用户名: 密码: 验证码:
浮选柱的自吸封闭式泡沫输配研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
矿物浮选泡沫是一种气—液—固三相泡沫体系,对于那些气含率高、流动性差、稳定性高的泡沫而言,普遍存在后续处理难的问题。目前柱分选工艺流程中过稳定性浮选泡沫主要依靠渣浆泵输送,由于泵受汽蚀和气缚的影响,极易导致泡沫输送困难,影响流程稳定和分选指标。此外,用泵输送泡沫还存在系统配置复杂、投资与运行成本高、占地空间大的不足。论文研究所依托的专题“柱式分选设备泡沫自吸输送装置开发”就是在这种背景下诞生的。作为“柱式短流程分选的共性与关键技术研究”课题中的一个专题,论文以自吸封闭式无扰动浮选泡沫输配技术开展研究工作,对于高效柱式短流程分选工艺的开发具有十分重要的意义。
     在参阅相关文献的基础上,论文首先对泡沫的流变特性进行了总结和分析。通过对泡沫稳定性的研究,提出了柱浮选泡沫同平台自吸输送的研究思路,构建了泡沫输送吸浆器的结构雏形。
     结合叶片式流体输送机械的研究成果,分析了离心吸浆轮的内流理论,并进行了实验室型泡沫输送吸浆器性能试验,分析了相关参数对性能曲线的影响,在此基础上建立了实验室型泡沫输送吸浆器的能量方程。
     利用流体力学计算软件对泡沫输送吸浆器叶轮内部流动进行了数值模拟计算,分析了吸浆器内部气液两相流动的相对速度、压力及浓度分布规律,揭示了气含率和气泡直径对叶轮内部流动的影响,掌握了带有螺旋推进轮和离心吸浆轮的组合叶轮内的流场特性。
     基于对泡沫输送吸浆器过流件磨损形态的分析,对其内部液固两相流动进行了数值模拟计算,得出了吸浆器内部液固两相流场的相对速度、浓度及压力变化规律,分析了流场特性对吸浆器过流件磨损的影响,揭示了颗粒直径和固相浓度对吸浆器过流件的磨损机理。
     根据泡沫输送吸浆器的工作原理、结构特点和输送方式等,确定了浮选柱泡沫输送吸浆器的结构。借鉴叶片泵的设计方法,结合吸浆器内部流动特性的研究结果,形成了浮选柱泡沫输送吸浆器的水力设计方法和优化措施。
     在试验研究、数值模拟及结构优化设计的基础上,研制开发了规格为φ400 mm和φ450 mm的吸浆器,并建立了柱浮选泡沫同平台自吸输送试验系统,实现了柱浮选泡沫的顺利输送,简化了柱分选系统配置,改善了柱分选环境,提高了分选指标。
Mineral flotation froth is a gas-liquid-solid three-phase system, and the type of froth featuring high gas holdup, poor fluidity and too high stability usually causes processing problems. By now, the steady flotation froth is mainly generated and transported using slurry pump during the column separation process. However, it is still very difficult to transport three-phase froth using slurry pump because the pump efficiency can be greatly reduced by cavitation and aerial binding, resulting in lower processing stability and lower column separation efficiency. In addition, this froth-pump-transporting manner has other drawbacks, such as complicated configuration system, high investment cost and large area occupation. To solve this froth-transporting problem, the research subject of the development of froth transporting and self-sucking device for the flotation column was proposed and received research funding. And this thesis originates from it. As one of the projects of the study on common problems and key technology of shortened process for column separation, this thesis focuses on the study of the technology of flotation froth transmission and distribution under the condition of closed type and undisturbed, which could develop the high efficient shortened process for column separation.
     After reviewing literature, this paper summarized and analyzed the rheological properties of foam. Based on the reserach of flotation froth stability, a new research idea of self-sucking and transporting manner for column flotation froth was presented. The preliminary structure of froth transporting and self-sucking device was constructed.
     Applying the research results of fluid transporting machinery with blades, the theory of flow for froth transporting and self-sucking device was analyzed. And the new device was tested under lab-scale to study the influence of relevant parameters on its performance curve. And the energy equation for self-sucking device was established under lab-scale.
