用户名: 密码: 验证码:
时效Ni-Mn-Ga-Ti合金的相变和力学行为
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文采用扫描电镜观察、透射电子显微分析、X射线衍射分析、示差扫描热分析、交流磁化率测试、室温压缩试验及磁感生应变测量等方法系统研究了Ni53Mn23.5Ga23.5-xTix (x=0, 0.5, 2, 3.5, 5, 8)合金时效析出行为、相变行为、力学行为和磁学特性,阐明了时效过程中组织演化规律及其对马氏体相变温度、力学性能和磁感生应变的影响规律,揭示了时效改善合金力学性能的微观机制。
     研究表明,固溶处理的Ni-Mn-Ga-Ti合金室温为四方结构5M马氏体。在773K-1173K范围内时效,基体中弥散析出六方结构的Ni3(Ti,Mn,Ga)相。Ni-Mn-Ga-Ti合金在加热和冷却过程中发生一步热弹性马氏体相变,随Ti含量的增加,相变温度升高。时效处理对合金的相变温度有显著影响。当时效时间为3h时,相变温度随时效温度的升高先降后升,在973K时达到最小值;当时效温度为873K时,相变温度随时效时间的延长而降低。这是因为富Ni的Ni3(Ti,Mn,Ga)相的析出,改变了基体中Ni含量所致。
     试验结果表明,随Ti含量增加,合金的断裂强度及断裂应变先增后降,在Ti含量为5at.%时达到最大值。合适的时效处理显著改善Ni53Mn23.5Ga23.5-xTix合金的力学性能。在823K-1173K温度区间3h时效时,合金的断裂强度和断裂应变均随时效温度的升高先增加后降低。在873K时效时,Ni-Mn-Ga-Ti合金的断裂强度和断裂应变均随时效时间的延长而降低,经873K/0.5h时效后,断裂应变达到最大值11.9%,比Ni-Mn-Ga合金高1倍以上。经873K/3h恒应变约束时效处理Ni53Mn23.5Ga18.5Ti5合金的断裂强度高达1403MPa。
     时效改变了合金的断裂方式,固溶Ni-Mn-Ga-Ti合金的断口形貌呈现脆性沿晶断裂特征;随时效温度的升高或时间的延长,断裂方式逐渐转变成穿晶断裂,断口上存在较多的韧性撕裂棱;当时效温度高于973K时,合金的断口形貌为沿晶剥离,导致脆性增大,其原因在于析出相在晶界面上的数量增多、尺寸增大。
     固溶Ni-Mn-Ga-Ti合金的居里温度及饱和磁化强度均随Ti含量的增加而近线性降低;其居里温度随时效温度的升高先降低后升高,在973K时为最低值;而饱和磁化强度随时效温度的升高而略有下降。研究发现,合金的磁感生应变量随Ti含量的增加而下降,时效及热机械训练均可显著能提高合金的饱和磁感生应变量,其微观机制在于:合金在时效过程中形成弥散共格Ni3(Ti,Mn,Ga)析出相,在基体中产生共格应力场,在冷却发生马氏体相变时,处于有利取向的马氏体变体首先形核、长大,室温形成择优取向的马氏体,显著提高合金的饱和磁感生应变量。
The aging precipitation behavior, martensitic transformation characteristics, mechanical properties, magnetic properties of Ni53Mn23.5Ga23.5-xTix (x=0, 0.5, 2, 3.5, 5, 8) alloys have been systematically investigated by means of SEM, TEM, XRD, DSC and compression test as well as ac susceptibility measurements and MFIS tests. The precipitation growth behavior of the second phase has also been illuminated. Moreover, the effect of the aging second phase on the martensitic transformation, mechanical properties and magnetic properties has been revealed. In addition, the mechanism of improving the mechanical property by the aging second phase has been studied.
     The results show that the crystal structure of solution-treated Ni-Mn-Ga-Ti alloys is 5M martensite at room temperature. The second phase of Ni3(Ti,Mn,Ga) with hexagonal structure is precipitated in the matrix of Ni53Mn23.5Ga23.5-xTix alloys between 773K and 1173K.
     Ni-Mn-Ga-Ti alloys exhibit one-step thermoelastic martensitic transformation during the heating and cooling procedure. The martensitic transformation temperatures of the studied alloys increase with increasing Ti content. Moreover, it is found that aging treatment has obvious effect on the martensitic transformation temperatures. For Ni-Mn-Ga-Ti alloys with 3 h aging time, the martensitic transformation temperatures first decrease and then increase with the increase of aging temperature. When the aging temperature is fixed at 973 K, the martensitic transformation temperatures reach its minimum value. When the aging temperature is 873 K, the martensitic transformation temperatures decrease with the increase of aging time.
