用户名: 密码: 验证码:
超细晶Nb-Si-Fe难熔合金制备及超塑性
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
Nb具有高熔点(2468℃)和良好的室温塑性及韧性,Nb-Si系难熔合金有宽的Nb_5Si_3和Nbss(铌固溶体)两相区,可通过共晶和共析反应制备难熔合金。由韧性较好的Nb和Nb-Si金属间化合物组成的难熔合金被认为是最有开发应用前景的下一代超高温结构材料。
     真空电弧熔炼-铸造法是制备Nb-Si系难熔合金常用的方法,所得材料的铸态组织一般由树枝状的初生Nb和(Nb+Nb3Si)组成。由于Nb3Si处于亚平衡态,因此铸态材料常要进行1800℃/100h的热处理。而且,为了消除材料中的铸造缺陷,热处理后还要进行热挤压处理。
     由于机械合金化减小了扩散路径和增加了自由能,很容易制备均匀分布的超细晶材料。在本文中机械合金化作为关键的工艺用来制备Nb-Si-Fe系超细晶难熔合金。到目前为止,几乎没有关于机械合金化+热压烧结制备Nb-Si系难熔合金的报道。本文通过机械合金化+热压烧结制备Nb-xSi-2Fe (x=3, 6, 10, 16)多相难熔合金并研究其室温和高温力学性能。令人感兴趣的是发现Nb-16Si-2Fe难熔合金具有优异的超塑性,迄今为止,在Nb-Si系难熔合金中还未见报道。
    
     采用机械合金化方法制备了具有良好烧结性能的Nb-Si-Fe复合粉末。分析了球磨时间、球磨速度、无水乙醇含量对粉末形貌和颗粒大小的影响。转速为250 rpm,球磨30h后Nb-16Si-2F混合粉末平均颗粒尺寸为0.3μm,部分颗粒尺寸小于100nm,主要由Nb、Fe、Nb_5Si_3相和亚稳态的Nb3Si相组成。
     采用真空热压烧结工艺制备了Nb-Si-Fe难熔合金。结果表明,在1500℃保温1h,压力为25MPa条件下烧结的的Nb-Si-2Fe难熔合金相对密度为99.6%。Nb-xSi-2Fe难熔合金均由Nbss、Nb_4Fe_3Si_5、Nb3Si和Nb_5Si_3相组成。晶界轮廓清晰,晶粒几乎呈等轴状,平均晶粒尺寸大约为3μm;金属间化合物颗粒主要位于Nb晶粒交界处,少量细小的金属间化合物Nb_5Si_3分布于Nb晶粒内。
     1500℃烧结的Nb-Si-Fe系难熔合金表现出良好的室温力学性能。Nb-16Si-2Fe硬度为11.2GPa,弹性模量为330GPa,Nb-3Si-2Fe断裂韧性可达到14.6MPa·m1/2左右,Nb_4Fe_3Si_5相有利于改善其断裂韧性。Si含量不同的Nb-Si-Fe难熔合金在1300℃的抗拉强度为112MPa ~237MP,延伸率分别为54%~95%。
     以初始应变速率2.31×10-4 s-1进行拉伸,Nb-16Si-2Fe难熔合金试样在1350℃、1400℃、1450℃和1500℃的延伸率分别为185%、338%、512%和320%。Nb-16Si-2Fe难熔合金获得最大延伸率的温度高于Nb_4Fe_3Si_5固相线温度91℃,从而生成大量的(体积分数约为24%)Nb_4Fe_3Si_5液相。超塑变形的机理是Nbss, Nb3Si和Nb_5Si_3晶界的滑移或转动,并伴随Nb_4Fe_3Si_5液相的延伸。在进行高温拉伸时,Nb-16Si-2Fe难熔合金的多相结构抑制了晶粒的长大。
     在1600℃进行了挤压比为30的挤压变形,沿挤压方向形成明显的变形织构组织特征。这种组织有利于提高材料的断裂韧性,由变形前的11.2 MPa.m1/2提高到成形后的20.1 MPa.m1/2。在1600℃实现了发动机推力室模拟件超塑挤压,一次成形,工艺简单,质量良好,材料利用率高,成本低。
Niobium has superior characteristic, i.e., high melting temperature (2468℃), good ductility and fracture toughness at room temperature. Moreover, Nb-Si system refractory alloys have a wide Nb_5Si_3 and Nb solid solution two-phase region; therefore, eutectic and eutectoid reactions offer a variation of microstructures to prepare Nb-Si refractory alloys. So the refractory alloy with Nbss and niobium silicides has the most potential as the next generation ultra-high temperature structural materials.
     Arc melting is a general method to fabricate the Nb-Si systems refractory alloys. As cast structure consists of original niobium and nonequilibrium Nb+Nb3Si. Because of unstable microsture of Nb3Si phase at high temperature, as cast materials should be heat treated at 1800℃for 100 h. Moreover, in order to remove defect of as cast materials, materials must be hot extruded after heat-treatment.
