山.2005(9):35-37.
    [70]张晗.加温浮选在高硫分选中的研究与应用[J].金川科技. 2000(3):25-27.
    [71]常永强.金川二矿区贫矿石弱酸性介质选矿工艺试验研究[J].中国矿山工程.2004(2):7-9.
    [72] J. A. Finch, G. s. Dobby. Column flotation[M]. Pergamon press, 1989:5-7.
    [73] Afranio Franco Machado.Growing interest in column flotation for minerals[J].Filtration & Separation, 1991,28(1):11-18.
    [74]邱冠周,伍喜庆,王毓华,等.今年浮选进展[J].金属矿山,2006(1):41-52.
    [75]李绍英,谢华,阎志强.浮选柱的研发与工业应用[J].煤,2007,16(2):31-32.
    [76]郑飞.国外浮选柱的发展概况[J].化工矿山技术,1991,20(3):33-37.
    [77] G.Schena,A.Casali. Column flotation circuits in Chilean copper concentrators[J].Mineral Engineering, 1994,7(1):1473-1486.
    [78] Y.Ye, S.gopalatreshnan, E.Paequet,etc. Development of air-sparged hydrocyclone-A swirl-flow floatation column[C]. Column Flotation’88:Society of mining engineers, INC, Littleton, Colorado, 1988:305-314.
    [79] H,EI-shall, N.A.Abdel-Khalek, S.Svoronos. Collector-frother interaction in column flotation of colum[J].Mineral processing,2000,58(6):187-199.
    [80] L.G.Bergh, J.B.Yianatos. Flotation column automation: state of the art[J].Control Engineering Practise,2003,11(1):67-72.
    [81] L.G.Bergh, J.B.Yianatos, C.A.Leiva. Fuzzy supervisory control of flotation column[J].Minerals Engineering,1998,11(8):739-748.
    [82] J.B.Yianatos, L.G.Bergh,G.A.Cortés. Froth zone modeling of an industrial flotation column[J].Minerals Engineering,1998,11(5):423-435.
    [83] H.Deng,R.K.Mehta,G.W.Warren.Numerical modeling of flows in flotation columns[J].International Journal of Mineral Processing,1996,48(1):61-72.
    [84] G Bhaskar, Raii,S Prabhaker, P R Khangaonkar. Benefici-ation low grade by electron-column flotation technique[C].Column Flotation’88: Society of mining engineerings, INC, Littleton, Colorado, 1988:293-298.
    [85] M.K.Mohanty, R.Q.Honaker. A comparative evaluation of the leading advanced flotation technologies[J].Minerals Engineering, 1999,12(1):1-13.
    [86]黄光洪.浮选柱提高铜精矿品位的生产实践[J].工程设计与研究,2002(12):8-12.
    [87] N.K.Mittal, P.K.Sen, S.J.Chopra, etc. India’s first column flotation installation in the zinc cleaning circuit at Rajpura Dariba Mine[J]. Minerals Engineering,2000,13(5):581-584.
    [88]周晓华,刘炯天,王永田,等.利用旋流-静态微泡浮选柱选萤石矿的实验室研究[J].非金属矿,2003,26(1):48-49.
    [89] S.Banisi, J.A.Finch. Testing a flotation column at the Sarcheshm eh copper mine[J].Minerals Engineering, 2003,14(7):785-789.
    [90]郭杰,刘炯天,王永田,等.用自吸式充气浮选柱回收铅锌尾矿中锌的试验研究[J].金属矿山,2005(1):63-64.
    [91] D.Fenga, C.Aldrich. Recovery of chromite、fines from wastewater streams by column flotation[J].Hydrometallurgy,2004,72(3):319-325.
    [92] B.J.赫尔斯,S.R.威廉斯.浮选柱应用的限制参数[J].国外金属矿山,1994(3):54-58.
    [93]于晓霞.浮选柱技术及其应用与金川镍选矿的可行性[J].世界有色金属. 2007(11):20-25.
    [94]刘炯天.旋流-静态微泡浮选柱分选方法及应用(之一)[J].选煤技术,2000(1):42-44.
    [95]刘炯天.浮选柱在我国一些煤矿的实践及发展[J].国外金属矿选矿, 1997(11):50-54.
    [96]胡军,刘炯天,马力强.国产大型浮选柱在煤泥分选中的应用[J].煤炭加工与综合利用,1998(1):1-5.
    [97]刘炯天.旋流-静态微泡浮选柱分选方法及应用(之五)[J].选煤技术,2000(5):1-4.
    [98]张海军,刘炯天,韦锦华,等.FCSMC浮选柱提铁降硅工业试验研究[J].矿冶工程,2008,28(2):31-34.
    [99]李琳,刘炯天,王永田.浮选柱在赤铁矿反浮选中的应用[J].金属矿山,2007(9):59-61.
