用户名: 密码: 验证码:
铝氧化物催化臭氧氧化水中嗅味物质的效能与机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
嗅味问题(taste and odor problem)是饮用水处理技术领域面临的全球性问题。水库水和湖泊水的富营养化使得此类水为水源的饮用水嗅味问题尤为突出。常规的饮用水处理技术在解决水体嗅味问题方面能力十分有限。目前国内外虽然已经采取一些强化去除技术解决饮用水中嗅味问题,但这些技术均存在一定问题,如强化去除能力微弱,氧化剂剩余问题和工艺造价问题等。因此开发新型的饮用水深度处理技术,解决饮用水嗅味问题是十分必要的。
     本文在深入分析臭氧氧化技术在解决水体嗅味问题方面存在问题的基础上,采用γ-Al2O3催化臭氧氧化技术去除水体中嗅味物质2-甲基异莰醇(2-Methylisoborneol, MIB);为了探求铝氧化物在催化臭氧氧化过程中的催化机理,以典型铝氧化物(γ-AlOOH,γ-Al2O3,α-Al2O3)为例,研究了铝氧化物催化臭氧分解规律;采用不同化学结构的嗅味物质为目标物,讨论了铝氧化物催化臭氧氧化嗅味物质的反应机理;采用天然铝矾土为原料,经过简单热处理过程,制备出具备去除不同化学结构嗅味物质能力的高效催化剂。
     首先以典型嗅味物质MIB为代表,研究了臭氧氧化技术对MIB的降解能力和氧化机理,并深入分析臭氧氧化技术在去除水体嗅味方面存在的问题。通过对溶液pH和羟基自由基抑制剂对MIB氧化过程的影响,提出在臭氧氧化MIB的过程中(中性条件下),分子臭氧和羟基自由基起到协同氧化作用。通过对氧化后样品进行气质联机分析,提出d-樟脑是臭氧氧化MIB过程中的主要中间产物,推测出臭氧氧化MIB的降解途径。根据对臭氧氧化MIB效能和机理的研究结果,认为常规臭氧投量下,臭氧氧化技术不能彻底解决水体嗅味问题。
     以典型嗅味物质MIB为代表,深入研究了γ-Al2O3催化臭氧氧化MIB的降解效能和机理,考察γ-Al2O3催化臭氧氧化技术解决水体嗅味问题的能力。γ-Al2O3的加入显著强化了臭氧对MIB的氧化能力。通过自由基抑制实验和ESR分析,证明羟基自由基是γ-Al2O3催化臭氧氧化过程产生的重要活性物种,并对催化臭氧氧化过程中羟基自由基产率进行测定。通过研究溶液pH值和络合性阴离子对γ-Al2O3催化臭氧氧化MIB能力的影响,证明附着在γ-Al2O3表面的羟基是催化臭氧氧化MIB反应中的活性位。
     为了探求铝氧化物在催化臭氧氧化过程中的催化机理,以典型铝氧化物(γ-AlOOH,γ-Al2O3,α-Al2O3)为例,研究了典型铝氧化物催化臭氧分解的规律,针对铝氧化物催化臭氧分解机理进行探讨。铝氧化物均可以强化臭氧分解。以羟基自由基抑制实验和羟基自由基产率为表示方法,证明了铝氧化物可以催化臭氧分解,并可以提高羟基自由基产率。根据溶液pH值和络合性无机阴离子对铝氧化物催化臭氧分解能力的影响,证明表面羟基是催化臭氧分解反应的活性位。同时铝氧化物表面的Br?nsted酸性同其催化臭氧分解能力密切相关。
     将典型铝氧化物应用于去除嗅味物质MIB和2,4,6-三氯苯甲醚(2,4,6-Trichloroaminsole, TCA)的过程中,探讨不同结构和表面性质的铝氧化物在催化臭氧氧化过程中的作用和行为。通过对催化臭氧氧化过程中氧化剂贡献进行计算可知,在催化臭氧氧化MIB过程中,具有最高催化活性的γ-Al2O3主要以·OH氧化反应为主;催化活性最弱的γ-AlOOH,是以分子臭氧为主的氧化过程。在三种铝氧化物催化臭氧氧化TCA的过程中,主要以·OH的氧化过程为主。通过研究溶液pH值对催化反应的影响,证明了表面羟基是催化臭氧氧化有机物的表面活性位。通过研究铝氧化物对MIB和TCA的吸附作用,得出通过与表面羟基的作用,MIB吸附在铝氧化物表面,而TCA是物理性的吸附在氧化物表面。由于表面羟基既是γ-AlOOH吸附MIB的吸附位,同时也是催化臭氧分解产生羟基自由基的活性位,推测MIB在γ-AlOOH表面的吸附,抑制了γ-AlOOH催化臭氧分解产生·OH的能力。根据铝氧化物表面性质和有机物在其表面吸附行为在催化反应中的作用,提出铝氧化物催化臭氧氧化MIB和TCA的催化反应途径。
     采用廉价的天然铝矾土为原料,进行简单的热处理,制备了其具有γ-AlOOH和γ-Al2O3双重的表面性质的催化剂。在催化臭氧氧化不同结构的嗅味物质过程中均表现出显著的催化活性。通过自由基抑制实验和羟基自由基产率的计算,证明热处理后的铝矾土可以促进臭氧分解,提高羟基自由基产率。
Taste and odor (T&O) problem is a key problem of drinking water treatment allover the world. Eutrophication of reservoir water and lake water has made the T&O problem more serious. At the same time, traditional drinking water treatment is not efficient for solving T&O problem. Though many strategies of drinking water treatment have been carried out to solve T&O problem, there are still many blemishes for application in water treatment, such as weak removal efficiency, residual oxidant, and higher cost. So exploring new advanced drinking water treatment for resolving T&O problem is very important.