     Due to the reduced diffusion path in the refined microstructures and the increased free energy by mechanical alloyed (MA), it is easy to produced ultra-fine refractory alloys. Therefore, in this research the MA process was introduced as a key process to develop Nb-Si refractory alloys with ultra-fine and homogeneously distributed phase. There is hardly any report about Nb-Si refractory alloys prepared by MA + hot pressing sintering up to now. So in this paper the Nb-xSi-2Fe (x=3, 6, 10, 16) refractory alloys were prepared by MA and hot pressing sintering; mechanical properties at room temperature and high temperature were also researched. It is interesting to note that Nb-16Si-2Fe refractory alloy has excellent superplasticity. Superplasticity of Nb-Si system refractory alloys has not been reported up to now.
     Nb-Si-Fe powders with excellent sintering property were synthesized by MA. Effects of milling time, milling speed and addition of alcohol on powder sizes and morphlogy were studied. Sub-micro Nb-16Si-2Fe powders with particle size of 0.3μm and some particle size less than 100nm can be obtained by milling for 30h at 250rpm, which mainly consist of Nb, Fe, Nb_5Si_3 phase and metastable Nb3Si phase.
     Nb-Si-Fe system refractory alloys were prepared by hot pressing sintering. The refractory alloys sintered at 1500℃for 1h has high relative theoretic density (99.6%). The microstructures of all Nb-Si-Fe refractory alloys consist of the Nbss and uniformly dispersed three kinds of intermetallic Nb3Si and Nb_5Si_3, and Nb_4Fe_3Si_5 phase. The average size of grains of these refractory alloys is about 3μm and the grain shape is essentially equiaxed. The grain boundaries are clear and sharply facetted. Intermetallic particles mainly located at multi-grain junction of Nb grains. But there are sub-micro intermetallic particles within the Nb grians.
     The as sintered at 1500℃Nb-Si-Fe system refractory alloys have excellent mechanical properties at room temperature. The hardness and elastic modulus of Nb-16Si-2Fe are 11.2GPa and 330GPa repectively. The fracture toughness of Nb-3Si-2Fe reaches 14.6 MPa·m1/2. The Nb_4Fe_3Si_5 phase has improved fracture toughness of Nb-Si-Fe refractory alloys. The tensile elongation of Nb-Si-Fe refractory alloys at 1300℃is between 54% and 95% depening on Si content. The tensile strength of Nb-Si-Fe system refractory alloys at 1300℃is between 112MPa and 237MPa.
     The tensile elongation of the Nb-16Si-2Fe refractory alloy reaches 185%, 338%, 320% respectively, at 1350℃,1400℃and 1500℃with initial strain rate of 2.31×10-4 s-1. The maximum elongation of the Nb-16Si-2Fe refractory alloy was obtained at a temperature which is 91℃higher than the solidus temperature of 1359℃. A significant amount of liquid phase Nb_4Fe_3Si_5 occurs during superplastic deforming; the volume of Nb_4Fe_3Si_5 liquid phase was about 24%. The deformation strain mainly results from the sliding/rotation of solid Nbss, Nb3Si and Nb_5Si_3 grians accompanied by strectching of the liquid phase Nb_4Fe_3Si_5. Grain growth is restrained by four-phase structure of Nb-16Si-2Fe refractory alloy.
     The extrusion deformation of a big extrusion ratio of 30 was undertaken at 1600℃. There is texture structure along extrusion directon, which is attributed to fracture toughness. The fracture toughness increases from 11.2 MPa.m1/2 to 20.1 MPa.m1/2 after extrusion. Model of engine combustion chamber was successfully extruded one-off at 1600℃. That material can be processed to parts with good quality by means of simple extrusion technique. Moreover, the utilization rate of the material was high and cost has been greatly cut down.
引文
1 M. Tacikowski, J. S?oma, M. Wo?niak, T. Wierzchoń. Structure of the Al-Ni intermetallic layers produced on nickel alloy by duplex treatment. Intermetallics, 2006, 14: 123-129.
    2 I.A. MacAskill, D.W. Heard, D.P. Bishop. Effects of silicon on the metallurgy and sintering response of Al-Ni-Mg PM alloys. Materials Science and Engineering, 2007, 452-453: 688-698.
    3 Ana Kostov, Bernd Friedrich, Dragana Zivkovic. Predicting thermodynamic properties in Ti-Al binary system by FactSage. Computational Materials Science, 2006, 37: 355-360.
    4 Nizamettin Kahraman, Behcet Gulenc, Fehim Findik. Corresion and mechanical-microstructural aspects of dissimilar joints of Ti-6Al-4V and Al plates. International Journal of Impact Engineering, 2007, 34: 1423-1432.
    5 J. M. Park, K.B. Kim, W.T. Kim, M.H. Lee, J. Eckert, D.H. Kim. High strength ultrafine eutectic Fe-Nb-Al composites with enhanced plasticity. Intermetallics, 2008, 16: 642-650.
    6 Hongwei Shi, Debo Guo, Yifang Ouyang. Structure evolution of mechanically alloyed nanocrystalline FeAl intermetallics. Journal of Alloys and Compounds, 2008, 455: 207-209.
