用户名: 密码: 验证码:
基于电磁力的焊接热裂纹及变形随焊控制新方法
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
基于电磁感应原理,针对焊接热裂纹和焊接变形问题,提出了一种在焊接过程中基于电磁力作用(WTIEF)控制焊接应力应变的方法。该方法为非接触施力,可以避免焊缝表面损伤,从而降低对接头力学性能的破坏,特别是疲劳性能。另外,该方法还具有能量易于控制、设备更加柔性化等特点。文中借助ANSYS软件讨论了电磁线圈的形式、电磁力的作用特点、工件的塑性变形行为、装置和工艺参数对电磁力的影响。研制了随焊电磁冲击装置,采用与焊枪同轴放置的平面螺旋线圈+集磁器(FCC)的线圈形式实现了焊接热裂纹的随焊控制。实现了利用电磁力焊接变形的焊后控制,提出了动态屈服应力的概念,并确定了随焊控制焊接变形的最佳施力位置。
     文中讨论了电磁力及工件塑性变形模拟时的关键技术,对线圈磁场、放电电流进行了测量,验证了电路-电磁耦合有限元模型的正确性。通过搭建单次电磁冲击原理性装置,实现了对板材的单次电磁冲击实验,验证了电路-电磁-结构耦合有限元模型的正确性。
     系统分析了平面螺旋线圈电磁力的作用特性。研究发现,轴向力(垂直工件的力)在放电电流的第一半波时间内几乎始终垂直工件向下,且远大于径向力(平行工件的力),有利于对热态焊缝及近缝区金属的延展。当线圈置于合适位置时,径向力的分布同样有利于焊接热裂纹和焊接变形的控制。研究了温度对电磁力的影响及工件存在高斯温度分布时电磁力的作用特性。随着温度的升高,轴向力减小,径向力增大。工件存在高斯温度分布时,与室温条件相比,轴向力减小,最大作用点的径向位置外移;径向力增大,换向点的径向位置内移。
     进行了WTIEF鱼骨焊接试件热裂纹的控制实验。FCC感应器能够使磁场集中在小范围作用区,从而实现对高温区施力,但其存在一定能量损失。合理尺寸的FCC感应器与焊枪同轴放置时能够实现对脆性温度区间的挤压,从而使热裂纹得到控制。焊接裂纹率随电压和冲击频率的增加而减小。
     在平面螺旋线圈作用下工件在轴向力最大位置附近产生拉伸塑性应变,因此采用平面螺旋线圈能够实现焊接变形的焊后控制。在随焊控制焊接变形时,外力只需克服动态屈服应力(屈服强度与焊接应力的差值)即可使焊缝及近缝区金属产生塑性延展。外力作用的最佳位置为动态屈服应力的较小区域。本研究条件下,动态屈服应力所表现的特征为,距离熔池较近区域和距离熔池较远区域达到较小值,而其中间区域则存在一个较高的值。对于基于电磁力随焊控制焊接变形,尽管最大轴向电磁力受温度影响而有所减小,但最佳施力位置并未受到影响。
     分析了装置及工艺参数对电磁力的影响。研究发现,随着回路电阻、回路电感、线圈-工件间隙和板厚的增加,最大轴向力密度呈指数减小。线圈匝数和尺寸对电磁力的影响与回路电阻和回路电感相关。磁性材料所受的电磁力大于导电性好的材料。在线圈中心加入磁芯后,由于线圈尺寸和磁饱和的限制很难达到集中能量同时增大电磁力的目的。
Based on electromagnetic (EM) induction law, a new method of controlling welding stress and strain during welding with trailing impact EM force (WTIEF) is put forward to control the welding hot crack and distortion. The mothod avoids surface flaws which reduce mechanical performances, especially fatigue strength, as the coil do not contact with weldment applying the electromagnetic force . Moreover, the following characteristics are also very attractive, such as easily controlled energy and flexibly operated equipment. In this thesis, the shape of EM coil, feature of EM force, plastic deformation history of workpiece and effect of processing parameters on EM force are studied in detail by means of ANSYS software. A EM impact equipment is developed. Welding hot crack is suppressed during welding with the actuator consisting of flat coil and coaxial concentrator (FCC),while control welding buckling distortion after welding is performed with EM force. A new concept, dynamic yielding stress, is first introduced. And the optimal applying force location is also determined while controlling welding distortion during welding.