     The experimental results show that the fracture strength and strain first increase and then decrease with increasing the Ti content, and reaching the maximum value when Ti content is 5 at.%. In addition, it is noted that proper aging treatment improves the mechanical property of Ni-Mn-Ga-Ti alloys significantly. When the studied alloys aging between 873 K and 1173K, the fracture strength and strain increases first increase then decrease with the increase of aging temperture.When the aging temperature is fixed at 873K, the fracture strength and strain decrease with the increase of aging temperature. In particular, the fracture strain of Ni53Mn23.5Ga18.5Ti5 alloy aged at 873 K for 0.5 h is 11.9%, which is two times higher than that of Ni-Mn-Ga alloy. Ni53Mn23.5Ga18.5Ti5 alloy after constraint aging at 873 K for 3h, the fracture strength of it reaches 1403 MPa.
     The aging-treatment changes the fracture type of Ni-Mn-Ga-Ti studied alloys. The fracture morphology of solution-treated Ni-Mn-Ga alloys exhibit brittle intergranulal fracture. With the increase of aging temperature and time, the fracture type gradually becomes ductile intragranular fracture. However, as the aging temperature is higher than 973 K, the fracture morphology changes to peeling along the grain boundary due to high ratio of precipitation in grain boudary, resulting in the increases of brittle.
     The Curie temperature and saturation magnetization decrease linearly with the increase of Ti content in solution-treated Ni-Mn-Ga-Ti alloys. The Curie temperature first decreases and then increases with increasing aging temperature, reaching the minimum value at 973 K. While, the saturation magnetization decreases slightly with increasing aging temperature. In addition, it is found that the MFIS decreases with increasing Ti content. Both the aging and thermo-mechanical training can raise the saturated MFIS significantly. The mechanism for the effect mentioned above can be attributed to the coherent stress-field in the matrix, which is generated by the dispersed coherent Ni3(Ti,Mn,Ga) precipitation. When the martensitic transformation occurs during cooling, the martensitic variant with the highest orientation factor would grow first and become the preferred orientation martensite at room temperature, which leads to the significant raise of the MFIS.
引文
1 V.A. Chernenko and V.V. Kokorin. Ni2MnGa as a New Ferromagnetic Ordered Shape Memory Alloy. Proceedings of the international conference on martensitic transformation 1992. Monterey Institute for Advanced Studies. 1993. Monterey, California, USA.:1205~1210
    2 O. S?derberg, Y. Ge, A. Sozinov. Recent Breakthrough Development of the Magnetic Shape Memory Effect in Ni-Mn-Ga Alloys. Smart Mater. Struct. 2005, 14:S223~S235
    3 G. D. Liu, Z. H. Liu, X. F. Dai, S. Y. Yu. Investigation on Ferromagnetic Shape Memory Alloys. Science and Technology of Advanced Materials. 2005, 6:772~777
    4 K. Oikawa, L. Wulff, T. Iijima, F. Gejima, T. Ohmori, A. Fujita, K. Fukamichi, R. Kainuma, K. Ishida. Promising Ferromagnetic Ni-Co-Al Shape Memory Alloy System. Appl. Phys. Lett. 2001, 79:3290~3292
    5 A. Fujita, K. Fukamichi, F. Gejima, R. Kainuma, and K. Isshida. Magnetic Properties and Large Magnetic-Field-Induced Strains in Off-Stoichometric Ni-Mn-Al Heusler Alloys. Appl. Phys. Lett. 2001, 77:3054~3056