    7 H.Inouye, Niobium 81, 1981, ed. H. Stuart, Warrendale, PA, TMS: 615-636
    8 R. W. Buckman, Jr., Alloying, 1988, ed. J.L. Walter, M. R. Jackson and C. T. Sims, Metal Park, OH, ASM International: 419-445
    9 C. C. Wojcik, High temperature Niobium alloys, 1991, ed. J. J. Stephens and I. Ahmad, Warrendale, PA, TMS: 1-12.
    10 R.T. Begley, Evolution of Refractory Metal and Alloys, 1994, ed. E. N. C. Dalder, T. Grobstein and C. S. Olsen, Warrendale, PA, TMS: 29-48.
    11马勤,康沫狂.高温结构硅化物研究的新进展.材料工程,1997, 7: 3-6
    12 P. R. Subramanian, T. A. Parthasarathy, M. G. Mendiratta, D. M. Dimiduk. Compressive creep behavior of Nb5Si3. Scripta Metallurgica et Materialia, 1995; 32: 1227-1232
    13 A. Maloys, T. E. Mitchell, A. H. Hecuer. High temperature plastic anisotropy in MoSi2 single crystals. Acta Metallurgica et Materialia, 1995, 43: 657-668
    14 M. S. Dilip, L. A. Donald, P. P. David, C. Stephen. In-situ refractory intermetallic-based composites. Materials Science and Engineering, 1995, 192-193: 658-672.
    15 J. D. Rigney, P. M. Singh, J. Lewandowski. Environmental effects on ductile-phase toughening in Nb5Si3Nb composites. Journal of the Minerals, Metals and Materials Society. 1992; 44:36-44
    16 J.L. Yu, K.F. Zhang, G.F. Wang. Superplasticity of multiphase fine-grained Nb–
    16Si–2Fe refractory alloy.Intermetallics, 2008; 16: 1167-1170
    17 Won-Yong Kim, Hisao Tanaka, Akio Kasama, Ryohei Tanaka, Shuji Hanada.
    18 Microstructure and room temperature deformation of Nbss/Nb5Si3 in situ composites alloyed with Mo. Intermetallics, 2001; 9: 521-527
    19 D. M. Dimidu, M. G. Mendiratta, P. R. Subramanian. Structural Intermetallics, 1993, ed. R. Darolia et al., Warrendale, PA, TMS: 619-631
    20 D. M. Dimidu, P. R. Subramanian, M. G. Mendiratta, International Workshop on ordered Intermetallicx alloys and composites, 1995, 6: 25-30
    21 P. A. Perkins, G. H. Meier. The oxidation behavior and protection of niobium. JOM, 1990, 8: 17-21
    22 V. K. Sikka, S. Viswanathan, E. A. Loria, Superalloys, 1992, ed. S.D. Antolovich et al., Warrendale, PA, TMS: 423-431
    23 Archana Paradkar, S.V. Kamat, A.K. Gogia, B.P. Kashyap. Influence of volume fraction of primaryα2 on the fracture toughness of Ti-Al-Nb alloy undergoing stress-induced martensitic transformation. Materials Science and Engineering, 2008, 491: 390-396
    24 Rengen Ding, Ian P. Jones, Huisheng Jiao. Effect of carbon on the microstructures and mechanical properties of as cast Nb-based alloy. Materials Science and Engineering, 2008, 485, 92-98
    25 P. R. Subramanian, M. G. Mendriatta, D. M. Dimiduk. The Development of Nb-Based Advanced Intermetallic alloys for Structural Applications. JOM, 1996, 1: 33-38
    26 M. G. Mendirata, J. J. Lewandowski, D. M. Dimiduk. Strength and ductile-phase toughening in the two-phase Nb/Nb5Si3 alloys. Metallurgical and Materials Transactions, 1991, 22: 1573-1583.