     Due to problems emerged in resolving water taste and odor problems by ozonation, invesgitation ofγ-Al2O3 catalyzed ozonation for 2-methylisoborneol, (MIB) removal was carried out. Then, takenγ-AlOOH,γ-Al2O3, andα-Al2O3 as catalysts, the rule of aluminum oxides catalyzed ozone decomposition was investigated. By choosing MIB and 2,4,6-Trichloroaminsole (TCA) as the target compounds, the mechanism of aluminum oxide catalyzed ozonation was discussed. Finally, using natural bauxite as raw material, the catalyst which was efficient to remove both MIB and TCA was prepared through a simple heat treatment.
     Removal efficiency and mechanism of MIB by ozonation was investigated. Disadvantageous of ozonation MIB was investigated widely. Both ozone molecule and hydroxyl radicals were account for MIB degradation. By GC-MS analysis, it was speculated that d-camphor was a main product of ozonation MIB. A speculated degredation pathway was presumed. On the basis of efficiency and mechanism investigation, there were some problems in ozonation process for MIB degradation.
     The efficiency and the mechanism of catalyzed ozonation MIB in present ofγ-Al2O3 were carried out. The efficiency of removal MIB was enhanced remarkably byγ-Al2O3. According to inhibiting experiment and ESP analysis, it was specluted that hydroxyl radicals was the acitivity species. Yield of hydroxyl radicals was much higher than that of ozonation alone. Effect of solution pH and anions confirmed surface hydroxyl groups was the activity site for catalyzed ozonation withinγ-Al2O3. To discussing the mechanism of catalyzed ozonation within aluminum oxides, experiments of aluminum oxides (γ-AlOOH,γ-Al2O3,α-Al2O3) catalyzed ozone decomposition were carried out. Aluminum oxides could enhance ozone decomposition. Based on inhibit of hydroxyl radicals experiments and yield of hydroxyl radical, aluminum oxide could enhance ozone decomposition to form hydroxyl radicals. According to effect of solution pH and anion adsorption on catalyzed ozonation, it was confirmed that surface hydroxyl groups was the active site. Br?nsted acidity of aluminum oxide was relationship with catalyzed ozone decomposion.
