用户名: 密码: 验证码:
矿井提升钢丝绳装载冲击动力学行为研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
钢丝绳因重量轻、抗弯刚度小、抗拉强度高等优点,被广泛用作矿山机械的提升缆绳。钢丝绳作为矿井提升中的易坏和易耗品,其安全可靠性对于保障矿井提升系统的稳定、高效和安全运行具有重要的意义。在矿井提升过程中,提升容器的箕斗装载和罐笼装载是地下与地面人员或物料位置转移的前提,同时也是导致钢丝绳磨损乃至断裂的一个恶劣工况;而主井无定量斗状态下的箕斗超载、大型及超大型荷载进出罐笼效率低等问题尚无切实可行的解决方法。因此,本文采用理论、仿真与实验相结合的研究方法,以定重装载系统、罐笼承接及进罐系统设计和内部钢丝强度评估为目标,系统研究矿井提升钢丝绳装载冲击动力学行为,为矿井提升系统的安全可靠运行提供理论与技术支持。
     本文首先系统地考虑钢丝绳扭转特性,导向轮、天轮的惯性以及弦绳的柔性,基于Hamilton原理建立了提升钢丝绳在外载荷下的耦合振动力学模型,提出了基于阶跃函数解决钢丝绳上具有集中质量的纵向-扭转耦合振动响应的计算方法,并通过建立基于集中质量的多自由度离散耦合模型和基于有限单元法的离散耦合模型,采用数值计算验证了相应的理论模型和求解方法的有效性、正确性。
     为了掌握箕斗在装载过程中的动态特性,建立了箕斗快速和缓慢装载变质量冲击过程的钢丝绳耦合振动力学模型,基于瞬态结构和稳态结构两种假定,探讨了变质量耦合振动系统频率和响应的求解方法,得到了快速和缓慢两种装载过程的冲击动力学行为,并通过现场试验验证了理论模型的正确性。给出了箕斗装载后残余振动最优延迟时间计算方法,探讨了主井无定量斗状态下单绳缠绕式提升绞车定重装载问题。
     为了解决罐笼装载过程中的频繁调罐和罐笼反弹问题,建立了荷载进罐和罐笼承接提升钢丝绳耦合振动力学模型,给出了提升钢丝绳变长度过程中频率和响应的计算方法,得到了荷载进罐和罐笼承接过程中的动态特性,并探讨了不同荷载进出罐笼的承接系统,以提高装载效率和安全性。
     基于Costello钢丝绳理论,推导了钢丝绳刚度系数线性表达式,解决了现有公式线性化程度低、使用不方便的问题。给出了内部钢丝应力、应变关于整绳纵向应变和单位长度扭转角的线性表达式,从理论上揭示了钢丝与绳之间的相互关联性,并探讨了钢丝强度的评估方法。
Wire ropes have been widely used in mine hoist system due to their light weight, low bending stiffness and high tensile strength. The safety and reliability of the hoisting rope are important for guaranteeing the mine hoist's stability, efficiency and safe operation. In the course of mine hoisting, the loading operation of hoisting conveyance is the premise of the transfer for personnel and material from the underground to the ground such as the skip and the cage loading. However, the abrasion and rupture of wires in the hoisting rope was also resulted from the loading process. The skip is often over-weighted without measure hopper and the process of the cage loading large or super loads is inefficient, which have not been resolved. Therefore, the study on impact dynamic behaviors for mine hoisting rope during loading process is beneficial to design of auxiliary safety equipment such as the fixed-weight loading equipment for main shaft and the cage supporting device for auxiliary shaft, which is also useful for evaluating the strength of internal wires in the rope. In this paper, the theoretical analysis, simulation and experiment are combined to investigate the impact dynamic behaviors of mine rope during hoisting conveyance loading. The main research work and new ideas are summarized as follows:
     Considering the effect of head sheave and hoisting rope string, according to Hamilton principle, the mechanical model of the coupled longitudinal-torsional vibration for hoisting rope were built. In order to compare with the continuous coupled model, two discrete coupled models of the hoisting rope respectively based on the concentrated-mass and the method of finite element were built. By the numerical calculating, the results show that three models and their calculating methods are reasonable, and the continuous longitudinal-torsional coupled model could be used to investigate the impact dynamical behaviors of the mine hoisting system during loading.