     In the thesis, the key technology of simulation by finite element method is discussed; Electromagnetic-Circuit coupled finite element model is verified with the measurement results of magnetic field of coil and current in discharge circuit.
     The single EM impact experiment of metal sheet is carried out. And Electromagnetic-Circuit-Structure coupled finite element model is verified. The characteristic of EM force of plat coil is studied in detail. The results show the direction of axial (perpendicular to workpiece) EM force is always downward almost and is greater than radial (parallel to workpiece) EM force. These all improve ductility deformation of metal in weld and near weld. In addition, distribution of the radial EM force also facilitates controlling of welding hot crack and distortion when the position of the coil is appropriate. The effect of temperature on EM force and plastic deformation in workpiece under EM force is studied. When temperature increases, axial EM force is down and radial EM force is up. When temperature distribution agrees with Gauss distribution, axial EM force decreases and the location of maximum EM force moves outward along coil radius direction, while radial EM force increases and the change location of radial EM force direction moves inward along coil radius direction.
     The controlling welding hot crack with EM force during welding is completed. The FCC actuator concentrates magnetic field into small region and is able to apply EM force in high temperature region. But its drawback is loss of energy. EM force of FCC with right dimensions is capable of squeezing high temperature metal in BTR, so it can control welding hot crack. And the crack rate decreases with the increasing voltage and impactive frequency.
     As the tension plastic deformation occurs near location of maximum EM force of flat spiral coil, the flat coil is good to control welding distortion. To control welding distortion, EM force should equal to dynamic yield stress, i.e., difference between metal yield stress and welding yield stress. Thus, the optimal location of applying EM force is minimum location of dynamic yield stress. During welding of metal sheet, the location of the smaller dynamic yield stress is the area of short distance from weld pool and large distance from weld pool, and there is a region with the large dynamic yield stress between these. Although the axial EM force decreases a little for WTIEF because of weldment with temperature distribution, the optimal location of applying EM force does not change.