    [100]陈家模.多金属硫化矿浮选分离[M],贵阳:贵州科技出版社,2001:152-158.
    [101]师伟红.金平镍矿选别的影响因素探讨[D].昆明:昆明理工大学,2007.
    [102] EJ.Wellham, L.Elber &D.s.Yan. The Role of CMC in the flotation on nickel sulphide transition ore[J].minerals Engn. 1992,5(3-5):381-395.
    [103]陈晓东.金川选矿尾矿再选新技术研究[D].昆明:昆明理工大学,2006.
    [104]于建中,曾晓晰,周世伯等.金川二矿区矿石中性介质浮选工艺的研究[J].有色金属(选矿部分),1982(4):6-10.
    [105]东乃良,崔保滨,乔树潭,等.镍黄铁矿的浮选特性及机理研究[J].有色金属(选矿部分),1985(3):4-8.
    [106]樊晓鹏,刘开平,谭晨曦,等.浮选气泡矿化机理研究[J].矿业快报,2005(7):12-14,26.
    [107]谢广元,张明旭,边炳鑫,等.选矿学[M].徐州:中国矿业大学出版社,2001:419-424,133-137.
    [108]袁惠新,鲁娣.旋流器中颗粒临界直径和颗粒间的碰撞[J].煤矿机械,2009(1):71-74.
    [109]邱冠周,胡岳华,王淀佐.颗粒间相互作用与细粒浮选[M].长沙:中南工业大学出版社,1993:231-233.
    [110]邱冠周,胡岳华,王淀佐.颗粒间相互作用与细粒浮选[M].长沙:中南工业大学出版社,1993: 1-16.
    [111]周晓华.浮选柱的旋流分选机理与矿物分选实践[D].徐州:中国矿业大学,2005.
    [112]石贵明.降低镍铜混合精矿氧化镁含量的新工艺研究[D].昆明:昆明理工大学,2008.
    [113]代敬龙,谢广元,刘姗姗,等.浮选气泡尺寸影响因素分析[J].选煤技术,2007(5):7-10.
    [114]王静超,马军,刘芳.气浮接触区气泡-颗粒碰撞效率影响因素分析[J].工业水处理,2008(9):66-69.
    [115]刘炯天,王永田.自吸式微泡发生器的研究[M].中国矿业大学学报,1998(1):28-31.
    [116]卢寿慈.矿物浮选原理[M].北京:冶金工业出版社,1988:166-189.
    [117]刘炯天.旋流-静态微泡浮选柱及洁净煤制备研究[D].徐州:中国矿业大学,1999.
    [118]刘波.气泡生成力学机理及气泡发生器装置研究[D].昆明:昆明理工大学,2006.
    [119]郭晟.微泡生成机理及微泡发生器的优化设计研究[D].昆明:昆明理工大学,2007.
    [120]张文军,欧泽深.旋流微泡浮选柱中的旋流离心力场强化分选[J].矿业研究与开发,2000(6):23-25.
    [121]许占贤.浮选旋流器矿化过程的特点[J].黑龙江矿业学院学报,2000(10):1-13.
    [122]郭德,李拥军,张秀梅,等.离心力场中煤泥的浮选[J].煤炭技术,1996(2):23-24.
    [123]郭德.离心力场中浮选的先进性和缺陷[J].辽宁工程技术大学学报,2002(12):702-704.
    [124]曾克文.浮选槽内矿浆紊流强度对浮选影响的理论及应用研究[D].长沙:中南大学,2001.
    [125]荀志远.新一代高效浮选柱—低高度浮选柱[J].山东冶金,1996(5):58-61.
    [126]陈泉源.实验室规模高气泡表面积通量浮选柱的原理、研制及应用[D].长沙:中南大学,2002.
    [127] Kuehn L A, Cienski T, Reynolds V. Air sparging evaluation method, Sudbury[C],Ontario:Proceedings of column’91, 1991,327-340.
    [128] Maksimov I I. An investigation to increase the efficiency of coarse and fine particle flotation in ore processing of non-ferrous metals[C]. Proceedings ofⅩⅧIMPC, Dresden,1993:313-319.
    [129] Ityokumbul, M T. On the optimization of column height[J]. Miner. Metall. Process,1996(13):36-41.
    [130] Mankosa,M.J.,Adel, G.H.Luttrell and R.H.Yoon. Modeling of column flotation with a view Toward Scale-up and Control[C]. SME annual Meeting, Salt Lake City, Utah, February 26-March 1,1990.
    [131] H.J.Schulze. Flotation as a heterocoagulation process: possiblilities of calculating the probability of flotation[C].Coagulation and Flocculation. Marcel Dekker, New York,1993:321-353.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700