     In order to master the impact dynamical behaviors of the hoisting rope during the skip loading, the longitudinal-torsional coupled models were built with quick and slow loading. According to the two hypotheses of transient and stable, the method of the frequency and response was discussed for the variable-mass coupled vibration system. And then, the impact dynamical behaviors of the skip with quick and slow loading were obtained. Finally, the optimum residual delay time for accelerated skip hoisting was proposed, and the fixed-weight system for the main shaft was discussed.
     In order to resolve the problem of frequent adjustment of the cage during supporting and strong rebounding, the coupled models were established during the cage supporting on the swing deck and the elastic supporting device when the loads was pushed into or out. The method of solving the hoisting rope's dynamical response was proposed and the dynamical behaviors were obtained for the hoisting rope with variable length. The technology of the cage supporting with different loads was discussed in order to enhance the loading efficiency and the safety of the hoisting system.
     Considering the deformation of the wire rope’s fiber and basing on the theory of wire rope by Costello, the linear stiffness coefficients of strand and rope respectively with arbitrary number of strands and wires were deduced. According to the longitudinal strain and the torsional angle per unit length for the hoisting rope, which obtained by coupled longitudinal-torsional models, the stress of internal wires was obtained and the method of fatigue strength was discussed finally.
引文
[1]肖兴明.摩擦提升重大故障分析及预防[M].徐州:中国矿业大学出版社, 1994.
    [2]王奎生.钢丝绳生产工艺与设备[M].天津:冶金工业出版社, 1993.
    [3] National Coal Board. The ropeman's handbook[M]. Hezell Watson And Viney LTD, 1966.
    [4]朱真才.矿井提升过卷冲击动力学研究[D].徐州:中国矿业大学博士学位论文, 2000.
    [5] Hruska F H. Tangential forces in wire ropes[J]. Wire and wire products, 1953, 28(5): 455-460.
    [6] Knapp R H. Derivation of a new stiffness matrix for helically armored cables considering tension and torsion[J]. International Journal for Numerical Methods in Engineering, 1979, 14(4): 515-529.
    [7] Lanteigne J. Theoretical estimation of the response of helically armored cables to tension, torsion, and bending[J]. Journal of Applied Mechanics, 1985, 52(2): 423-432.
    [8] Elata D, Eshkenazy R, Weiss M P. The mechanical behavior of a wire rope with an independent wire rope core[J]. International Journal of Solids and Structures, 2004, 41(5-6): 1157-1172.
    [9] Rungamornrat J, Beltran J F, Williamson E B. Computational model for synthetic-fiber rope response[C]. Columbia University, New York, NY: 2002.
    [10] Beltran J F, Rungamornrat J, Williamson E B. Computational model for the analysis of damaged ropes[C]. Honolulu, Hawaii, USA, 2003.
    [11] Beltran J F. Computational modeling of synthetic-fiber ropes[D]. Texas: The University of Texas(Dissertation), 2006.
    [12] Costello G A, Phillips J W. Static response of stranded wire helical springs[J]. International Journal of Mechanical Sciences, 1979, 21(3): 171-178.
    [13] Costello G A. Theory of wire rope[M]. 2nd ed. New York: Springer-Verlag, 1997.
    [14] Love A E H. A treatise on the mathematical theory of elasticity[M]. New York: Dover Publications, 1944: 381-398.
    [15] Velinsky S A. General nonlinear theory for complex wire rope[J]. International Journal of Mechanical Sciences, 1985, 27(7-8): 497-507.
    [16] Velinsky S A, Anderson G L, Costello G A. Wire rope with complex cross section[J]. Journal of the Engineering Mechanics Division, 1984, 110(3): 380-391.
    [17] Zhang Z. Vibration analysis and fatigue design of wire rope[D]. Urbana: University of Illinois at Urbana-Champaign(Ph.D.), 1994.
    [18] Jiang W. A general formulation of the theory of wire ropes[J]. Journal of Applied Mechanics, 1995, 62(3): 747-755.
    [19] Huang N C. Finite extension of an elastic strand with a central core[J]. Journal of AppliedMechanics, 1978, 45(4): 852-858.