     The effect of processing parameters on EM force is analyzed. The results indicate that the maximum EM force density is decreased with increasing the circuit resistance, the inductance, the gap distance between coil and workpiece and the workpiece thickness. The effect of number of turns and dimension of coil on EM force is related to the circuit resistance and inductance. The bearing force for well magnetic material is larger than well electric material. In addition, it is difficult to increase EM force because of limitation of coil size and magnetic saturation when the magnetic core is inserted into coil.
引文
1 R. A. Chihoski, the Character of Stress Fields around a Weld Arc Moving on Aluminum Sheet. Welding Journal. 1972, (1): 9s~18s
    2 L. Johnson. Formation of Plastic Strain during Welding of Aluminum Alloy. Welding Journal. 1973, (7): 298s~305s
    3 R. A. Chihoski. Expansion and Stress around Aluminum Weld Puddles. Welding Journal. 1979, (9): 263s~276s
    4 P. H. Chang, T. L. Teng. Numerical and Experimental Investigations on the Residual Stresses of the Butt-Welded Joints, Computational Materials Science. 2004, (29): 511~522
    5周建新,徐宏伟,王俊胜.薄板焊接残余应力尺寸效应.焊接学报. 2006, 27(3): 96~101
    6周建新,李栋才,徐宏伟.焊接残余应力数值模拟的研究与发展.金属成形工艺. 2003, 21(6): 62~65
    7林德超,史耀武,蔡洪能.强度和线膨胀系数匹配对焊接残余应力的影响规律.压力容器. 1996, 13(6): 27~31
    8张玉凤,霍立兴,王立君.焊缝匹配对力学性能影响的综合研究.机械工程学报. 1994, 30(3): 31~38
    9陈祖福,田晓虎.预置应力对焊接残余应力峰值的影响研究.第九次全国焊接会议论文集. 1999:2-110~2-113
    10 L. Tall. The Calculation of Residual Stresses-in Perspective Residual Stresses in Welded Construction and Their Effects. International Conference London. 1977, 1(7): 49~62
    11洛巴诺夫.巴顿焊接研究所在结构焊接及强度领域的最新研究方向.第九次全国焊接会议论文集. 1999: D-048~D-061
    12 B. W. Tveiten, A. Fjeldstad, G. Harkegard. Fatigue Life Enhancement of Aluminium Joints through Mechanical and Thermal Prestressing. International Journal of Fatigue. 2006, (2): 1~10
    13关桥,郭德伦,李从卿.低应力无变形焊接新技术-薄板构件的LSND焊接法.焊接学报. 1990, 11(4): 231~237
    14 Q. Guan, D. L. Guo, C. Q. Li. Low Stress Non-distortion (LSND) Welding -A New Technique for Thin Material. Welding in the World. 1994, 33(3): 160~167
    15关桥,郭德伦.薄板构件低应力无变形焊接法及设备.中国专利: N87100959
    16郭绍庆,徐文立,刘雪松等.温差拉伸控制铝合金薄板的焊接变形.焊接学报. 1999, 20(1): 34~42
    17Л.М.Лобанов,В.И.Павновский,В.П.Логинов.РегулированиеТермодеформацзонныхИкловприСваркеЛистовыхКонструкцийсПрименениемТеплоглотиделей.АвтоматическаяСварка. 1990, (12): 33~35
    18 K. Masubuchi. Research Activities Examine Residual Stresses and Distortion in Welded Structures. Welding Journal. 1991, (12): 41~46
    19张崇显.动态低应力无变形焊接技术研究.北京航空工艺研究所硕士论文. 1993: 55~72
    20关桥,张崇显,郭德伦.动态控制的低应力无变形焊接新技术.焊接学报. 1994, 15(1): 8~13
    21郭绍庆,田锡唐,徐文立.随焊激冷减小铝合金薄板的焊接变形.焊接. 1998, (9):8~11
    22 S. Q. Guo, W. L. Xu, X. S. Liu etc. Finite Element Analysis of Welding Distortion Control by Trailing Intense Cooling. China Welding. 2000, 9(2): 127~134
    23姚君山,张彦华,张崇显.有源强化传热控制薄板焊接压曲变形的研究.机械工程学报. 2000, 36(9): 55~60
    24 W. L. Xu, X. T. Yian, X. S. Liu etc. A New Method for Welding Aluminum Alloy LY12CZ Sheet with High Strength. China Welding. 2001, 10(2): 121~127
    25徐文立,代宝昌,刘雪松等.随焊锤击对高强铝合金焊接接头应变分布的影响.焊接学报. 2003, 24(2) : 27~31