     By using the computational fluid dynamics software, the numerical simulation was carried out for the gas-liquid two-phase flow in impeller of froth transporting and self-sucking device. The influence mechanism of the gas holdup and bubble diameter on the flow in impeller was disclosed. Meanwhile, the flow characteristics of compund impeller with propulsive impeller and centrifugal impeller were explained.
     Based on the pattern form analysis of flow passage components of self-sucking device, the numerical simulation of the liquid-solid two-phase flow in self-sucking device was carried out. It simulated the relative velocity, pressure and concentration distribution in self-sucking device. The influence of the flow field characteristics on wearing for the flow passage components of self-sucking device was discussed. And the wear effect of particle diameter and solid concentration on the flow passage components of self-sucking device was explained.
     Based on the working principle, structural characteristics and transporting manner of self-sucking device, the structure of self-sucking device were determined. By referring to the design methods of vane pump and the studies on two-phase flow characteristics in self-sucking device, the hydraulic design method and optimization measures for self-sucking device were preliminarily confirmed.
     Two self-sucking devices with diameters of 400 mm and 450 mm had been developed on the basis of laboratory tests, numerical simulation and structure design of self-sucking device. The industrial application of this system for froth transporation in column separation process was established, and the column separation froth transported in the same operating platform was realized. The system configuration for this column separation had been simplified, and the separation condition and the separation indexes for column were improved.
引文
[1] Skil.A,夏菊芳.泡沫浮选新技术的发展[J].有色矿山,1994(2):22-29.
    [2]刘艳玲,李奴英.泡沫浮选分离法的应用进展[J].吕梁高等专科学校学报,2004,20(2):71-72.
    [3]张海明,李成海,唐雅娟.泡沫浮选分离技术应用进展[J].辽宁化工,2006,35(2):92-95.
    [4]刘炯天.静态微泡浮选柱强化分选方法及装置:中国,ZL97107091.1[P].2002-03-13.
    [5]张海军,刘炯天,韦锦华,等. FCSMC浮选柱提铁降硅工业试验研究[J].矿冶工程,2008,15(5): 70-72.
    [6]李琳,刘炯天,王永田,等.浮选柱在赤铁矿反浮选中的应用[J].金属矿山,2007(9):59-61.
    [7]刘炯天,王永田,曹亦俊,等.浮选柱技术的研究现状及发展趋势[J].选煤技术,2006,10(5):25-29.
    [8]刘炯天,王永田,李小兵,等.柴山铅锌矿石旋流-静态微泡柱浮选试验研究[J].金属矿山,2007(9):59-61.
    [9]穆枭,冯其明,陈建华,等.铝土矿浮选三相泡沫稳定性研究[J].中国矿业,2008,17(1):81-83.
    [10]刘炯天,张海军,王永田,曹亦俊.浮选柱泡沫输送吸浆装置:中国,ZL200620071656.3 [P].2007-05-09.
    [11]张海军,刘炯天,王永田,等.浮选柱泡沫吸浆输送装置研究及应用[J].矿山机械,2008,15(5): 70-72.
    [12]亚尔巴.泡沫稳定性及消泡方法的实验研究[D].吉林:吉林大学,2007:43-44.
    [13]于书平,张正英.酸性条件下泡沫的稳定性[J].油田化学,1994,11(1):71-72,91.
    [14]刘炯天.旋流-静态微泡浮选柱及洁净煤制备研究[D].北京:中国矿业大学(北京校区),1999:53-54.
    [15]冯其明,穆枭,张国范,等.铝土矿浮选泡沫消泡研究[J].中南大学学报:自然科学版,2005,36(6):955-959.
    [16]钱押林,张红茹.胶磷矿浮选过稳定泡沫消泡技术初探[J].化工矿山技术,1995,24(6):15-18.
    [17]蒲志华,吴连成.瓮福磷矿反浮选泡沫消泡研究[J].化工矿山技术,1991,20(4):50-51.
    [18]马洛平.消除有害泡沫技术[M].北京:化学工业出版社,1987.
    [19]李仁年,王秋红,沈建锋,等.螺旋离心泵内固液两相流的数值模拟[J].流体机械,2008,36(12):24-27.
    [20]刘栋,杨敏官,高波.离心泵叶轮内部伴有盐析流场的PIV试验[J].农业机械学报,2008,39(11):55-58,63.