    6 K. Oikawa, T. Ota, T. Ohmori, Y. Tanaka, H. Morito, A. Fujita, R. Kainuma, K. Fukamichi, and K. Ishida. Magnetic and Martensitic Phase Transitions in Ferromagnetic Ni-Ga-Fe Shape Memory Alloys. Appl. Phys. Lett., 2002, 81: 5201~5203
    7 Y. Sutou, Y. Imano, N. Koeda, T. Omori, R. Kainum, K. Ishida, K. Oikawa. Magnetic and Martensitic Transformations of NiMnX (X=In, Sn, Sb) Ferromagnetic Shape Memory Alloys. Appl. Phys. Lett. 2004, 85:4358~4360
    8 M. Sato, T. Okazaki, Y. Furuya, M. Wuttig. Magnetostrictive and Shape Memory Properties of Heusler Type Co2NiGa Alloys. Mater. Trans. 2003, 44(3):372~376
    9 K. Oikawa, T. Ota, F. Gejima, T. Ohmori. Phase Equilibria and Phase Transformation in New B2-type Ferromagnecit Shape Memory Alloys of Co-Ni-Ga and Co-Ni-Al Systerms. Mater. Trans. 2001, 42(11):2472~2475
    10 Y. Liu, W. Zhou, B. Jiang, X. Qi, Y. Liu, J. Wang, C. Feng. Magnetic FieldInduced Reversible Strain in Co-Ni Single Crystal. J. Phys. IV France, 2003, 112:1013~1016
    11 T. Kakeshita, T. Fukeuchi. Giant Magnetostriction in Fe3Pt and FePd Ferromagnetic Shape Memory Alloys. Mater. Sci. Forum. 2002, 394-395:531~536
    12 E. Cesari, V. A. Chernenko, V.V. Kokorin, J. Pons, C. Segui. Physical Properties of Fe-Co-Ni-Ti Alloy in the Vicinity of Martensitic Transformation. Scripta Mater. 1999, 40:341~345
    13 A.E. Clark. Ferromagnetic Materials [M]. vo1. 1, 1981, ed. E. P. Wohlfarth (North Holland Amsterdam, 1981)
    14 K. Ullkko, J.K. Huang, V.V. Kokorin, et al. Magnetically Controlled Shape Memory Effect in Ni2MnGa Intermetallics [J]. Scripta Mater. 1997, 36 (10):1133~1138
    15 K. Ullalo. International Conferencenon Martensitic Transformations ICOMAT-95 (Abstract) [C], Lausanne, Switzerland, Ecole Polytechn ique Federalede. Lausanne, Institutede de Genic Atomique-Ecublens, August 20~25, 1995
    16 K. Ullako. Third International Conference on Intelligent Materials and Third European Conference on Smart Structures and Materials 1996 [C] (ed. P. F. Gobin and J. tatibouet). Proc SPIE 1779, 1996: 505~510
    17 M. Wutting, C. Craciunescu, J. Li. Phase Transformations in Ferromagnetic NiMnGa Shape Memory Films. Mater. Trans. JIM. 2000, 41: 933~937
    18 P.J. Webster, K.R. A. Ziebeck, S.L. Town and M.S. Peak. Magnetic Order and Phase Transformation in Ni2MnGa. Philos. Mag. B. 1984, 49: 295~310
    19 B. Wedel, M. Suzuki, Y. Murakami, C. Wedel, T. Suzuki, T. Shindo, K. Itagaki. Low Temperature Crystal Structure of Ni-Mn-Ga Alloys. J. Alloys Compd. 1999, 290: 137~143
    20 J. Soltys. Magnetic Properties of the Heusler Alloy Ni2MnGa. Acata Phys. Polon. 1974, A46: 383~384
    21 J.L. Moran-Lopez, R. Rodriguez-Alka, F. Aguilera-Granja. Modeling of the Magnetic Properties of Heusler Alloys. J. Magn. Magn. Mater. 1994, 131: 417~436
    22 R.W. Overholser and M. Wutting. Chemicail Ordering in Ni-Mn-Ga HeuslerAlloys. Scripta Mater. 1999, 40: 1095~1102
    23 V.V. Kokorin, I.A. Osipenko and T.V. Shirina. Phase Transition in Alloys Ni2MnGaxIn1-x. Phys. Met. Metall. 1989, 67: 173~176
    24 J. Worgull, E. Petti and J. Trivisonmo. Behavior of the Elastic Properties near an Intermediated Phase Transition in Ni2MnGa. Phys. Rev. B. 1996, 54: 15695~15699
    25 A.N. Vasil′ev, A. Kaykper, V.V. Kokorin, V.A. Chernenko, T. Takagi and J. Tani. Structural Phase Transitions Induced in Ni2MnGa by Low-Temperature Uniaxial Compression. JETP Lett. 1993, 58: 306~308
    26 A. Zheludev, S.M. Shapiro, P. Wochner, L.E. Tanner. Precursor Effects and Premartensitic Transformation in Ni2MnGa. Phys. Rev. B. 1996, 54: 15045~15050