    27 P. R. Subramanian, M. G. Mendriatta, D. M. Dimiduk, High temperature Silicides and Refractory alloys, 1994, ed. C. L. Briant et al., Pittsburgh, PA, MRS: 491-502
    28 D. L. Anton, D. M. Shah, High Temperature Ordered Intermetallic alloys , 1994, ed. I. Baker et al., Pittsburgh, PA, MRS: 141-151
    29 J. J. Petrovic, A. K. Vasudevan, High Temperature Silicides and Refractory alloys, 1994, ed. C. L. Briant et al., Pittsburgh, PA, MRS: 3-8
    30 K. Sadananda, C. R. Feng, High Temeprature Silicides and Refractory alloys, 1994, ed. C. L. Briant et al., Pittsburgh, PA, MRS: 157-173
    31 M. R. Jackson et al., Refractory Metals: Extraction, Processing and Application, 1990, ed. K. C. Liddell, D. R. Sadoway, R. G. Bautista, Warrendale, PA, TMS: 335-346
    32曲士昱. Nb/Nb5Si3复合材料基础研究.北京航空材料研究院博士学位论文. 2002;15
    33 K. D. Jones et al., Refractory Metals: Extraction, Processing and Applications, 1990, ed. K. C. Liddell, D. R. Sadoway and R. G. Bautista, Warrendale, PA, TMS: 321-334
    34 L. A. Bendersky and W. J. Boettinger, High Temperature Ordered Intermetallic AlloysⅢ, 1989, ed.C.T.Liu et al., Pittsburgh, PA, MRS: 45-50
    35 Hiroyasu Fujiwara, Yukitomi Ueda, Alok Awasthi, Nagaiyar Krishnamurthy, Sheo Parkash Garg. Thermodynamic study on refractory metal silicides. Journal of Physics and Chemistry of Solids, 2005, 66: 298-302
    36 J.L. Yu, K.F. Zhang. Tensile properties of multiphase refractory Nb–16Si–2Fe in situ composite. Scripta Materialia, 2008, 59: 1167-1170
    37 Jie Geng, Panos Tsakiropoulos, Guosheng Shao. Oxidation of Nb-Si-Cr-Al in situ composites with Mo, Ti and Hf additions. Materials Science and Engineering, 2006, 441: 26-38
    38 Dmitri V. Louzguine-Luzgin, Larissa V. Louzguina-Luzgina, Takanobu Saito, Guoqiang Xie, Akihisa Inoue. Structure and properties of high strength and ductile Ti–Fe–Cu–Nb–Sn alloys. Materials Science and Engineering:, 2008, 497: 126-131
    39 N. Vellios, P. Tsakiropoulos. The role of Fe and Ti additions in the microstructure of Nb-18Si-5Sn silicide-based alloys. Intermetallics, 2007, 15, 1529-1537
    40 K. Chattopadhyay, G. Balachandran, R. Mitra, K.K. Ray. Effect of Mo on microstructrue and mechanical behaviour of as-cast Nbss-Nb5Si3 in situ composites. Intermetallics, 2006, 14: 1452-1460
    41 C. L. Ma, J. G. Li, Y. Tan, R. Tanaka, S. Hanada. Microstructure and mechanical properties of Nb / Nb5Si3 in situ composites in Nb-Mo-Si and Nb-W-Si system. Materials Science and Engineering, 2004, 386: 375-383
    42 Won-Yong Kim, In-Dong Yeo, Tae-Yeub Ra, Gue-Serb Cho, Mok-Soon Kim. Effect of V addition on microstructure and mechanical property in the Nb-Si alloys system. Journal of Alloys and Compounds, 2004, 364: 186-192
    43 Physical Metallurgy and Processing of Intermetallics Compounds, edited by N. S. Stoloff and V. K. Sikka, 1994
    44 D. M. Shah, D. L. Anton.Temary Alloying of Refractory Intermetallics. Mat. Res. Soc. Symp. Proc, 1991, 213: 733-738
    45 S. Takeuchi, T. Hashimoto, T. Shibuya. Proceedings of International Symposium on Intermetallic Compounds (JIMIS-6), 1991, ed. O. Izumi, Sendai, Japan, The Japan Institute of Metals: 645-649
    46 S. Bose. Engineering aspect of creep deformation of molybdenum disilicide. Materials Science and Engineering, 1992, 155: 217-225
    47 T. E. Mitchell, R. G. Castro, J. J. Petrovic, S. A. Maloy and, O. Unal, M. M. Chadwick. Dislocations, twins, grain boundaries and precipitates in MoSi2. Materials Science and Engineering, 1992, 155: 241-249
    48 P. Peralta, S. A. Maloy, F. Chu, J. J. Petrovic, T. E. Mitchell. Mechanical properties of monocrystalline C11b MoSi2 with small aluminum additions. Scripta Materialia, 1997, 37: 1599-1604
    49 E. Kakamura, U. Westermann, J. Wonka, H. Meinhardt, E. Neisius, E. Arnold. Proceedings of International Symposium on Intermetallic Compounds (JIMIS-6), 1991, ed. O. Izumi, Sendai, Japan, The Japan Institute of Metals: 621-625
    50 H. Inui, M. Yamaguchi. Deformation mechanisms of transition-metal disilicides - 90 -with the hexagonal C40 structure. Intermetallics, 2001, 9: 857-862
    51 H. Inui, M. Moriwaki, S. Ando, M. Yamaguchi. Plastic deformation of single crystals of CrSi2 with the C40 structure. Materials Science and Engineering, 1997, 239-240: 63-68
    52 T. Nakano, M. Azuma, Y. Umakoshi. Microstructure and high-temperature strength in MoSi2/NbSi2 duplex silicides. Intermetallics, 1998, 6: 715-722
    53 D. Alexander. Development of High Temperature Metallics for Structural Aerospace Applications, 1990, Interim Technical Report for Period August, 1987 to September, 1988, under, DAPA Order No. 6154, Contract No. N00014-87-C-0682
    54 Yoshisato Kimura, Masaharu Komiyama, Yoshinao Mishima. Microstructure and mechanical properties of MoSi2/TaSi2 two-phase alloys. Intermetallics, 2006, 14: 1358-1363
    55 H. Inui, M. Moriwaki, M. Yamaguchi. Plastic deformation of single crystals of VSi2 and TaSi2 with the C40 structure. Intermetallics, 1998, 6: 723-728
    56 D. M. Shah, D. L. Anton. High-Temperature Ordered Intermetallics Alloys. Mat. Res. Soc. Symp. Proc, 1991, 213: 63-68
    57 J. H. Schneibel, C. J. Rawn. Thermal expansion anisotropy of ternary titanium silicides based on Ti5Si3. Acta Materialia, 2004, 52: 3843-3848
    58 Y. Murata, T. Higuchi, Y. Takeda, M. Morinaga, N. Yakawa, Proceedings of International Symposium on Intermetallic Compounds (JIMIS-6), 1991, ed. O. Izumi, Sendai, Japan, the Japan Institute of Metals: 627-631
    59 R. Rosenkranz, G. Frommeyer, W. Smarsly. Microstructure and properties of high melting point intermetallicTi5Si3 and TiSi2 compounds. Materials Science and Engineering, 1992, 152: 288-294.