    [21]刘娟,许洪元,唐澍,等.离心泵内固体颗粒运动规律的实验研究[J].水力发电学报,2008,27(6):168-172,167.
    [22]朱祖超,崔宝玲,李昳,等.双流道泵输送固液两相混合物的水力试验研究[J].浙江大学学报:工学版,2008,42(9):1554-1557.
    [23]徐振法,王银凤,唐铃凤.颗粒对渣浆泵内部流场影响规律的研究[J].机械工程师,2008,(7):125-127.
    [24]刘娟,许洪元,唐澍,等.离心泵内固体颗粒运动规律与磨损的数值模拟[J].农业机械学报,2008,39(6):54-59.
    [25]周庆年,于国跃,朱文亮.国内固液两相流泵的研究进展[J].管道技术与设备,2008,(2):34-35,42.
    [26]于京诺,朱天博,王亮申,等.一种“两相流”离心泵叶轮的水力设计方法[J].流体机械,2008,(2):33-38.
    [27]高传昌,王玉川.液气射流泵研究应用进展[J].石油机械,2008,(2):67-70.
    [28]黄思,王宏君,郑茂溪.叶片式混输泵气液两相流及性能的数值分析[J].华南理工大学学报:自然科学版,2007,35(12):11-16.
    [29]杨敏官,高波,刘栋,等.旋流泵内部液固两相流场的PDPA测量与分析[J].农业机械学报,2007,38(12):53-57.
    [30]余志毅,曹树良,王国玉.叶片泵内气液两相流的三维流动数值模型[J].北京理工大学学报,2007,27(12):1057-1060,1064.
    [31]黄列群,袁静,陈义红,等.螺旋式纸浆离心泵内部流动的数值模拟[J].机电工程,2007,24(12):50-52,95.
    [32]徐秀生,王玉霞,左传玺,等.离心泵输送气液两相介质的研究[J].油气储运,2007,26(10):47-48.
    [33]刘栋,杨敏官,李辉.化工泵叶轮内部固液两相流场的研究[J].水泵技术,2007,(3):16-19.
    [34]李仁年,韩伟,刘胜,等.小粒径固液两相流在螺旋离心泵内运动的数值分析[J].兰州理工大学学报,2007,33(1):55-58.
    [35]余志毅,曹树良,王国玉.叶片式混输泵内气液两相流的数值计算[J].工程热物理学报,2007,28 (1):46-48.
    [36]杨敦敏,叶海燕,陈刚.离心泵内固液两相流动的图像测量[J].农业机械学报,2006,37 (12):100-104,108.
    [37]李金海,李龙.离心泵固液两相流模型的研究与进展[J].化工装备技术,2006,26(6):52-55.
    [38]徐义华,江叔通.离心泵叶轮内含颗粒的幂律流体的密相两相湍流研究[J].南昌航空工业学院学报,2004,18(1):43-46.
    [39] Krimmerman Y, Adler D. The Three Dimensional Flow Field in Turbo Impellers[J]. J Mech Eng Sic,1978,20(3):15-25.
    [40] Hirsch C, Warzee G.. An Integrated Quasi-3D Finite Element Calculation Program for Turbomachinery Flows[J]. ASME J of Engr for Power,1979,101:141-153.
    [41] Wu Y L. Computation on Turbulent Dilute Liquid-Particle Flows through a Centrifugal Impeller[J]. Japanese J on Multiphase Flow,1994,8:118-125.
    [42] Borges J E. A Three-dimensional Inverse Method for Turbomachinery Part One-Theory[J]. ASME Journal of Engineering for Power,1984,106:341-353.
    [43] Hawthorne W R, Tan C S, Wang C, McCune J E. Theory of Blade for Large Deflections:PartⅠ-Two Dimensional Cascades[J]. ASME Journal of Engineering for Gas Turbines and Power,1984,106:346-353.
    [44] Tan C S, Hawthorne W R, Wang C, McCune J E. Theory of Blade Design for Large Deflections:ParuⅡ-Annular Cascades[J]. ASME Journal of Engineering for Gas Turbines and Power,1984,106:341-353.
    [45] Goto A. Hydrodynamic Design System for Pumps Based on 3-D CAD and Inverse Design Method[C]. Proceedings of 2001 ASME Fluids Engineering Division Summer Meeting,Fourth International Symposium on Pumping Machinery,New Orleans,2001:05-29 to 06-1.