    27 J. Pons, V.A. Chernenko, R. Santamarta, E. Cesari. Crystal Structure of Martensitic Phases in Ni-Mn-Ga Shape Memory Alloys. Acta Mater. 2000, 48: 3027~3038
    28 V.A. Chernenko, C. Segui, E. Cesari, J. Pons. Sequence of Martensitic Transformations in Ni-Mn-Ga Alloys. Phys. Rev. B. 1998, 57: 2659~2662
    29 G. Fritsch, V.V. Kokorin and A. Kempt. Soft Modes in Ni2MnGa Single Crystals. J. Phys.: Condens. Matter. 1994, 6: 107~110
    30 V.A. Chernenko, E. Cesari, J. Pons, C. Segui. Phase Transformation in Rapidly Quenched Ni-Mn-Ga Alloys. J. Mater. Res. 2000, 15: 1496~1504
    31 V.A. Chernenko, J. Pons, C. Segui, E. Cesari. Premartensitic Phenomena and other Phase Tranformations in Ni-Mn-Ga Alloys Studied by Dynamical Mechanical Analysis and Electron Diffraction. Acta Mater. 2002, 50: 53~60
    32 V.A. Chernenko, V.A. L′Vov and E. Cesari. Martensitic Transformation in Ferromagnets: Experiment and Theory. J. Magn. Magn. Mater. 1999, 196-197: 859~860
    33 N. Glavatska, G. Mogylny, I. Glavatskiy and V. Gavriljuk. Temperature Stability of Martensite and Mangetic Field Induced Strain in Ni-Mn-Ga. Scripta Mater. 2002, 46: 605~610
    34 J. Pons, C. Segui, V.A. Chernenko, E. Cesari, P. Ochin, R. Portier. Transformation and Ageing Behaviour of Melt-spun Ni-Mn-Ga shape memory alloys, ICOMAT 98: International Conference on MartensiticTransformations, S.C. de Bariloche, Argentina, 7-11 Dec. 1998; Mater. Sci. Eng. A., 1999, 273-275: 315~319
    35 K. Sugimoto and M. Naksniva. Change in Young’s Modulus Associated with Martensitic Transformation in Shape Memory Alloys. Mater. Sci. Forum. 2000, 327-328: 363~366
    36 K. Tsuchiya, H. Nakamura, D. Ohtoyo, H. Nakayama, H. Ohtsuka, M. Umemoto. Composition Dependence of Phase Transformations and Microstructures in Ni-Mn-Ga Ferromagnetic Shape Memory Alloys, ISAEM 2000: 2nd International Symposium on Designing, Processing and Properties of Advanced Engineering Materials, Guilin, China, 20-21 Oct. 2000, Inderscience Enterprises Ltd., Advances in Materials Engineering and Technology, 2001, 1: 409~414
    37 T. Kakeshita, T. Saburi, K. Shimizu. Effects of Hydrostatic Pressure and Magnetic Field on Martensitic Transformations. Mater. Sci. Eng. A. 1999, 273-275: 21~39
    38 A. Zheludev, S.M. Shapiro and P. Wocher, A. Schwartz, M. Wall and L.E. Tanner. Phonon Anomaly, Central Peak and Microstructure in Ni2MnGa. Phy. Rev. B. 1995, 51(17): 11310~11314
    39 A. Zheludev, S.M. Shapiro and P. Wochner, L.E. Tanner. Precursor Effects and Premartensitic Transformation in Ni2MnGa. Phy. Rev. B. 1996, 54(21): 15045~15050
    40 L. Manosa, L. Carrillo, E. Vives, E. Obrado, A. Gonzalez-Comas, A. Planes. Acoustic Emission at the Premartensitic and Martensitic Transitions of Ni2MnGa Shape Memory Alloy. Shape memory materials; Proceedings of the International Symposium and Exhibition on Shape Memory Materials (SMM '99), Kanazawa, Japan, May 19-21, 1999. Mater. Sci. Forum., 2000, 327-328: 481~484
    41 V.V. Godlevsky and K.M. Rabe, Soft Tetragonal Distortion in Ferromagnetic Ni2MnGa and Related Materials from First Principles, Phy. Rev. B. 2001, 63, 1344071~1344075
    42 H. Hosoda, T. Sugimoto, K. Ohkubo, et al., Characterization of Phase Transformation, Long Range Order and Thermal Properties of Ni2MnGa Alloys,Int. j. Appl. Electrom., 2000, 12 (1-2):9~17