    26刘雪松,徐文立,方洪渊.钛合金薄板焊接应力的随焊锤击控制.焊接学报. 2004 , 25(2): 84~88
    27范成磊,方洪渊,杨建国等.随焊冲击碾压控制焊接应力变形新方法.机械工程学报. 2004, 40 (8): 87~90
    28徐文立,田锡唐,刘雪松.随焊锤击对LY12CZ焊接接头显微组织的影响.哈尔滨工业大学学报. 2001, 33(4): 442~446
    29范成磊,方洪渊,田应涛等.随焊冲击碾压对LY12CZ铝合金接头组织和性能的影响.材料工程. 2004 , (10) :24~29
    30赵福兴,姚尧,赖英瑞.爆炸法消除焊接残余应力.爆炸与冲击. 1986, 6(4): 369~373
    31 C. G. Schmidt, D. A. Shockey. Reduction of Residual Stresses in Weldments with Explosive Treatments. Welding Journal. 1992, (9): 443s~446s
    32 J. X. Zhang , K. S. Liu, K. Zhao. A Study on the Relief of Residual Stresses in Weldments with Explosive Treatment. International Journal of Solids and Structures. 2005, (42): 3794~3806
    33任传富.强脉冲电磁力矫正铝合金贮箱焊接变形工艺的研究.哈尔滨工业大学硕士学位论文, 1991: 36~43
    34林健,赵海燕,蔡志鹏等.磁处理对铁磁性材料力学性能的改善.机械工程材料. 2005, 29(5): 5~8
    35唐非,鹿安理,方慧珍等.一种降低残余应力的新方法—脉冲磁处理法.焊接学报. 2000, 21(6): 29~33
    36 F. Tang, A. L. Lu, J. F. Mei etc. Research on Residual Stress Reduction a Low Frequency Alternating Magnetic Field. Journal of Materials Processing Technology. 1998 , (74): 255~258
    37 A. L. Lu, F. Tang, X. J. Luo etc. Research on Residual-Stress Reduction by Strong Pulse Magnetic Treatment. Journal of Materials Processing Technology. 1998, (74): 259~262
    38鹿安理,唐非,梅俊峰等.不同频率的交变磁场处理降低焊接残余应力的研究.航空工艺技术, 1998, (4): 26~27
    39林健,黄士卫,蔡志鹏等.磁处理对低碳钢焊接残余应力作用规律的试验研究.机械工程学报. 2006, 42(5): 208~213
    40 Z. P. Cai, J. Lin, H. Y. Zhao. Orientation Effects in Pulsed Magnetic Field Treatment. Materials Science and Engineering. 2005, (398): 344–348
    41吴林.吴林教授科研文选.哈尔滨工业大学出版社, 2005: 1~6
    42 M. C. Sun, Y. H. Sun, R. K. Wang. Vibratory Stress Relieving of Welded Sheet Steels of Low alloy High Strength Steel. Materials Letters. 2004, (58): 1396~1399
    43饶德林,陈立功,倪纯珍等.超声冲击对焊接结构残余应力的影响.焊接学报. 2005, 26(4): 48~52
    44 T. Zacharia. Dynamic Stresses in Weld Metal Hot Cracking. Welding Journal. 1994, (7): 164s~172s
    45 Z. J. Lu, W. J. Evans, J. D. Parker. Simulation of Microstructure and Liquation Cracking in 7017 Aluminum Alloy. Materials Science and Engineering. 1996, (A220): 1~7
    46 M. Yamamoto, A. Takata, S. Kamikariya. Study of Evaluation Method for Liquation Crack Initiation in the HAZ of a Laser Weldment. Welding in the World. 2005, 49(9/10): 49~57
    47 C. E. Duffet, G. Andrzejewski etc. Hot Cracking in Al-Mg-Si Alloy Laser Welding - Operating Parameters and Their Effects. Materials Science and Engineering A. 2005, 395(1-2): 1~9
    48 C. E. Cross. The effect of Restraint on Weld Solidification Cracking in Aluminum. Welding in the World. 2005, 49(9): 458~463
    49 A. Ankara, H. B. Ari. Determination of Hot Crack Susceptibility in Various Kinds of Steels. Material & Design. 1996, 17(5/6): 261~265
    50 G. Demian, O. Ghermec, D. Savu. Experimental Evaluation of T6061-T6 (Al-Mg-Si) MIG Butt-welds Behavior in Salted Wet Marine Atmosphere. Welding in the World. 2005, 49(9): 443