    [46] Zangeneh M. A Comopressible Three Dimensional Blade Design Method for Radial and Mixed Flow Turbomachinery Blades[J]. J Numerical Methods in Fluids,1991,13:599-624.
    [47] Zangeneh M. Inverse Design of Centrifugal Compressor Vaned Diiffusers in Inlet Shear Flows[J]. ASME Journal of Turbomachinery,1996,118:385-393.
    [48] Zangench M, Goto A, Takemura T. Suppression of Secondary Flows in a Mixed Flow Pump Impeller by Application of 3-D Inverse Design Method, PartⅠ-Design and Numerical Validation[J]. ASME Journal of Turbomachinery,1996,118:536-543.
    [49] Zangench M, Goto A, Harada H. On the Design Criteria for Suppression of Secondary Flows in Centrifugal and Mixed Flow Impellers[J]. ASME Journal of Turbomachinery,1998,120:723-735.
    [50]陈胜利,吴达人.离心泵叶轮内流场的计算[J].水泵技术,1988(2):1-7.
    [51]朱世灿.离心式水泵叶轮三元流场计算[J].流体工程,1989(6):29-31.
    [52]袁卫星,张克危,贾宗谟.离心泵射流-尾流模型的三元流动计算[J].水泵技术,1990(1):12-18.
    [53] Gao H, Kamemoto K. A Numerical Analysis of the Flow through a Centrifugal Impeller by Vortex Distribution Model of Boundary Layer[C]. Proceedings of the 3rd Japan-China Joint Conference on Fluid Machinery,Osaka,Japan,1990:109-116.
    [54] Martelli F, Michelassi V. Using Viscous Calculations in Pump Design[J]. ASME Journal of Fluid Enginnering,1990,112(4):272-280.
    [55] Spring H. Affordable Quasi Three-dimensional Inverse Design Method for Pump Impellers[C]. Proceedings of the 9th Inrernational Pump User Symposium,Texas A&M University,College Station, Texas,USA,1992:97-110.
    [56] Hamrick J T, Hamrick T M. Hydrodynamic Analysis and Design of Centrifugal Pumps[C]. Proceedings of the 25th Annul International Gas Turbine Conference and Exhibit and the 22nd AnnualFluids Engineering Conference,USA,1980:161-170.
    [57]刘殿魁.离心泵内具有射流-尾流模型的三元流动计算[J].工程热物理学报,1986,7(1):8-13.
    [58]陈康民,张道方,周洁,等.离心泵叶轮内部流场变分有限元解及粘性修正[J].上海机械学院学报,1993,15(2):1-8.
    [59] Shi Q, Ribando R.J. Numerical Simulations of Viscous Rotating Flow Using a New Pressure-based Method[J]. Computers and Fluids,1992,21(4):475-489.
    [60]席光,卢金铃,祁大同.混流泵三元叶片优化设计方法研究[J].工程热物理学报,2004,25(6):952-955.
    [61] A.Goto, M.zangenneh. Hydrodynamic Design of Pump Diffuser using Inverse Design Method and CFD[J]. ASME Journal of Fluid Enginnering,2002,124(2):319-328.
    [62] A.Goto, N.Motohiko, S.takaki, S.yoshiyasu. Hydrodynamic Design System for Pumps Based on 3-D CAD, CFD, and Inverse Design Method[J]. ASME Journal of Fluid Enginnering,2002,124(2):329-335.
    [63]李海锋,吴玉林.利用三维紊流数值模拟进行离心泵叶轮设计比较[J].流体机械,2001,29(9):18-21.
    [64]魏进家,姜培正,宇波.离心泵叶轮内密相液固两相湍流的数值模拟[J].应用力学学报,2000,17(1):1-6.
    [65]吴玉林,葛亮,陈乃祥.离心泵叶轮内部固液两相流动的大涡模拟[J].清华大学学报:自然科学版,2001,41(10):93-96.
    [66]卢金铃,席光,祁大同.离心泵叶轮内气液两相三维流动数值研究[J].工程热物理学报,2003,24(2):237-240.
    [67]杨敏官,刘栋,高波,等.离心泵叶轮内部液固两相湍流的数值模拟[J].水泵技术,2006(6):14-16.