    60 G. A. Henshall, P. R. Subramanian, M. J. Strum, M. G. Mendiratta. Continuum predictions of deformation in composites with two creeping phases—II. Nb5Si3/Nb composites. Acta Materialia, 1997; 45: 3135-3142
    61 C. S. Chang, D. P. Pope, High Temperature Ordered Intermetallics Alloy IV, MRS Symp. Proc., 1991, 213: 745-750
    62 M. R. Jackson, B. P. Bewlay, R. G. Rowe. JOM, 1996, (1): 39
    63 D. L. Davidson, K. S. Chan. The Effect of Microstructure on the Fracture Resistance of Nb-Cr-Ti in Situ Composites. Scripta Materialia, 1998, 38: 1155-1161
    64 M. G. Mendiratta, D. M. Dimiduk. Phase relations and transformation kinetics in the high Nb region of the Nb-Si system. Scripta Metall Mater, 1991, 25: 237-242.
    65 Jan Kajuch, Joseph D. Rigney, John J. Lewandowski. Processing and properties of Nb5Si3 and tough Nb5Si3/Nb laminates. Materials Science and Engineering, 1992, 155: 59-65
    66 C.L. Yeh, W.H. Chen. Preparation of Nb5Si3 intermetallic and Nb5Si3/Nb composite by self-propagating high-temperature synthesis. Journal of Alloys and Compounds, 2005, 402: 118-123
    67 Jin-Hak Kim, Tatsuo Tabaru, Hisatoshi Hirai, Akira Kitahara, Shuji Hanada.Tensile properties of a refractory metal base in situ composite consisting of an Nb solid solution and hexagonal Nb5Si3. Scripta Materialia, 2003, 48: 1439-1444
    68 R. Tiwari, H. Herman. Vacuum plasma spraying of MoSi2 and its composites. Materials Science and Engineering, 1992, 155: 95-100
    69 C. T. Sims. Niobium in superalloys: a perspective. High TemperatureTechnology, 1984, 24 :185-201
    70 E. N. Sheftel, O. A. Bannykh. Niobium-Base Alloys. Int J of Refractory Metals and Hard Materials, (1993-1994) , 12 :303-304
    71白新德,邱钦伦,甘东文. Nb在空气中的氧化动力学及成膜机制的研究.清华大学学报(自然科学版),1998,38:71-73
    72蓝兰编译,铌[M].北京:机械工业出版社, 1964
    73 A. Roger, Perkins. H. M. Gerald. The oxidation behavior and protection of niobium. JOM, 1990, 8: 17-21
    74 J. J. Stephens. Recent advances in high-temperature niobium alloys. JOM, 1990, 8: 22-23
    75 M. R. Jackson, B.P. Bewlay, R. G. Rowe. High-temperature refractory metal-intermetallic composites. JOM, 1996, 1: 39-44
    76 M. R. Jackson, B. P. Bewlay, R. G. Rowe. High-Temperature Refractory Metal-Intermetallic Composites. JOW, 1996, 48: 39-44
    77金石译.美国国家材料咨询委员会所属涂层委员会编,高温抗氧化涂层.北京:科学出版社, 1980
    78 R. P. dhammer, W. Knabl, C. Semprimoschnig. Protection of Nb-and Ta-Based Alloys against High Temperature Oxidation. Int J of Refractory Metals and Hard Materials, (1993-1994), 12:283-293
    79 R. Tiwari, H. Herman. Vacuum plasma spraying of MoSi2 and its composites. Materials Science and Engineering, 1992, 155: 95-100
    80 Y. Arista, A. Kobayashi, Y. Habara. Characteristics of gas-tunel plasma-sprayed coatings. High Temperature Technology, 1998, 6: 9-15
    81 A. Newman, S. Sampath, H. Herman. Processing and properties of MoSi2–SiC and MoSi2–Al2O3. Materials Science and Engineering, 1999, 261: 252-260
    82 Andrew Mueller, Ge Wang, A. R. Robert. Oxidation Behavior of Tungsten and Germanium-alloyed Molybdenum disilicide Coatings. Materials and Engineeering, 1992, 155: 199-207
    83 V. C. Brian. Growth and oxidation resistance of boron-modified and germanium doped silicide diffusion coatings formed by the halide activated pack cementation method. Surface and Coatings Technology, 1995, 76-77): 20-27