    [20] Ramsey H. Analysis of interwire friction in multilayered cables under uniform extension and twisting[J]. International Journal of Mechanical Sciences, 1990, 32(8): 709-716.
    [21] Hobbs R E, Raoof M. Interwire slippage and fatigue prediction in standard cables for tlp tethers.[C]. Behaviour of Off-Shore Structures, Proceedings of the 3rd International Conference Cambridge, MA, Engl: Hemisphere Publ Corp, Washington, DC, USA, 1983.
    [22] Raoof M, Kraincanic I. Analysis of large diameter steel ropes[J]. Journal of Engineering Mechanics, 1995: 667-675.
    [23] Blouin F, Cardou A. A study of helically reinforced cylinders under axially symmetric loads and application to strand mathematical modelling[J]. International Journal of Solids and Structures, 1989, 25(2): 189-200.
    [24]李祖钜.钢丝绳在工作过程中的应力分析[J].金属制品, 1989, 15(3): 24-30.
    [25]李祖钜.提升用钢丝绳的强度计算及其分析[J].武汉化工学院学报, 1989(S1): 96-106.
    [26]余万华,袁康.钢丝绳中接触应力的计算[J].金属制品, 1993, 19(2): 6-9.
    [27] Rebel G, Borello M, Chandler H D. On the torsional behaviour of triangular-strand hoisting rope[J]. Journal of The South African Institute of Mining and Metallurgy, 1996, 96(6): 279-287.
    [28] Rebel G. The torsional behaviour of triangular strand ropes for drum winders - PartⅡ[J]. Wire Industry, 1998, 65(779): 790-795.
    [29] Rebel G. The torsional behaviour of triangular strand ropes for drum winders - Part I[J]. Wire Industry, 1998, 65(774): 447-455.
    [30] Shiwen W, Jiling F, Zhaojian Y, et al. Elastic deformation analysis of multila yered strands[J]. Journal of Coal Science & Engineering, 1999, 5(1): 44-49.
    [31]王世文,姚学峰,贾喜荣,等.钢丝绳模型比较研究[J].力学与实践, 2000, 22(5): 8-13.
    [32]王世文,冯继玲.弹性钢丝绳理论研究进展[J].力学进展, 1999, 29(4): 486-500.
    [33] Getman I P, Ustinov Y A. Methods of analysing ropes. The extension-torsion method[J]. Journal of Applied Mathematics and Mechanics, 2008, 72(1): 48-53.
    [34] Jiang W G, Henshall J L, Walton J M. A concise finite element model for three-layered straight wire rope strand[J]. International Journal of Mechanical Sciences, 2000, 42(1): 63-86.
    [35] Jiang W, Warby M K, Henshall J L. Statically indeterminate contacts in axially loaded wire strand[J]. European Journal of Mechanics - A/Solids, 2008, 27(1): 69-78.
    [36] Nawrocki A, Labrosse M. A finite element model for simple straight wire rope strands[J]. Computers and Structures, 2000, 77(6): 345-359.
    [37]杨文芳,李林安,郑炜.舰用钢丝绳考虑挤压力条件下的有限元模型[J].机床与液压, 2003(06): 96-98.
    [38]李林安,杨文芳,郑炜,等.舰用钢丝绳在挤压力下的有限元分析[J].天津大学学报, 2003, 36(03): 281-284.
    [39]马军.提升钢丝绳载荷分布计算与实验研究[D].徐州:中国矿业大学硕士学位论文, 2007.
    [40] Ma J, Ge S R, Zhang D K. Distribution of wire deformation within strands of wire ropes[J]. Journal of China University of Mining and Technology, 2008, 18(3): 475-478.
    [41]倪振华.振动力学[M].西安:西安交通大学出版社, 1988.
    [42]朱真才,戴兴国,古德生.缠绕式提升罐笼弹性承接冲击动力学[J].中南工业大学学报, 2003, 34(01): 21-23.
    [43]朱真才,葛世荣,王军祥,等.井底承罐装置采用弹簧缓冲的可行性研究[J].中国矿业大学学报, 1998, 27(01): 83-85.