     Role of aluminum oxide catalyzed ozonation for MIB and TCA was investigated. Effects of crystal and surface property of aluminum oxide on catalyzed ozonation MIB and TCA were discussed. Efficiency of three aluminum oxides catalyzed ozonation was different. On the basis of quantitative analysis oxidant contribution in catalyzed ozonation, formation of hydroxyl radicals was account for highest catalytic activity ofγ-Al2O3 in oxidation MIB, ozone molecule oxidation was account for lowest catalytic activity ofγ-AlOOH. In the processes of catalyzed ozonation TCA, oxidation of hydroxyl radicals was account for TCA degradation. According to effect of solution pH on catalyzed ozonation, it was confirmed that surface hydroxyl groups was the catalytic active site. Adsorption actions of T&O compounds on aluminum oxides were investigated. It was concluded that MIB was adsorbed on aluminum oxides by surface hydroxyl radical, and TCA was adsorbed on aluminum oxides by physical adsorption. Surface hydroxyl groups was not only the activity site for adsorption of MIB onγ-AlOOH, but also the catatic acitivity site for degradation MIB by catalyzed ozonation process in present of aluminum oxides. Adsorption actions of MIB onγ-AlOOH inhibited the catalytic activity in catalyzed ozonation process.
     Simple thermal treatment for origin bauxite, made origin materal possessed surface properties of bothγ-AlOOH andγ-Al2O3. Bauxite450 exhibited remarkable catalytic activity in degradation MIB and TCA. By inhibiting experiments of hydroxyl radicals and Rct quantitative determination, Bauxite450 catalytzed ozone decomposition and enhanced field of hydroxyl radicals.
引文
1徐盈,黎文,吴文忠,张甬元.东湖富营养水体中藻菌异味性次生代谢产物的研究.生态学报, 1999, 19(2): 212-216
    2宋丽蓉,李林,陈伟,甘南琴.水体异味及其藻源次生代谢产物研究进展.水生生物学报, 2004, 28(4): 434-439
    3 I. H. Suffet, D. Khiari, A. Bruchet. The Drinking Water Taste and Odor Wheel for the Millennium: Beyond Geosmin and 2-Methylisoborneol. Water Science and Technology, 1999, 40(6): 1-13
    4 R. C. Hoehn. Biological Aspects of Taste and Odor Problems in Drinking Water, www. Awwarf.com/to_ntbk.htm
    5 K. Hattori. Water Treatment Systems and Technology for the Removal of Odor Compounds. Water Science and Technology, 1988, 20(8-9): 237-244
    6 Persson Per-Edvin. 19th Century Studys on Aquatic Off-Flavors-a Historical Review. Water Science and Technology, 1995, 11(11): 9-11
    7 M. J. McGuire. Advances in treatment processes to solve off-flavor problems in drinking water. Water Science Technology, 1999, 40(6): 153-163
    8 E. L. Vlastnik, M. A. Waer. Determining Potassium permanganate Demand. In: Annual Conference Proceedings of Water Quality, AWWA, 1994, 93-96
    9李圭白,林生,曲久辉.用高锰酸钾去除饮用水中微量有机物.给水排水, 1989, 15(6): 7-10
    10马军.高锰酸钾去除与控制饮用水中有机污染物的效能与机理: [博士学位论文].哈尔滨:哈尔滨建筑工程学院, 1990. 51-55
    11陈忠林.高锰酸钾复合药剂强化混凝除浊除臭研究: [博士学位论文].哈尔滨:哈尔滨建筑大学, 1997. 44-46
    12陈忠林,王东田,李圭白,吕启忠,罗建强,杨长青.高锰酸钾复合药剂除藻臭试验.中国给水排水, 2000, 16(11): 58-60
    13陈忠林,李圭白,杨艳玲,余敏.高锰酸盐复合药剂处理嗅味污染水源水的试验研究.李圭白学术论文集—贺李圭白院士七十寿辰.北京:中国建筑工业出版社. 2001, 439-443