    43 V.V. Kokorin, V.A. Chernenko, J. Pons, et al., Acoustic Phonon Mode Condensation in Ni2MnGa Compound. Solid State Communications. 1997, 101(1): 7~9
    44 A.N. Vasil’ev, A.R. Keiper, V.V. Kokorin, et al., Structure Phase Transitions in Ni2MnGa Induced by Low-temperature Uniaxial Stress, Internationl Journal of Applies Electromagnetics in Materials, 1994, 5: 163~169
    45 V.V. Kokorin, V.A. Chernenko, E. Cesari, et al., Pre-martensitic State in Ni-Mn-Ga Alloys, J. Phys,: Condens. Matter, 1996, 8: 6457~6463
    46 S. Fuji, S. Ishida, S. Asano. Electronic Structure and Lattice Transformation in Ni2MnGa and Co2NbSn. J. Phys. Soc. Jpn. 1989, 58(10): 3657~3665
    47 K. Ullakko, J.K. Huang, C. Kantner, R.C. O'Handley. Large Magnetic-Field-Induced Strains in Ni2MnGa Single Crystals. Appl. Phys. Lett. 1996, 69:1966~1968
    48 V.A. Chernenko, O. Babii, V. L’vov, et al. Martensitic Transformations in NiMnGa System Affected by External Fields. Mater. Sci. Forum. 2000, 327-328, 485~488
    49 V.A. Chernenko. Compositional Instability ofβPhase in Ni-Mn-Ga Alloy. Scripta Mater. 1999, 40: 523~527
    50 A.N. Vasilev, A.D. Bozhko, V.V. Khovailo, I.E. Dikshtein, V.G. Shavrov, V.D. Buchelnikov, M. Matsumoto, S. Suzuki, T. Takagi, J. Tani. Structural and Magnetic Phase Transitions in Shape-Memory Alloys Ni2+xMn1-xGa. Phys. Rev. B, 1999, 59: 1113~1120
    51 V.A. Chernenko, E. Cesari, V.V. Kokorin, I.N. Vitenko. The Development of New Ferromagnetic Shape Memory Alloys in Ni-Mn-Ga System. Scripta Mater. 1995, 33: 1239~1244
    52 X.J. Jin, M. Marioni, D. Bono, S.M. Allen, and R.C. O’Handley. Empirical Mapping of Ni-Mn-Ga Properties with Composition and Valence Concentration. J. Appl. Phys. 2002, 91: 8222~8224
    53 A. Gonzàlez-Comas, E. Obradó, L. Ma?osa, A. Planes, V.A. Chernenko, B.J. Hattink, A. Labarta. Premartensitic and Martensitic Phase Transitions in Ferromagnetic Ni2MnGa. Phys. Rev. B. 1999, 60:7085~7090
    54谭昌龙. Ti-Ni和Nb(Ta)-Ru及Ni-Mn-Ga记忆合金的合金化机制研究.哈尔滨工业大学博士学位论文. 2008
    55 I. Glavastkyy, N. Glavatska, O. S?derberg, S. -P. Hannula, J. -U. Hoffmann. Transformation Temperatures and Magnetoplasticity of Ni-Mn-Ga Alloyed with Si, In, Co or Fe. Scripta Mater. 2006, 54: 1891~1895
    56 V.V. Khovailo, T. Abe, V.V. Koledov, M. Matsumoto, H. Nakamura, R. Note, M. Ohtsuka, V.G. Shavro, T. Takagi. Influence of Fe and Co on Phase Transitions in Ni-Mn-Ga Alloys. Mater. Trans. 2003, 44: 2509~2512
    57 V.V. Khovailo, V.A. Cherenenko, A.A. Cherechukin, T. Takagi, T.Abe. An Efficient Control of Curie temperature Tc in Ni-Mn-Ga Alloys. J. Magn. Magn. Mater. 2004, 272-276: 2067~2068
    58 D.Y. Cong, S. Wang, Y.D. Wang, Y. Ren, L. Zuo. C. Esling. Martensitic and Magnetic Transformtion in Ni-Mn-Ga-Co Ferromagnetic Shape Memory Alloys. Mater. Sci. Eng. A. 2007, 473: 213~218
    59 Y. Xin, Y. Li, C.B. Jiang, H.B. Xu. Martensitic Transformations of Ni54Mn25Ga21-xAlx Shape Memory Alloys. Mater. Sci. Forum. 2005, 475-479:1991~1994
    60 Z.H. Liu, M. Zhang, W.Q. Zang, W.H. Wang, J.L. Chen, G.H. Wu, F.B. Meng, H.Y. Liu, B.D. Liu, J.P. Qu and Y.X. Li. Magnetic Properties and Martensitic Transformation in Quaternary Heusler Alloy of NiMnFeGa. J. Appl. Phys. 2002, 92(9): 5006~5010
    61 Z.H. Liu, J.L. Chen, H.N. Hu, M. Zhang, X.F. Dai, Z.Y. Zhu, G.D. Liu, G. H. Wu, F.B. Meng, Y.X. Li. The Influence of Heat Treatment on the Magnetic and Phase Transformation Properties of Quaternary Heusler Alloy Ni50Mn8Fe17Ga25 Ribbons. Scripta Mater. 2004, 51: 1011~1015