    [44]严世榕,闻邦椿.下放容器时提升钢丝绳的动力学仿真[J].煤炭学报, 1998, 23(5): 530-534.
    [45]严世榕,闻邦椿.提升钢丝绳容器天轮系统的振动仿真研究[J].冶金设备, 1998(5): 12-14.
    [46]秦强.基于动力学的煤矿立井摩擦提升系统安全性研究[D].合肥:合肥工业大学博士学位论文, 2007.
    [47]王春华.绳罐道多绳摩擦提升系统横向振动特性的数值分析[J].阜新矿业学院学报, 1997, 16(2): 204-208.
    [48]李玉瑾.提升机钢丝绳弹性振动理论与动力学特性分析[J].起重运输机械, 2003(04): 32-36.
    [49]李占芳.矿井提升系统振动特性及典型故障诊断研究[D].徐州:中国矿业大学博士学位论文, 2008.
    [50] Kumaniecka A, Niziol J. Dynamic stability of a rope with slow variability of the parameters[J]. Journal of Sound and Vibration, 1994, 178(2): 211-226.
    [51]李吉.多绳摩擦提升机动载荷计算[J].矿山机械, 1993(7): 11-15.
    [52] Glushko M F, Chizh A A. Basic equations of the motion of a rope pulley of variable length in a hoist with a friction pulley[J]. International Applied Mechanics, 1966, 2(8): 47-50.
    [53] Goroshko O A. Evolution of the dynamic theory of hoist ropes[J]. International Applied Mechanics, 2007, 43(1): 64-67.
    [54] Kaczmarczyk S, Ostachowicz W. Transient vibration phenomena in deep mine hoisting cables. Part 1: Mathematical model[J]. Journal of Sound and Vibration, 2003, 262(2): 219-244.
    [55]魏露露.矿井提升装卸载过程中钢丝绳动态特性研究[D].徐州:中国矿业大学硕士学位论文, 2007.
    [56]曹国华,朱真才,彭维红,等.箕斗在装载过程中的震动特性研究[J].煤炭学报, 2007, 32(03): 327-330.
    [57]朱真才,曹国华,彭维红,等.钢丝绳在箕斗装载过程中的纵向振动行为研究[J].中国矿业大学学报, 2007, 32(03): 325-329.
    [58]贾福音.罐笼的承接理论及液压缓冲托罐摇台的研究[D].徐州:中国矿业大学硕士学位论文, 1995.
    [59]樊秀利.罐笼提升井底承接装置的研究[D].徐州:中国矿业大学硕士学位论文, 1996.
    [60]秦强,吴焱明,赵韩.罐笼承接装置承接过程动力学分析[J].煤炭学报, 2007, 32(12): 1324-1327.
    [61] Cao G H, Zhu Z C, Peng W H, et al. Dynamic parameters design during supporting process of cage-supporting device at shaft bottom[C]. ICFDM2008,Tianjin: 2008.
    [62]弗·符·弗洛林斯基.矿井提升钢绳动力学[M].杨福新,译.北京:煤炭工业出版社, 1957.
    [63]潘英.摩擦提升机在紧急制动时钢丝绳中的动张力和静平衡系统摩擦提升机的防滑计算[D].徐州:中国矿业大学硕士学位论文, 1981.
    [64]潘英,夏荣海.竖井提升机在紧急制动过程中钢绳的动张力[J].中国矿业大学学报, 1982, (03): 52-70.
    [65]潘英.提升钢丝绳最大动张力的研究[J].中国矿业大学学报, 1997, 26(01): 23-26.
    [66]潘英.提升钢丝绳中最大动张力的计算公式[J].煤炭学报, 2000, 25(S1): 138-141.
    [67]任国君,任乃光.多绳摩擦提升机安全制动时钢丝绳的动张力计算[J].矿山机械, 1987, (10): 26-31.
    [68]苏晓辉.提升机安全制动特性及可靠性研究[D].徐州:中国矿业大学博士学位论文, 1993.
    [69]苏晓辉,李玉瑾.多绳摩擦轮提升系统的动态滑动特性分析[J].煤矿机械, 2007, 28(9): 64-67.
    [70]孙孟杰,肖林京,吕淑芳.安全制动时提升系统振动分析[J].山东科技大学学报, 1995, 14(03): 77-80.