    [68] Hamkins C P, Flack R D. Laser Velocimetry Measurements In Shrouded and Unshrouded Radial Flow Impellers[J]. J Turbomach(Trans ASME),1987, (109):70-78.
    [69] Miner S M, Beaudoin R J, Flack R D. Laser Velocimeter in a Centrifugal Pump[J]. J Turbomach(Trans ASME),1989,111(3):205-212.
    [70] Cader T Masbernat O, Roco M C. LDV Measurements in a Centrifugal Slurry Pump: Water and Dilute Slurry Flow[J]. ASME Journal of Fluid Engineering,1992, (114):606-615.
    [71] Abramian M, Howard J H G. LDV System for Unsteady Relativate Flow in a Model Centrifugal Impellers[J]. ASME Journal of Turbomachineary,1994, (116):260-268.
    [72]王正宾.离心式水泵叶栅流动研究[J].北方交通大学学报,1998, (10):49-56.
    [73] Paone N, Riethmuller M I, Van den Braembussche, R.A. Application of Particle Image Displacement Velocimetry to a Centrifugal pump[C]. Fourth International Symposium on Applications of Laser techniques to Fluid Mechanics,Lisbon,Portugal,July 1988:11-14.
    [74] Post, M.E, Goss, L.P, Brainard, L.F. Two-Color particle Imaging Velocimetry in a Turbine Cascade[J].Aerospace Sciences Mtg,AIAA 91-0274,Reno Nv,Jan,1991:7-10.
    [75] Rothlubbers et al. Particle Tracking Velocimetry Measurements in a Radial Pump with Particle Pair Detection using the Hough transform[C]. Eighth interntional Symposium on Application of Laser Techniques to Fluid Mechanics,Lisbon, Portugal,July 8-11,1996:821-825.
    [76]杨华,刘超,汤方平,等.采有PIV研究离心泵转轮内部瞬态流场[J].水动力学研究与进展:A辑,2002,17(5):547-552.
    [77]关醒凡.泵的理论与设计[M].北京:机械工业出版社,1987.
    [78]郭自杰,金忠正.面积比原理的探讨[J].水泵技术,1982,3:34-37.
    [79]罗崇来.离心泵压水室的喉部面积探讨[J].水泵技术,1986,4:7-10.
    [80]郭自杰.涡壳泵面积比原理讨论[J].排灌机械,1989,7(2):1-4.
    [81]张俊达.面积比系数的统计[J].水泵技术,1991,2:28-29.
    [82]崔宝玲.高速诱导轮离心泵的理论分析与数值模拟[D].浙江:浙江大学,2006:87-101.
    [83]赵斌,孙铁,周长茂,等.基于CFD技术的离心泵叶轮的优化设计[J].石油化工设备技术,2007,28(6):43-45.
    [84]戴四敏.离心叶轮优化设计法应用与全三维数值模拟[J].北京航空航天大学学报,2004,30(3):267-271.
    [85]薛敦松,黄思.离心泵三元叶轮的优化改型设计[J].水泵技术,1990(4):5-9.
    [86]于京诺,朱天博,王亮申,等.一种两相流离心泵叶轮的水力设计方法[J].流体机械,2008,36(3):33-38.
    [87]沈宗沼.国内液固两相流泵的设计研究综述[J].流体机械,2006,34(3):32-38.
    [88]马胜利,席本强,梁冰.离心式固液两相流泵的叶轮设计[J].机械研究与应用2005,18(1):34-36.
    [89]张玉新,郭俊强.固液两相流泵叶轮的优化设计方法[J].水泵技术,1997,(6):21-26,39.
    [90]魏淑贤,沈跃,黄延军.计算流体力学的发展及应用[J].河北理工学院学报,2005,27(2):115-117.
    [91]刘霞,葛新锋.FLUENT软件及其在我国的应用[J].能源研究与利用,2003,(2):36-38.
    [92]吕一波,原明科.FLUENT在矿物加工领域中的应用研究[J].选煤技术,2008,(4):92-95.
    [93]李勇,刘志友,安亦然.介绍计算流体力学通用软件——FLUENT [J].水动力学研究与进展,2001,16(2):254-258.
    [94] P.R.Garrett. Recent Development in the Understanding of Foam Generation and Stability[J]. Chemical Engineering Science,1993,48(2):367-392.