    62 D. Kikuchi, T. Kanomata, Y. Yamaguchi, H. Nishihara, K. Koyama, K.Watanabe. Magnetic Properties of Ferromagnetic Shape Memory Alloys Ni2Mn1-xFexGa. J. Alloys Compd. 2004, 383:184~188
    63 I. Glavatskyy, N. Glavatska, A. Dobrinsky, J.-U. Hoffmann, O. S?derberg and S.-P. Hannula. Crystal Structure and High-temperature Magneto-plasticity in the New Ni-Mn-Ga-Cu Magnetic Shape Memory Alloys. Scripta Mater. 2007, 56: 565~568
    64 M. Khan, I. Dubenko, S. Stadler, N. Ali. The Structural and Magnetic Properties of Ni2Mn1?xMxGa(M=Co, Cu). J. Appl. Phys. 2005, 97:10M304-1~0M304-3
    65 X. Lu, X. Chen, L. Qiu and Z. Qin. Martensitic Transformation of Ni-Mn-Ga (C, Si, Ge) Heusler Alloys. J. Phys. IV. 2003, 112: 917~920
    66 O. S?derberg, K. Koho, T. Sammi, X.W. Liu, A. Sozinov, N. Lanska, V.K. Lindroos. Effect of the Selected Alloying on Ni-Mn-Ga Alloys. Mater. Sci. Eng. A. 2004, 378:389~393
    67 K. Tsuchiya, A. Tsutsumi, H. Ohtsuka, M. Umemoto. Modification of Ni-Mn-Ga Ferromagnetic Shape Memory Alloy by Addition of Rare Earth Elements. Mater. Sci. Eng. A. 2004, 378: 370~376
    68郭世海,张羊换,赵增祺,李健靓,王新林. NiMnGaRe(Re=Tb,Sm)合金的马氏体相变和磁感生应变.中国稀土学报. 2003, 21(6): 668-671
    69高丽. Ni-Mn-Ga-RE磁性记忆合金的微观结构与马氏体相变和力学性能.哈尔滨工业大学博士学位论文. 2007
    70 J.K. Allafi, X. Ren, G. Eggeler. The Mechanism of Multistage Martensitic Transformations in Aged Ni-rich NiTi Shape Memory Alloys. Acta Mater, 2002, 50: 793~803
    71 N. Nakanishi, S. Miura, Y. Murakami, S. Kachi. Pseudoelasticity in Au-Cd Thermoelastic Martensite. Philos Mag 1973, 28: 277~292
    72 H. Sakamoto, K. Otsuka, H. Shimizu. Rubber-like Behavior in a Cu-Al-Ni Alloy. Scripta Mater. 1977, 11: 607~611
    73 H. Hosoda, K. Wakashima, T. Sugimoto, S. Miyazaki. Hardness and Aging of Ni2MnGa Ferromagnetic Shape Memory Alloys. Mater Trans. 2002, 43: 852~855
    74 J.I. Kim, Y. Liu, S. Miyazaki. Ageing-induced Two-stage R-phase Transformation in Ti–50.9at.%Ni. Acta Mater. 2004, 52: 487~499
    75 V.V. Khovailo, R. Kainuma, T. Abe, K. Oikawa, T. Takagi. Aging-induced Complex Transformation Behavior of Martensite in Ni57.5Mn17.5Ga25 Shape Memory Alloy. Scripta Mater. 2004, 51: 13~17
    76 Y. Xin, Y. Li, L. Chai, H.B. Xu. The effect of aging on the Ni-Mn-Ga high temperature shape memory alloys. Scripta Mater. 2004, 54: 1139~1143
    77 C. Segu?′, E. Cesari, J. Font, J. Muntasell, V.A. Chernenko. Martensite Stabilization in a High Temperature Ni-Mn-Ga Alloy. Scripta Mater. 2005, 53: 315~318
    78 K. Otsuka, X.B. Ren. Mechanism of Martensite Aging Effects and New Aspects. Mater. Sci. Eng. A. 2001, 312: 207~218
    79马云庆. NiMnGa及CuAl基高温形状记忆合金相变行为及热稳定性研究.北京航空航天大学博士学位论文. 2003
    80 V.A. Chernenko, V. L’vov, J. Pons, E. Cesari. Superelasticity in Hgh-temperature Ni-Mn-Ga Alloys. J Appl Phys. 2003, 93: 2394~2399
    81 J. Soltys. Effect of Heat Treatment on the Atomic Arrangement and the Magnetic Properties in Ni2MnGa. Acta Phys. Pol. 1975, 47(4): 521~523
    82 V.A. Chernenko,V.V. Kokorin, I.N. Vitenko. Properties of Ribbon Made from Shape Memory Alloy Ni2MnGa by Quenching from the Liquid State. Smart Mater. Struct. 1994, 3:80~82
    83 Z. Wang, M. Matsumoto, T. Abe, et al., Compressive Properties of Ni2MnGa Produced by Spark Plasma Sintering. Mater. T. Jim. 1999, 40:863~866
    84 Z. Wang, M. Matsumoto, T.Abe, et al., Phase Transformation of Ni2MnGa Made by the Spark Plasma Sintering Method. Mater. T. Jim. 1999, 40:389~391