    [71]肖林京.矿井提升设备钢丝绳载荷系统纵向振动的研究[J].矿山机械, 1995(01): 18-20.
    [72]梁兆正.矿井提升系统动力学问题及动态设计方法研究[D].徐州:中国矿业大学博士学位论文, 1996.
    [73]梁兆正.提升钢丝绳动态分析的分段线性化解法[J].应用数学与计算数学学报, 1996, 10(02): 35-43.
    [74]严世榕,刘梅,闻邦椿.双容器提升系统在加速过程中的动力学控制研究[J].振动工程学报, 2001(03).
    [75]李玉瑾.摩擦提升机防滑安全研究[D].徐州:中国矿业大学硕士学位论文, 1992.
    [76]李玉瑾.摩擦式提升机钢丝绳弹性振动理论研究[J].矿山机械, 2000(12): 41-42.
    [77]李玉瑾.多绳摩擦轮提升系统的动力学研究与设计[J].煤炭工程, 2003(09): 6-9.
    [78]刘清平,杨国华.提升钢丝绳动载荷及其动应力分析[J].矿山机械, 2000(5): 5-6.
    [79] Goroshko O A, Savin G N. The dynamics of threads with variable length. applications in mine hoist systems[M]. The Ukrainian Academy of Sciences, Kiev, 1962.
    [80] Marczyk S, Niziol J. Longitudinal-transversal vibrations of ropes of variable lengths[J]. ROZPRAWY INZYNIERSKIE, 1979, 27 (3): 403-416.
    [81] Glushko M F, Chizh A A. Differential equations of motion for a mine lift cable[J]. International Applied Mechanics, 1969, 5(12): 1269-1273.
    [82] Glushko M F, Malinovskii V A, Shigarina L I, et al. Nonlinear equations of the equilibrium of a straight cable[J]. International Applied Mechanics, 1979, 15(12): 1233-1235.
    [83] Kaczmarczyk S. The passage through resonance in a catenary-vertical cable hoisting system with slowly varying length[J]. Journal of Sound and Vibration, 1997, 208(2): 243-269.
    [84] Kaczmarczyk S, Ostachowicz W. Transient vibration phenomena in deep mine hoisting cables. Part 2: Numerical simulation of the dynamic response[J]. Journal of Sound and Vibration, 2003, 262(2): 245-289.
    [85] Ostapenko V A. Exact solution of the problem for dynamic field of displacements in rods of variable length[J]. Arch Appl Mech, 2007, 77: 313-324.
    [86]王中琪,杨顺清.提升钢绳在动负荷下的振动分析[J].西南工学院学报, 1996, 11(4): 19-24.
    [87]彭佑多.矿井液压提升机的机电液协同平衡与控制策略研究[D].徐州:中国矿业大学博士学位论文, 2003.
    [88] Pollock P J, Alexander G W. Dynamic stresses in wire ropes for use on vertical hoists. Wire ropes in mines.[M]. London:Institution of Mining and Metallurgy, 1951, 445-462.
    [89] Mankowski R R. Stress oscillations in mine cables after the skip-loading and drum-acceleration phases [J]. The Southern African Institute of Mining and Metallurgy, 1995(3): 109-114.
    [90]张本昭,贾福音.罐笼承接装置的研究[J].中国矿业大学学报, 1994, 23(03): 78-83.
    [91] Kotera T. Vibration of string with time-varying length[J]. Bulletin of the JSME, 1978, 21(160): 1469-1474.
    [92] Kotera T, Kawai R. Vibration of string with time-varying length(the case having a weitht at one end)[J]. International journal of mechancial engineering, 1988, 31(3): 524-529.
    [93] Tagata G. Wave synthesis in a non-linear stretched string with time-varying length or tension[J]. Journal of Sound and Vibration, 1989, 129(2): 215-235.
    [94] Chi R M, Shu H T. Longitudinal vibration of a hoist rope coupled with the vertical vibration of an elevator car[J]. Journal of Sound and Vibration, 1991, 148(1): 154-159.
    [95]胡振东,赵姗姗.高速电梯系统时变动力学模型与分析[J].力学季刊, 2002, 23(3): 422-426.