    84 V. C. Brian, A. R. Robert. Oxidation resistant Boron and Germanium doped Silicide Coating for Refractory Metals at High Temperature. Materials cience and Engineering, 1995, 192- 193: 980-986
    85曲士昱,王荣明,韩雅芳. Nb2Si系金属间化合物的研究进展.材料导报, 2002,
    16:31-34
    86 O. S. Ryosuke, Masayori Ishikawa, Katsutoshi Ono. NbSi2 coating on niobiumusing molten salt. Journal of alloys and compounds, 2002, 336: 280-285
    87翟金坤,马祥,白新德. C-103铌合金上Si-Cr-Ti料浆熔烧涂层的改性研究.航空学报,1994,15: 499-506
    88王禹,郜嘉平,李云鹏.铌合金硅化物涂层的结构及高温抗氧化性.无机材料学报, 2001,15(2):143-149
    89贾中华.料浆法制备铌合金和钼合金高温抗氧化涂层.粉末冶金技术,2001,19: 74-76
    90 T. G. Nieh, T. Wadsworth, O. D. Sherby. Superplasticity in metals and ceramics. Cambridge University Press, UK, 1997: 105
    91郭建亭,张光业,周健.定向凝固NiAl-15Cr合金的微观组织与超塑性变形行为.金属学报, 2004, 40: 494-498
    92周文龙,郭建亭,陈荣石,周继扬. Ni-20Al-30Fe金属间化合物合金超塑性的研究.金属学报, 2000, 796-800
    93 Y. Umakoshi, W. Fujitani, T. Nakano, A. Inoue, K. Ohtera, T. Mukai, K. Higashi. The role of dislocations in high-strain-rate superplasticity of an Al–Ni–misch metal alloy. Acta Materialia, 1998, 46: 4469-4478
    94陈容石. Cr、Mo、Hf、Co对NiAl金属间化合物组织结构、力学和性能的影响.大连理工大学博士论文.1999, 65
    95周健. Ag、P、Cr对NiAl及其合金的组织和性能的影响.中国科学院金属研究所博士论文. 2002, 53
    96 Zhou J, Guo J T. The phosphorus effect on the superplastic deformation of NiAl. Mater Sci Eng, 2003, 360:140
    97 X. H. Du, R. S. Chen, G. S. Li. Superplasticity behavior in NiAl-9Mo multiphase alloy. Intermetallics, 2004, 5: 62
    98 Jiang Dongmei, Lin Dongliang. The microstructural evolution in large grained Ni-40Al during superplastic deformaton. J Alloys Comp, 2006, 415: 177
    99周文龙,郭建亭,陈容石.多相Ni-Al-Fe合金超塑性的研究.金属学报, 1999, 35:995
    100 C. T. Liu, R. S. Mishra. Low temperature superplasticity in a Friction-stir-processed ultrafine grained Al-Zn-Mg-Sc alloy. Acta Mater, 2005, 53: 42
    101 V.K.Sikka, C.T.Liu, E.A.Loria. In: Froes F H, Savage S J. Superplastic behavior in Fe-Si-Al Alloy. Am Soc MetalMetals Park, OH. 1987: 4171
    102 I. Charit, R. S. Mishra. Development of ult rafine-grained microstructure and low tempereature (0.48Tm) superplasticity infriction stir processed Al-Mg-Zr. Acta Materialia, 2005, 53: 75
    103 S. W. Wcfadden, K. Kitazono, E. Sato. Internal stress superplasticity in anisot ropic polycrystalline materials. Acta Mate, 2001, 49: 473
    104黄伯云,贺跃辉,邓忠勇,王健农,孙坚.热变形TiAl基合金的超塑性行为.金属学报,1998, 34: 1173-1177
    105孙锋,林栋梁.大晶粒TiAl基合金的超塑性变形行为.上海交通大学学报2001, 35: 380-384
    106邓忠勇,黄伯云,贺跃辉,刘咏.显微组织对TiAl基合金超塑性的影响.材料工程,1999, 12: 26-28
    107周科朝,黄伯云,曲选辉.超塑性变形TiAl基合金中的孔洞.中南工业大学学报,1998, 29: 559-562
    108周科朝,黄伯云,曲选辉,陈小群.超塑性TiAl基合金的显微组织特征.稀有金属材料与工程, 1998, 27: 336-339
    109孙坚,刘润开,吴建生,贺跃辉. 1073-1173K温度范围内TiAl合金的超塑性行为.金属学报, 2001, 37: 95-98
    110孙锋,林栋梁.大晶粒TiAl基合金的超塑性变形行为.上海交通大学学报, 2001, 35: 380-384
    111 Hong S. Yang, Paul Jin, Edward Dalder, Amiya K. Mukherjee. Superplasticity in a Ti3Al-base alloy stabilized by Nb, V and Mo. Scripta Meta, 1991: 1223-1228
    112 Jin Hong Kim, Chan Gyung Park, Tae Kwon Ha, Young Won Chang. Microscopic observation of superplastic deformation in aα-phase Ti3Al-Nb alloy. Materials Science and Engineering, 1999, 269: 197-204
    113王斌,贾天聪,王跃群,邹敦叙,仲增墉. Ti-24Al-14Nb-3V-0.5 Mo合金的超塑性.金属学报,1994, 30: 309
    114丁桦,宋丹,杜云蕙,张彩暗,崔建忠,白秉哲,万初杰. Ti3Al-Nb合金超塑压缩变形的研究.钢铁研究学报1999, 11: 34-37
    115孙福生,马济民,曹春晓. Ti3Al基合金超塑形变的微观观察.金属学报,1994, 30: 465