    85 Y. Li, Y. Xin, C.H. Jiang, H.B. Xu. Shape Memory Effect of Grain Refined Ni54Mn25Ga21 Alloy with High Transformation Temperature. Scripta Mater. 2004, 51:849~852
    86 L. Marcin, W. Rafal, K. Waldemar, Z.Q. Zhao, L.P. Jiang. Modification of the Properties of Ni-Mn-Ga Magnetic Shape Memory Alloys by Minor Addition of Terbium. Proc. of SPIE. 2006, 6170:61702C-1~61702C-7
    87赵增祺,熊玮,吴双霞,王海学,李雪梅,王新林.稀土铽对Ni-Mn-Ga磁性记忆合金力学性能的影响.稀土. 2004, 25(1):1~4
    88 Z.Q. Zhao, W. Xiong, S.X. Wu, X.L. Wang. Bending Strength and Fracture Behavior of Ni50Mn29Ga21 Alloy with Terbium. J. Iron & Steel Res. 2004, 111 (15):55~58
    89 Z.Q. Zhao, W. Xiong, S.X. Wu, X.L. Wang. Phase Transformation Behaviors and Effect of Terbium in Polycrystalline Ni-Mn-Ga Magnetic Shape Memory Alloy. Journal of Rare Earths. 2004, 22:567~570
    90 W. Rafal, L. Marcin, Z.Q. Zhao, L.P. Jiang. Structure and Properties of Ni-Mn-Ga Magnetic Shape Memory Alloys Containing Minor Addition of Terbium. J. Magn. Magn. Mater. 2007, 316:595~598
    91王海学,赵增祺,李雪梅,吴双霞,江丽萍,熊玮. Dy对多晶Ni52Mn24.7Ga23.3合金马氏体相变和磁感生应变的影响.稀土. 2004, 25(2):46~49
    92郭世海,张羊换,赵增祺,李健靓,王新林. Ni52Mn23Ga24.5Sm0.5合金的马氏体相变和磁致伸缩性能.功能材料. 2004, 35(3):302~303
    93 S.H. Guo, Y.H. Zhang, Z.Q. Zhao, Y. Qi, B.Y. Quan, X.L. Wang. Effect of Sm on Phase Transformation in Ni2MnGa Alloys. Journal of Rare Earths. 2004, 22:875~877
    94 S.H. Guo, Y.H. Zhang, Z.Q. Zhao, J.L. Li, X.L. Wang. Martensitic Transformation and Magnetic-Field-Induced Strain in Ni-Mn-Ga-RE (RE=Tb, Sm) alloys. Journal of Rare Earths. 2004, 22:632~635
    95郭世海,张羊换,赵增祺,李健靓,王新林. Ni-Mn-Ga-RE(RE=Tb,Sm)合金的马氏体相变和磁感生应变.中国稀土学报. 2003, 21(6):668~671
    96 K. Tsuchiya, A. Tsutsumi, H. Ohtsuka, M. Umemoto. Modification of Ni-Mn-Ga Ferromagnetic Shape Memory Alloy by Addition of Rare Earth Elements. Mater. Sci. Eng. A. 2004, 378:370~376
    97 H.B. Wang, F. Chen, Z.Y. Gao, W. Cai and L.C. Zhao. Effect of Fe content on Fracture Behavior of Ni–Mn–Fe–Ga Ferromagnetic Shape Memory Alloys. Mater. Sci. Eng. A. 2006, 438-440: 990~993
    98 R. Tickle, R.D. James. Magnetic and Magnetomechanical Properties of Ni2MnGa. J. Magn. Magn. Mater. 1999, 195:627~638
    99 S.J. Murray, M. Marioni, S.M. Allen, R.C. O’Handley, T.A. Lograsso. 6% Magnetic-Field-Induced Strain by Twin-Boundary Motion in Ferromagnetic Ni-Mn-Ga. Appl. Phys. Lett. 2000, 77:886~888
    100 A. Sozinov, A.A. Likhachev, K. Ullakko. Crystal Structures and Magnetic Anisotropy Properties of Ni-Mn-Ga Martensitic Phases with Giant Magnetic-Field-Induced Strain. IEEE Trans. Magn. 2002, 38:2814~2818
    101 A. Sozinov, A.A. Likhachev, K. Ullakko. Crystal Structures and Magnetic Anisotropy Properties of Ni-Mn-Ga Martensitic Phases with Giant Magnetic-Field-Induced Strain. IEEE Trans. Magn. 2002, 38:2814~2818
    102 A. Sozinov, Y. Ezer, G. Kimmel, P. Yakovenko, D. Giller, Y. Wolfus, Y. Yeshurun, K. Ullakko, V.K. Lindroos. Large Magnetic-field-induced Strains in Ni-Mn-Ga Alloys in Rotating magnetic field, Acta PolytechnicaScandinavica, 2002, 288, 311~316
    103 K. Ullakko,Y. Ezer, A. Sozinov et al. Magnetic-field-induced Strains in Polycrystalline NiMnGa at Room Temperature. Scripta.Mater.2001, 44: 475~480
    104 W.H. Wang, G.H. Wu, J.L. Chen, C.H. Yu, Z. Wang, Y.F. Zheng, L.C. Zhao and W.S. Zhan. Effect of Internal Stress and Bias Field on the Transformation Strain of the Heusler Alloy Ni52Mn24.4Ga23.6. J.Phys.: Condens Matter. 2000, 12: 6287~6293