    [96] Terumichi Y, Ohtsuka M, Yoshizawa M, et al. Nonstationary vibration of a string with time-varying length and a mass-spring system attached at the lower end[J]. Nonlinear Dynamics, 1997, 12(1): 39-55.
    [97] Wang P H, Fung R F, Lee M J. Finite element analysis of a three-dimensional underwater cablewith time-dependent length[J]. Journal of Sound and Vibration, 1998, 209(2): 223-249.
    [98] Yao C M, Fung R F, Tseng C R. Non-linear vibration analysis of a travelling string with time-dependent length by new hybrid laplace transform/finite element method[J]. Journal of Sound and Vibration, 1999, 219(2): 323-337.
    [99] Zhu W D, Ni J. Energetics and stability of translating media with an arbitrarily varying length[J]. Journal of Vibration and Acoustics, Transactions of the ASME, 2000, 122(3): 295-304.
    [100] Zhu W D, Chen Y. Forced response of translating media with variable length and tension: Application to high-speed elevators[J]. Proceedings of the Institution of Mechanical Engineers, Part K: Journal of Multi-body Dynamics, 2005, 219(1): 35-53.
    [101] Zhu W D, Zheng N A. Exact response of a translating string with arbitrarily varying length under general excitation[J]. Journal of Applied Mechanics, 2008, 75(3): 1-14.
    [102] Hashemi S M, Roach A. A dynamic finite element for vibration analysis of cables and wire ropes[J]. Asian Journal Of Civil Engineering (Building And Housing), 2006, 7(5): 487-500.
    [103]张长友.电梯钢丝绳参数激励横向振动研究[D].上海:上海交通大学博士学位论文, 2005.
    [104]张鹏.高速电梯悬挂系统动态性能的理论与实验研究[D].上海:上海交通大学博士学位论文, 2008.
    [105] Kimura H, Ito H, Fujita Y, et al. Forced vibration analysis of an elevator rope with both ends moving[J]. Transactions of the ASME. Journal of Vibration and Acoustics, 2007, 129(4): 471-477.
    [106] Kimura H, Iijima T, Matsuo S, et al. Vibration analysis of elevator rope (comparison between experimental results and calculated results)[J]. Nihon Kikai Gakkai Ronbunshu, C Hen/Transactions of the Japan Society of Mechanical Engineers, Part C, 2008, 74(1): 31-36.
    [107]金启华.基于虚拟样机的岸边集装箱起重机若干动力学研究[D].华东理工大学硕士学位论文, 2003.
    [108]傅武军.超高速电梯轿厢横向振动控制研究[D].上海交通大学博士学位论文, 2007.
    [109]金栋平,文浩,胡海岩.绳索系统的建模、动力学和控制[J].力学进展, 2004, 34(3): 304-313.
    [110] Hamilton J M. Vibration-based techniques for measureing the elastic properties of rope and the added mass of submerged objects[J]. Journal of Atmospheric and Oceanic Technology, 2000, 17(5): 668-697.
    [111]李祖钜.钢丝绳在工作过程中的应力分析[J].金属制品, 1989, (03): 24-30.
    [112]潘英.矿井提升机械设计[M].徐州:中国矿业大学, 2000: 26-45.
    [113]王得胜,孔德文,赵克利.机械式矿用挖掘机钢丝绳在MSC Adams中的建模方法[J].计算机辅助工程, 2006, 15(B09): 364-366.
    [114]李海军,杨兆建. Adams中钢丝绳索类物体建模方法研究[J].机械管理开发, 2007, (4): 4-6.
    [115]傅武军,廖小波,朱昌明.基于ADAMS的电梯横向振动频域分析及参数优化[J].系统仿真学报, 2005, 17(6): 1500-1504.
    [116]王勖成,邵敏.有限单元法基本原理和数值方法(第二版)[M].北京:清华大学出版社, 2003.
    [117] Samras R K, Skop R A, Milburn D A. Analysis of coupled extensional-torsional oscillations in wire rope[J]. Journal of Engineering for Industry, 1974, 96 (4): 1130-1135.
    [118] Skop R A, Samras R K. Effects of coupled extensional-torsional oscillations in wire rope during ocean salvage and construction operations[J]. Journal of Engineering for Industry, 1975, 97(2): 485-492.