    14许国仁,李圭白.高锰酸钾复合药剂对水中藻类和嗅味去除效果生产性试验研究.给水排水, 1998, 24(12): 13-15
    15张素霞,鞠然,刘锐平,樊康平,杨扬,马军.高锰酸钾与高锰酸盐复合剂除污染对比试验研究.全国给水深度处理研究会2004年年会论文集.山东济南, 2004, 127-131
    16 M. J. McGuire. Advances in Treatment Processes to Solve Off-flavor Problems in Drinking Water. Water Science and Technology, 1999, 40(6): 153-163
    17张金松.饮用水二氧化氯净化技术,化学工业出版社, 2003: 11-19
    18张金松.饮用水二氧化氯净化技术,化学工业出版社, 2003: 145-146
    19 D. W. Ferguson, M. J. McGuire, B. Koch. Comparing Peroxone and Ozone for Controlling Taste and Odor Compounds, Disinfection By-products, and Microorganisms. Journal American Water Works Association, 82(4): 181-191
    20 S. Lalezary, M. Pirbazari, M. J. McGuire. Oxidation of Five Earthy-Musty Taste and Odor Compounds. Journal of the American Water Works Association, 1986, 78(3): 62-69
    21 K. Terashima. Reduction of Musty Odor Substances in Drinking Water-Pilot Plant Study. Water Science and Technology, 1988, 20(8): 275-281
    22 T. Morioka, N. Motoyama, H. Hoshikawa, M. Akihiko, M. Okada, T. Moniwa. Kinetic Analysis on the Effect of Dissolved Inorganic and Organic Substances in Raw Water on the Ozonation of Geosmin and 2-MIB. Ozone Science and Engineering, 1993, 15(1): 1-18
    23 L. Hoa, G. Newcombeb, J. P. Crou. Influence of the Character of NOM on the Ozonation of MIB and Geosmin. Water Research, 2002, 36(3): 511-518
    24 K. Z. Atasi, T. Chen, J. I. Huddleston, C. C. Young, I. H. Suffet. Factors Screening for Ozonating the Taste- and Odor- Causing Compounds in Source Water at Detroit, USA. Water Science and Technology, 1999, 40(6): 115-122
    25 G. E. Rencken. Ozonation at Wiggins Water Purifications Works, Durban, South Africa. Ozone Science and Engineering, 1994, 16(3): 247-260
    26 S. A. Andrews, P. M. Huck, A. J. Chute. UV Oxidation for Drinking Water-Feasibility Studies for Addressing Specific Water Quality Issues. In: Proceedings Water Quality Technology Conference Part II, AWWA, 1995, 1881-1898
    27 C. L. Lang, W. A. Anderson, P. M. Huck, S. A. Andrews. Effects of pH, Alkalinity, and NPOC on the Degradation Rates of Geosmin and MIB Using the Peroxone Process. In: Annual Conference Proceedings of Water Research,AWWA, 1996, 43-62
    28 G. Crozes, P. White, B. Bench, J. Hagstrom. Ozonation at High pH: Is it the AOP of Choice for Lime Softening Treatment Plants? In: Annual Conference Proceedings of Water Quality, AWWA, 1996, 779-800
    29 L. A. Lawton, P. K. J. Robertson, R. F. Robertson, F. G. Bruce. The Destruction of 2-Methylisoborneol and Geosmin Using Titanium Dioxide Photocatalysis. Applied Catalysis B: Environmental, 2003, 44(1): 9-13
    30 G. Park, M. Yu, J.-Y. Koo, W. H. Joe, H. Kim. Oxidation of Gesomin and MIB in Water Using O3/H2O2: Kinetic Evaluation. Water Science and Technology: Water Supply, 2006, 6(2): 63-69
    31 W. Song, K. E. O’Shea. Ultrasonically Induced Degradation of 2-Methylisoborneol and Geosmin. Water Research, 2007, 41(12): 2672-2678