    105 S. Besseghini, M. Pasquale, F. Dassaretti, A. Sciacca and E. Willa. NiMnGa Polycrystalline Magnetically Activated Shape Memory Alloy: A calorimetric investigation. Scripta Materiali. 2001, 44: 2681~2687
    106 X. Lu, Z. Qin, X. Chen. Two-step Martensitic Transformation Characteristics of Polycrystalline NiMnGa Heusler Alloys. Materials Science Forum. 2002, 394-395: 549~552
    107 R.C. O'Handley, S.J. Murray, M. Marioni, P.G. Tello, S.M. Allen. Giant Magnetic-field-induced Strain in Ni-Mn-Ga Crystals: Experimental Results and Modeling, Journal of Magnetism and Magnetic Materials, 2001, 226-230, Part 1: 945~947
    108 Y. Ezer, A. Sozinov, G. Kimmel, P. Yakovenko, K. Ullakko, V.K. Lindroos. Large Magnetic-field-induced Strains in Textured Polycrystalline Ni-Mn-Ga at Room Temperature. Acta Polytechnica Scandinavica. 2002, 288: 522~524
    109 Y. Ezer, A. Sozinov, G. Kimmel, V. Etelaniemi, N.I. Glavatskaya, A. D'Anci, V. Podgursky, V.K. Lindroos, V.K. Ullakko. Magnetic Shape Memory (MSM) Effect in Textured Polycrystalline Ni2MnGa. Smart materials Technologies; Proceedings of the Meeting, Newport Beach, CA, Mar. 3, 4, 1999 (A00-11101 01-31), Bellingham, WA, Society of Photo-Optical Instrumentation Engineers (SPIE Proceedings. V. 3675), 1999: 244~251
    110 M. Nishida and C.M. Wayman. Precipitation Processes in Near-equiatomic TiNi Shape Memory Alloy. Metal Transcation A. 1986, 17: 1505~1516
    111 D. Schryvers, W. Tirry, Z.Q. Yang. Measuring Strain Fields and Concentration Gradientsaround Ni4Ti3 Precipitates. Mater. Sci. Eng. A. 2006, 438-440: 485~488
    112 C.Y. Xie, L.C. Zhao, T.C. Lei. Effect of Ti3Ni4 Precipitates on the Phase Transitions in an Aged Ti-5. 1.8at.%Ni Shape Memory Alloy, Scripta Mater.1990; 24: 1753~1758
    113 M. Nishida and T. Honma. Bull. Res. Inst. Min. Dres. Metall. Tohoku Univ. 1962, 35(8):75
    114徐祖耀.马氏体相变与马氏体(第二版).北京:科学出版社, 999, 827
    115杨杰,吴月华.形状记忆合金及应用.合肥:中国科学技术大学出版社, 1993
    116张瑾,谷南驹.材料科学与工艺, 2001, 9(4): 406
    117 K. Oikawa, T. Ota, T. Ohmori, Y. Tanaka, H. Morito, A. Fujita, R. Kainuma, K. Fukamichi, K. Ishida, Magnetic and Martensitic Phase Transitions in Ferromagnetic Ni-Ga-Fe Shape Memory Alloys. Appl. Phy. Lett. 2002, 81: 5201~5203
    118 F. Chen, X.L. Meng, W. Cai, L.C. Zhao, G.H. Wu. Martensitic Transformation and Shape Memory Effect of a Ni-Fe-Ga Polycrystalline Alloy. J. Magn. Magn. Mater. 2006, 302:459~462
    119 K. Tsuchiya, A. Tsutsumi, H. Ohtsuka, M. Umemoto. Modification of Ni-Mn-Ga Ferromagnetic Shape Memory Alloy by Addition of Rare Earth Elements. Mater. Sci. Eng. A. 2004, 378:370~376
    120王文洪,柳祝红,陈京兰,吴光恒,蔡伟等.铁磁形状记忆合金Ni52.15Mn23.15Ga24马氏体相变热滞后的研究.物理学报. 2002 51 (3): 635~639
    121 J. Liu, H.X. Zheng, M.X. Xia, J.G. Li, The Microstructure and Martensitic Transformation of Co–Ni–Ga–Ta Ferromagnetic Shape Memory Alloys, Scripta Materialia 52 (2005) 955~958
    122 C.Y. Xie, J.S. Wu. Effect of Aging on the Phase Transformation Temperatures and Shape Memory Effect of a NiAl-Fe Alloy. Intermetallics Short communication, 2000, 8: 77~80
    123谢超英.时效Ti-Ni形状记忆合金的相变与力学性能.哈尔滨工业大学博士学位论文. 1990
    124朱子新.高速点弧喷涂Fe-Al/WC涂层形成机理及高温磨损特性.天津(天津大学, 2002)
    125吴承建,陈国良,强文江.金属材料学.冶金工业出版社,2003:1
    126佘永宁,毛卫民.材料的结构.北京:冶金工业出版社,2001:1
    127潘金生,仝健民,田民波.材料科学基础.北京:清华大学出版社, 1998:590
    128 A.A. Cherechukin, T. Takagi, M. Matsumoto, V.D. Buchel’nikov. Magnetocaloric Effect in Ni2+xMn1?xGa Heusler Alloys. Phys. Lett. A. 2004, 326:146~151

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700