    116 K. Higashi, T.G. Nieh, J. Wadsworth. Effect of temperature on the mechanical properties of mechanically-alloyed materials at high strain rates. Acta Mater, 1995, 43: 3275-3282
    117郦定强,刘毅,单爱党,林栋梁.大晶粒含钛Fe-36.5 Al基合金的超塑性研究.金属学报,1996, 32: 417
    118郦定强,林栋梁,刘俊亮,刘毅.大晶粒FeAl合金超塑性变形的显微组织演变和变形激活能.金属学报,1997, 33: 897-900
    119胡静,林栋梁.金属间化合物大晶粒超塑性变形机理.材料热处理学报,2003,24:31-36
    120陈明伟,单爱党,林栋梁. Fe3Al-Ti超塑性变形过程中晶粒形态演化规律金属热处理学报, 1995, 16: 9-14
    121陈明伟,单爱党. Fe3Al基合金超塑性变形过程中位错结构的演化.金属热处理学报. 1995, 3: 9-13
    122 N. Vellios, P. Tsakiropoulos. The role of Sn and Ti additions in the microstructure of Nb-18Si base alloys. Intermetallics, 2007, 15: 1518-1528
    123 Bruno Bacci Fernandes, Erika Coaglia Trindade Ramos, Gilbert Silva, Alfeu Saraiva Ramos. Preparation of Nb-25Si, Nb-37.5Si, Nb-66.6Si powders by high-energy ball milling and subsequent heat treatment. Journal of Alloys andCompounds, 2007, 434-435: 509-513
    124 K. Chattopadhyay, R. Sinha, R. Mitra, K.K. Ray. Effect of Mo and Si on morphology and volume fraction of eutectic in Nb-Si-Mo alloys. Materials Science and Engineering, 2007, 456: 358-363
    125 K. Zelenitsas, P. Tsakiropoulos. Effect of Al, Cr and Ta additions on oxidation behaviour of Nb-Ti-Si in situ composites at 800℃. Materials Science and Engineering, 2006, 416: 269-280
    126 X. G. Li, K. Kikuchi, M. Sato, A. Chiba, S. Takahashi. Fabrication of Nb–Si fine powders by hydriding bulk alloys directly in an arc-melting chamber. Journal of Alloys and Compounds, 1999, 282: 291-296
    127 Won-Yong Kim, Hisao Tanaka, Akio Kasama, Shuji Hanada. Microstructure and room temperature fracture toughness of Nbss/Nb5Si3 in situ composites. Intermetallics, 2001, 9: 827-834
    128 Jiangbo Sha, Hisatoshi Hirai, Tatsuo Tabaru, Akira Kitahara, Hidetoshi Ueno, Shuji Hanada. High-temperature strength and room-temperature toughness of Nb-W-Si-B alloys prepared by ark-melting. Materials Science and Engineering, 2004, 364: 151-158
    129 Won-Yong Kim, Hisao Tanaka, Shuji Hanada. Microstructure and high temperature strength at 1773 K of Nb/Nb5Si3 composites alloyed with molybdenum. Intermetallics, 2002, 10: 625-634
    130朝利,笠间昭夫,田中良平,花田修治,康沫狂. Nb/ Nb5Si3原位复合材料的开发研究.金属热处理学报. 2000, 21: 83-88
    131永旺,曲士昱,宋尽霞,韩雅芳.定向凝固速率对Nb-Si系原位复合材料组织和性能的影响.金属学报,2008, 44, 593-597
    132玉新,郭建亭,周兰章,李谷松,叶恒强. Dy对Nb-Nb5Si3共晶合金显微组织和力学性能的影响.金属学报, 2008, 44: 589-592
    133春兰,周兰章,郭建亭. Ta含量对Nb-Nb5Si3共晶合金的组织和压缩性能的影响。金属学报,2006, 42: 1061-1064
    134金明,郭喜平,宋曙光. Nb–Ti–Si基多元合金在1250℃下的氧化行为.金属学报,2008, 44: 574-578
    135姚成方,郭喜平,郭海生. Nb–Ti–Si基超高温合金的有坩埚整体定向凝固组织分析.金属学报,2008, 44: 579-584
    136严有为,陈哲,傅正义. Si含量对放电等离子烧结原位Nb/Nb5Si3复合材料显微结构的影响.复合材料学报,2005, 22: 6-10
    137陈哲,严有为.烧结温度对SPS Nb5Si3原位复合材料组织结构的影响.材料热处理学报,2005,26:45-48
    138李伟,杨海波,单爱党,吴建生. Nb3Si对Nb-8Si原位复合材料微观组织的影响.机械工程材, 2004, 28: 33-35
    139张德尧,肖联贞. C-103铌合金推力室模锻工艺研究.稀有金属材料与工程,1986,1: 10-16
    140 D. R. Maurice, T. H. Courtney. The physics of mechanical alloying: A First Report [D]. New York: Metall Trans, 1990
    141 C. Suryanarayana. Mechanical alloying and milling. Progress in Materials Science. 2001, 46: 184
    142李蔚,高濂,李强.热压烧结制备纳米Y-TZP材料形貌及结构的分析.硅酸盐学报. 2001,29(1): 84-86
    143 J. L. Shi, R. M. Lin, T. S. Yen. Crystallite Growth in Yttria Doped Superfine Zirconia Powders and their Compacts: a Comparison between Y-TZP and YSZ. Ceram. Int. 1996, 22: 137
    144 D. Gouvea, R. H. R. Castro. Sintering: the Role of Interface Energies. Applied Surface Science. 2003, 217: 194–201