    [119]戈正铭,程浥禾.变质量非完整系统的哈密顿原理[J].应用数学和力学, 1983, 4(02): 277-288.
    [120]夏荣海等.矿井提升机械设备[M].徐州:中国矿业大学出版社, 1985.
    [121]张复德.矿井提升设备[M].北京:煤炭工业出版社, 1995.
    [122]洪晓华.矿井运输提升[M].徐州:中国矿业大学出版社, 2003.
    [123]杨公训,戴鸿仪.提升机钢丝绳张力在线检测系统[J].中国煤炭, 1995, (6): 41-44.
    [124]程宁.钢丝绳张力在线测量的系统研究[D].徐州:中国矿业大学博士学位论文, 1997.
    [125]陈先中,魏任之.多绳摩擦提升机钢丝绳张力在线监测传感器[J].北京科技大学学报, 1998, 20(5): 434-437.
    [126]赵子江,葛世荣.新型多绳提升机钢丝绳张力检测仪的研制[J].煤矿机械, 1999, (6): 32-33.
    [127]姚文斌,邵千钧,张蔚.矿井提升钢丝绳张力检测仪的研制[J].煤炭学报, 2004, 29(3): 371-375.
    [128]王昆,樊兆峰.便携式矿用钢丝绳张力测试仪的设计[J].工矿自动化, 2008, (3): 43-45.
    [129] Feyrer K. Wire rope-Tension,Endurance,Reliablity[M]. Springer-Verlag Berlin Heidelberg, 2007.
    [130] Costello G A. Large deflections of helical spring due to bending[J]. Journal of Engineering Mechanics Division, 1977, 103(3): 481-487.
    [131] Costello G A, Miller R E. Lay effect of wire rope[J]. Journal of the Engineering Mechanics Division, 1979, 105(4): 597-607.
    [132] Velinsky S A. Analysis of fiber-core wire rope[J]. Journal of Energy Resources Technology, 1985, 107(3): 388-393.
    [133] Lee W K, Casey N F, Gray T G. Helix geometry in wire rope[J]. Wire Industry, 1987, 54(644): 461-468.
    [134] Lee W K. An insight into wire rope geometry[J]. International Journal of Solids and Structures, 1991, 28(4): 471-490.
    [135] Hobbs R E, Nabijou S. Changes in wire curvature as a wire rope is bent over a sheave[J]. Journal of Strain Analysis for Engineering Design, 1995, 30(4): 271-281.
    [136] Nabijou S, Hobbs R E. Relative movements within wire ropes bent over sheaves[J]. Journal ofStrain Analysis for Engineering Design, 1995, 30(2): 155-165.
    [137]王桂兰,赵瑞敏,孙建芳,等.基于微分几何学的钢丝绳结构CAD[J].华中科技大学学报, 2003, 31(6): 4-6.
    [138] Wang R C, Mckewan W M. A model for the structure of round-strand wire ropes[J]. OIPEEC Bulletin, 2001(81): 15-42.
    [139]葛世荣.提升钢丝绳可靠性选型设计初探[J].煤炭工程, 1989(10): 15-18.
    [140]葛世荣.摩擦提升防滑可靠性理论与设计[D].徐州:中国矿业大学博士学位论文, 1989.
    [141]葛世荣.矿井提升机可靠性技术[M].徐州:中国矿业大学出版社, 1994.
    [142]殷宏.钢丝绳的可靠性计算[J].建筑机械, 1997, (09): 15-17.
    [143]陈彩萍,潘晓恒.提升钢丝绳可靠性设计探讨[J].矿业安全与环保, 1997, (03): 34-35.
    [144] Giglio M, Manes A. Life prediction of a wire rope subjected to axial and bending loads[J]. Engineering Failure Analysis, 2005(12): 549-568.
    [145]廖红卫.钢丝绳的疲劳行为特征与损伤机理研究[D].武汉理工大学博士学位论文, 2007.
    [146]希格利J E,米切尔L D.机械工程设计[M].高等教育出版社, 1987.
    [147]姚卫星.结构疲劳寿命分析[M].北京:国防工业出版社, 2003.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700