    [95]周静,谭永生.稳定泡沫流体的机理研究[J].钻井工艺,1999,22(6):75-81.
    [96]樊西惊.原油对泡沫稳定性的影响[J].油田化学,1997,14(4):384-388.
    [97]万里平,孟英峰,赵晓东.泡沫流体稳定机理研究[J].新疆石油学院学报,2003,15(1):70-73.
    [98]顾德中.泡沫形成和特性的研究[J].纺织学报,1985,6(6):372-377.
    [99]李春洲,祖庸,马宝岐.泡沫流变特性研究[J].化工学报,1993,44(4):481-485.
    [100]马洛平.消除有害泡沫技术[M].北京:化学工业出版社,1987.
    [101]夏衍钊.泡沫介质流变性试验研究及应用[D].吉林:吉林大学,2004:8-10.
    [102]王荣祥,郭亚兵,张永鹏,等.流体输送设备[M].北京:冶金工业出版社,2002.
    [103]夏建新,黄家桢,唐达生,等.锰结核开采射流泵提升方式研究[J].矿冶工程,1999,19(3):13-15.
    [104]陈次昌,刘正英,刘天宝.离心叶轮的内流理论基础[M].北京:兵器工业出版社,1992.
    [105]沈天耀.离心叶轮的内流理论基础[M].北京:机械工业出版社,1992.
    [106]陈次昌.两相流泵的理论与设计[M].北京:兵器工业出版社,1994.
    [107]张克危.关于球体在泵流道中运动特性的若干问题[C].杂质泵及管道水力输送学术讨论会论文集,河北:石家庄,1988(9):1-9.
    [108] I.A.FINCH,G.S.DOBBY.Column flotation.Pergamon Press[M].1989.
    [109]王福军.计算流体动力学分析——CFD软件原理与应用[M].北京:清华大学出版社,2004.
    [110]韩中忠,梁冰,兰小平. FLUENT流体工程仿真计算实例与应用[M].北京:北京理工大学出版社,2004.
    [111]王瑞金,张凯,王刚. Fluent技术基础与应用实例[M].北京:清华大学出版社,2007.
    [112]郭烈锦.两相与多相流体动力学[M].西安:西安交通大学出版社,2002.
    [113]阎超.计算流体力学方法及应用[M].北京:北京航空航天大学出版社,2006.
    [114]梅丹.离心风机叶轮内气固两相流动及叶片磨损研究[D].武汉科技大学,2006:45-46.
    [115] Finnie I. Some observation on the erosion of ductilemetals[J]. Wear,1972,(19):421-432.
    [116] Dosanjh, S. and Humphrey, J. A. C. The influence of turbulence C on erosion by a particle laden fluid jet[J]. Wear, 1985,102:309-330.
    [117]沈阳水泵研究所.叶片泵设计手册[M].北京:机械工业出版社,1979.
    [118]陈乃祥,吴玉林.离心泵[M].北京:机械工业出版社,2002.
    [119] Bakir, F, Kouidri, S, Noguera, R. Experimental Analysis of an Axial Inducer Infuence of the Shape of the Blade Leading Edge on the Performance in Cavitating Regime[J]. Journal of Fluids Engineering,2003,125:293-301.
    [120] Delgosha O.C, Reboud, J. L, Patella, R. F. Numerical Study of the Effect of the Leading Edge Shape on Cavitation around Inducer Blade Sections[J]. Cav2001:session B 7.003:1-8.
    [121]胡洪华,马文智.诱导轮出口流场的研究和测定[J].水泵技术,1990,(2):5-11,52.
    [122]胡洪华,徐明,马文智.诱导轮结构参数优化设计[J].热力发电,1992,8(4):10-15.
    [123]徐朝辉.高速离心泵内部流动数值模拟结果研究[J].水泵技术,2003,(1):16-20.
    [124]李世煌.叶片泵的非设计工况及其优化设计[M].北京:兵器工业出版社,2005.
    [125]朱祖超.高速诱导轮的设计分析[J].流体机械,1997,25(6):19-23.
    [126]陈次昌,刘正英,刘天宝.两相流泵的理论与设计[M].北京:兵器工业出版社,1994.
    [127]陆冠伟.选矿设计手册[M].北京:冶金工业出版社,1987.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700