    51 G. D. Janaki Ram, T. K. Mitra, M. K. Raju etc. Use of Inoculants to Refine Weld Solidification Structure and Improve Weldability in Type 2090 Al-Li Alloy. Materials Science and Engineering. 2000, (A276): 48~57
    52 W. Czernysz, R. Ryzow, E. Turyk. Influence of the Electromagnetic Effect in Welding on the Increase in Weld Resistance to Hot Cracking. Welding International. 2004, 18(4): 257~262
    53 B. Akesson, L. Karlsson. Prevention of Hot Cracking of Butt Welds in Steel Panels by Controlled Additional Heating of the Panels. Welding Research International. 1976, 6(5): 35~52
    54 I. E. Hernandez, D. H. North. The Influence of External Local Heating in Preventing Cracking during Welding of Aluminum Alloy Sheet. Welding Journal. 1984, (3): 84s~90s
    55 V. Petzet, C. Buskens, H. J. Pesch etc. Elimination of Hot Cracking in Laser Beam Welding. Proc. Appl. Math. Mech. 2004, (4): 580~581
    56 V. Petzet, H. J. Pesch, A. Prikhodovsky etc. Different Optimization Models for Crack-Free Laser Welding. Proc. Appl. Math. Mech. 2005, (5): 755~756
    57田锡唐,杨愉平,张忠.随焊激冷防止焊接热裂纹新方法的研究.材料科学与工艺. 1994, 2 (1): 69~73
    58田锡唐,郭绍庆,徐文立.随焊激冷对LY12CZ铝合金焊接热裂纹倾向影响的研究.宇航材料工艺. 1998, 28(5): 48~52
    59王者昌.局部快冷在熔化焊接中的应用.第九次全国焊接会议论文集.哈尔滨, 1999: 2-66~2-69
    60 W. Liu, X. Tian, X. Zhang. Preventing Weld Hot Cracking by Synchronous Rolling During Welding. Welding Journal. 1996, (9): 297s~304s
    61徐文立,田锡唐.随焊锤击防止高强铝合金薄板焊接热裂纹的研究.第十次全国焊接会议论文集.哈尔滨, 2001: 221~224
    62范成磊,方洪渊,陶军等.随焊冲击碾压控制焊接应力变形防止热裂纹机理.清华大学学报. 2005, 45(2): 159~162
    63范成磊,方洪渊,陶军.随焊冲击碾压减小应力变形防止热裂纹应变场分析.焊接学报. 2004, 25(6): 47~51
    64杨应平,黄尚宇.电磁成形的物理学原理.工科物理. 1999, 9(5): 35~36
    65周立军,杨学泉.电磁成形技术及其应用.水利电力机械. 1996, (1):
    29~33
    66 C. F. Li, Z. H. Zhao, J. H. Li etc. Numerical Simulation of the Magnetic Pressure in tube Electromagnetic Bulging. Journal of Materials Processing Technology. 2002, (123): 225–228
    67张敏,陆辛.加热条件下电磁成形试验研究.塑性工程学报. 2005, 12(4): 35~37
    68欧阳伟,黄尚宇.电磁成形技术的研究与应用.塑性工程学报. 2005, 12(3): 35~41
    69江洪伟,李春峰,赵志衡等.电磁成形技术的最新进展.材料科学与工艺. 2004, 12(3): 327~331
    70王强.电磁成形技术的研究与应用.轻合金加工技术. 2004, 32(7): 12~15
    71陈志强,周学斌,杨亨林等. MF-16K电磁成形机的研制与应用.兵器自动化. 1998, (3): 33~36
    72周立军.电磁成形设备中的关键技术.电子工艺技术. 1994, (4): 14~15
    73周立军,常志华,黄尚宇.电磁成形机成形效率的研究.机电工程. 1994,(4): 19~21
    74李春峰,牛锁柱,于连仲.间隙开关对电磁成形机放电性能的影响. 1996, (4): 36~38
    75李洪涛,吕玉岩,邱春城.电磁成形新型放电间隙试验研究.电加工. 1997, (4): 24~27
    76陆辛,费仁元,初红艳等.柔性电磁成形机.锻压机械. 2005, (5): 34~36
    77 C. N. Okoye, J. H. Jiang, Z. D. Hu. Application of Electromagnetic-assisted Stamping (EMAS) Technique in Incremental Sheet Metal Forming. International Journal of Machine Tools & Manufacture. 2006, (46): 1248~1252
    78 M. S. Manish Kamal. A Uniform Pressure Electromagnetic Actuator for Forming Flat Sheet. Dissertation Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University. 2005: 25~62
    79李春峰,张景辉,赵志衡等.胀形用集磁器的实验研究.哈尔滨工业大学学报. 2000, 32(4): 107~109