    32 K. Simpson, B. MacLeod. Comparison of Various Powder Activated Carbons for the Removal of Geosmin and 2-Methylisoborneol in Selected Water Conditions. In: Proceedings of the Annual Conference AWWA, Orlando, FL, 1991, 445-460
    33 S. Lalezary, M. Pirbazari, M. McGuire. Evaluating Activated Carbons for Removing Low Concentrations of Taste and Odour Producing Organics. Journal American Water Works Association, 1986, 78(11): 76-82
    34许保玖,安鼎年.给水处理理论与设计.北京:中国建筑工业出版社, 1992
    35 D. R. Hertzing, V. L. Snoeyink, N. F. Wood, Activated Carbon Adsorption of the Odorous Compounds 2-Methylisoborneol and Geosmin. Journal American Water Works Association, 1977, 69(4): 223-227
    36 G. Newcombe, M. Drikas, R. Hayes, Influence of Characterized Natural Organic Material on Activated Carbon Adsorption: II. Effect on Pore Volume Distribution and Adsorption on 2-Methylisoborneol. Water Research, 1997, 31(5): 1065-1073
    37 M. R. Graham, R. S. Summers, M. R. Simpson, B. W. Macleod. Modeling Equilibrium Adsorption of 2-Methylisoborneol and Geosmin in Natural Waters. Water Research, 2000, 34(8): 2291-2300
    38 H. Sontheimer, J. C. Crittenden, R. S. Summers. Activated Carbon for Water Treatment. 2nd ed. Karlsruhe (Germany): DVGW-Forschungsstelle, 1988
    39 S. Lalezary-Craig, M. Pirbazari, M. S. Dale, T. S. Tanaka, M. J. McGuire.Optimizing The Removal of Geosmin and 2-Methylisoborneol by Powdered Activated Carbon. Journal American Water Works Association, 1988, 80(3): 73-80
    40 D. Cook, G. Newcombe, P. Sztajnbok. The Application of Powered Activated Carbon for MIB and Geosmin Removal: Predicting PAC Doses in Four Raw Waters. Water Research, 2001, 35(5): 1325-1333
    41 Youngsug Kim, Yeongho Lee. Treatment of Taste and Odor Causing Substances in Drinking Water. Water Science and Technology, 2001, 35(8): 29-36
    42 S. Muramoto, T. Udagawa, T. Okamura. Effective Removal of Musty Odor in the Kanamachi Purification Plant. Water Science and Technology, 1995, 31(11): 219-222
    43 S. L. Graese, V. L. Snoeyink, R. G. Lee. GAC Filter-Adsorbers. AWWA Research Foundation, Denver, Colorado.1990, 39-59
    44 J. Ellis, W. Korth. Removal of Geosmin and Methylisoborneol from Drinking Water by Absorption on Ultrastable Zeolite-Y. Water Research, 1993, 27(4): 535-539
    45 N. Terauchi, T. Ohtani, K. Yamanaka, T. Tsuji, T. Sudou, K. Ito. Studies on a Biological Filter for Musty Odor Removal in Drinking Water Treatment Processes. Water Science and Technology, 1995, 31(11): 229-235
    46 K. H. Lim, H. S. Shin. Operating Characteristics of Aerated Submerged Biofilm Reactors for Drinking Water Treatment. Water Science and Technology, 1997, 36(12): 101-109
    47 L. Ho, D. Hoefei, F. Bock, C. P. Saint, G. Newcombe. Biodegradation Rates of 2-Methylisoborneol and Geosmin Through Sand Filters and in Bioreactors. Chemosphere, 2007, 66(11): 2210-2218
    48 A. Tanaka, T. Oritani, F. Uehara, A. Saito, H. Kishita, Y. Niizeki, H. Yokota, K. Fuchigami. Biodegradation of a Musty Odour Component, 2-methylisoborneol. Water Research, 1996, 30(3): 759-761
    49李学艳,马军,陈忠林,齐飞.若干氧化剂对水中嗅味物质2-MIB的氧化去除.黑龙江大学学报自然科学版, 2007, 24(1): 76-80