    145 Jin-Hak Kim, Tatsuo Tabaru, Michiru Sakamoto, Shuji Hanada. Mechanical properties and fracture behavior of an NbSS/Nb5Si3 in-situ composite modified by Mo and Hf alloying. Materials Science and Engineering, 2004, 372: 137-144
    146 T. Faber, A. G. Evans. Crack Defection Processes. Theory. Acta Metall. l983, 3l: 565-576
    147 N. Claussen, G. Petzow. Whisker-Reinforced Oxide Ceramics. J. Phys. 1986, 47l: 693-702
    148 A. A. Griffth. The Phenomenon of Rupture and Flow in Solids. Philos. R. Soc. London, 1920, 221: 163-198
    149 I. K. Phani, S. K.Nioygi. Elastic modulus-porosity relation in polycrystalline rare-earth oxides. J. Am. Ceram. Soc. 1987, 70: 362-366
    150 Yonosuke Murayama, Shuji Hanada. High temperature strength, fracture toughness and oxidation resistance of Nb–Si–Al–Ti multiphase alloys. Science and Technology of Advanced Materials, 2002,: 145-156
    151 T.C. Lu, A.G. Evans, R.J. Hecht, R. Mehrabian. Toughening of MoSi2 with a ductile (niobium) reinforcement. Acta Metallurgica et Materialia, 1991, 39: 1853-1862
    152 V. K. Sikka, C. T. Liu, E. A. Loria. In: Froes F H, Savage S J. Superplastic behavior in Fe-Si-Al Alloy. Am Soc MetalMetals Park, OH. 1987:417
    153 T. G. Nieh, T. Wadsworth, O. D. Sherby. Superplasticity in metals and ceramics. Cambridge University Press, UK, 1997: 260
    154 J Wadsworth, S.E Dougherty, P.A Kramer, T.G Nieh. Evidence for dislocation glide controlled creep in niobium-base alloys. Scripta Mater. 1992, 27: 71-76
    155 T. G. Nieh, J. Wadsworth. J. Am. Ceram. Soc., 1989, 72, 1469
    156 D. H. Bae, A. K. Ghosh. Cavity Growth in a Superplastic Al-Mg Alloy:Ⅱ. An Improved Plasticity Based Model. Acta Mater. 2002, 50: 1011-1029
    157陈浦泉.组织超塑性.哈尔滨工业大学出版社. 1988: 36
    158 R. S. Mishra, R. T. Bieler, A. K. Mukherjee. Superplasticity in powder metallurgy aluminum alloys and composites. Acta Metallurgica et Materialia, 1995, 43: 877-891
    159 M. Mabuchi, K. Higashi. High-strain-rate superplasticity in magnesium matrixcomposites containing Mg2Si particles. Philosophical Magazine, 1996, 70: 185-191
    160 R. -J. Xie, M. Mitomo, G. -D. Zhan. Superplasticity in a fine-grained beta-silicon nitride ceramic containing a transient liquid. Acta Mater. 2000, 48: 2049-2058
    161 Kondo Y, Suzuki Y, Ohji T, Sato E, Wakai F. Change in stress sensitity and activation energy during superplastic deformation of silicon nitride. Mater.Sci. Eng. 1999, 268: 141-146
    162 Gasdaska C. J. Tensile creep in an in situ reinforced silicon nitride. J Am Ceram Soc. 1994, 77 (9): 2408-2418
    163 Sheldon M., Wiederhorn B. J., Hockey J. D. French. Mechanisms of deformation of silicon nitride and silicon crabide at high temperature. Journal of European Ceramic Society. 1999, 19: 2273-2284
    164 R. S. Mishra, R. T. Bieler, A. K. Mukherjee. Superplasticity in powder metallurgy aluminum alloys and composites. Acta Mater, 1995, 43: 877-891
    165 J. Koike, M. Mabuchi, K. Higashi. In situ observation of partial melting in superplastic aluminum alloy composites at high temperatures. Acta Metallurgica et Materialia, 1995, 43: 199-206
    166 K. Higashi, T. G. Nieh, M. Mabuchi, J. Wadsworth. Effect of liquid phases on the tensile elongation of superplastic aluminum alloys and composites. Scripta Metallurgica et Materialia, 1995, 32: 1079-1084

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700