    80 H. P. Yu, C. F. Li, Z. H. Zhao etc. Effect of Field Shaper on Magnetic Pressure in Electromagnetic forming. Journal of Materials Processing Technology. 2005, (168): 245~249
    81 J. Unger, M. Stiemer, B. Svendsen. Multifield Modeling of Electromagnetic Metal Forming Processes. Journal of Materials Processing Technology. 2006, (177): 270~273
    82初红艳,费仁元,吴海波等.椭圆线圈在平板电磁成形中的应用研究.锻压技术. 2002, (3): 38~41
    83初红艳,费仁元,陆辛.圆形与椭圆线圈在平板电磁成型中的应用比较.北京工业大学学报. 2002, 28(3): 281~285
    84李春峰,于海平.电磁成形技术理论研究进展.塑性工程学报. 2005, 12(5): 1~7
    85 B. Bendjima, K. Srairi, M. Feliachi. A Coupling Model for Analyzing Dynamical Behaviours of an Electromagnetic Forming System. IEEE Transactions on Magnetics. 1997, 33(2): 1638~1641
    86 F. Azzouz, B. Bendjima, M. Feliachi. Application of Macro-Element and Finite Element Coupling for the Behavior Analysis of MagnetoformingSystems. IEEE Transactions on Magnetics. 1999, 35(3): 1845~1848
    87 A. Meriched, M. Feliachi, H. Mohellebi. Electromagnetic Forming of Thin Metal Sheets. IEEE Transactions on Magnetics. 2000, 36(4): 1808~1811
    88张守彬.电磁成形设备研制及工艺参数的实验研究.哈尔滨工业大学硕士学位论文. 1986: 4~5
    89 C. Dumitras, C. Ungureanu. A Finite Element Modeling of the Sheet Metal Electromagnetic Forming. Bul. Inst. Polit. Ia?i. 2003, XLIX (LIII): 59~66
    90 W. D. Richard, G.Sergey, A. Joseph. Electromagnetic Forming of Aluminum Sheet. Automotive Lightweighting Materials. FY 2004 Progress Report. 2004: 31~38
    91 D. A. Oliveira, M. J. Worswick. Simulation of Electromagnetic Forming of Aluminum Alloy Sheet. Light Metal Applications for the Automotive Industry: Aluminum and Magnesium. SAE 2001 World Congress. Detroit, Michigan. 2001:1~10
    92 O. R. Hachkevych, R. S. Musii, H. B. Stasyuk. Thermoelastic State of a Conducting Plate under the Action of an Electromagnetic Field in the Form of Damped Sinusoid. Materials Science. 2003, 39(6): 780~787
    93 T. E. Motoasca, H. Blok, M. D. Verweij. Electromagnetic Forming by Distributed Forces in Magnetic and Nonmagnetic Materials. IEEE Transactions on Magnetics. 2004, 40(5): 3319~3330
    94 T. E. Motoasca, P. M. Berg, H. Blok. Inclusion of Temperature Effects in a Model of Magnetoelasticity. IEEE Transactions on Magnetics. 2006, 42(3): 369~377
    95程志光,高生,李琳.电气工程涡流问题的分析和验证.高等教育出版社, 2001: 48
    96汪建华.焊接数值模拟技术及其应用.上海交通大学出版社, 2003: 19
    97电气学会大电流能量应用技术调查专门委员会[日].大电流能量技术与应用.科学出版社, 2004: 152~164
    98揭秉信.大电流测量.机械工业出版社, 1987: 158~179
    99赛尔吉欧.佛朗哥.基于运算放大器和模拟集成电路的电路设计.刘树棠等译.西安交通大学出版社, 2004:60~96
    100冯慈璋.电磁场.高等教育出版社, 1983. 272~282
    101范成磊.随焊冲击碾压方法控制焊接应力分布及接头质量.哈尔滨工业大学博士论文. 2004: 50
    102张敏.板材电磁成形的实验研究.北京机电研究所硕士学位论文. 2005: 70~78
    103张婧.基于电磁力的焊接热裂纹随焊控制新方法.哈尔滨工业大学硕士论文. 2006: 30
    104赵志衡.管坯电磁胀形磁场力的研究.哈尔滨工业大学博士学位论文. 2004: 9
    105严密,彭小领.磁学基础与磁性材料.浙江大学出版社, 2006: 113
    106杨玉岗.现代电力电子的磁技术.科学出版社, 2003: 117~135

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700