    50 O. Seppovaara. The Effect on Fish of the Mass Development of Brackish. Water Plankton.–Aqua Fennica, 1971, 118-129
    51 P. E. Rosenfeld, J. J. J. Clark, A. R. Hensiey, I. H. Suffet. The Use of an OdourWheel Classification for the Evaluation of Human Health Risk Criteria for Compost Facilities. Water Science and Technology, 2007, 55(5): 345-357
    52 B. X. Li, Q. W. Deng, J. P. Lv, Z. J. Zhang. Homogeneous Chemiluminesence System in Neutral and Near Neutral Aqueous Solution with ClO2 as Oxidant and its Analytical Application. Analytica Chimica Acta, 2006, 23(1-2): 128-133
    53 H. S. Weinberg, W. H. Glaze, S. W. Kranser, M. J. Sclimenti. Formation and Removal of Aldehydes in Plants That Use Ozone. Journal American Water Works Association, 1995, 85(5): 72-58
    54 F. J. Beltrán. Ozone Reaction Kinetics for Water and Wastewater Systems. Lewis Publishers, New York. 2004
    55 H. Choi, E. Stathatos, D. D. Dionysiou. Photocatalytic TiO2 Films and Membranes for the Development of Efficient Wastewater Treatment and Reuse Systems. Desalination, 2007, 202(1-3): 199-206
    56 G. M. Zhang, P. Y. Zhang, B. Wang, B. Z. Ma. Ultrasonic and Ultrasound-UV Degradation of Microcystins. Journal of Harbin Institute of Technology, 2005, 12(sup 1): 99-103
    57姚志麒,邢权,朱振岗.环境卫生学.第三版.人民卫生出版社. 1994: 124-128
    58 B. Langlais, D. A. Rechkhow, D. R. Brink. Ozone in Water Treatment: Application and Engineering, Lewis Publishers, Chelsea, MI, 1991: 20-34
    59孙贤波,赵庆祥,曹国民,周军.高级氧化法的特性及应用.中国给水排水, 2002, 18(5): 33-35
    60 V. Camel, A. Bermond. The Use of Ozone and Associated Oxidation Processes in Drinking Water Treatment. Water Research, 1998, 32(11): 3208-3222
    61 J. Hoigné, H. Bader. Rate Constants of Reaction of Ozone with Organci and Inorganic Compounds in Water. Part I: Non-dissociating Organic Compounds. Water Reseach, 1983, 17(2): 173-185
    62 H. Valdes, C. A. Zaror. Heterogeneous and Homogeneous Catalytic Ozonation of Benzothiazole Promoted by Acitived Carbon: Kinetic Approach. Chemosphere, 2006, 65(7): 1131-1136
    63 A. Yasar, N. Ahmad, H. Latif, A. A. A. Khan. Pathogen Re-growth in UASB Effluent Disinfected by UV, O3, H2O2, and Advanced Oxidation Process. Ozone Science and Engeering, 2007, 29(6): 485-492
    64 Y. Ku, J. Chang. Comparison of Ozone and Hydrogen Peroxide/Ozone for the Treatment of Eutrophic Water. Water Research, 1998, 32(6): 1957-1963
    65 H. Sohmiya, T. Kimura, M. Fujita, T. Ando. Simultaneous Irradiation of Ultrasound and UV Light. Ultrasonic Acceleration of the Photochmical Disapperance of 4, 4 Prime- Dihalogenated Benzile in 1, 4-Dioxane. Ultrasonics Sonochemistry, 2001, 8(1): 7-10
    66 E. Brillas, J. C. Calpe, Pere-Lluis Cabot. Degradatin of the Herbicide 2,4-Dichlorophenoxyacetic Acid by Ozonation Catalyzed with Fe2+ and UVA Light. Applied Catalysis B: Environmental, 2003, 46(2): 381-391
    67 J.-E. Lee, B.-S. Jin, S.-H. Cho, S.-H. Han, O.-S. Joo, K.-D. J. Catalytic Ozonation of Humic Acid with Fe/MgO. Reaction Kinetics and Catalysis Letters, 2005, 85(1): 65-71
    68 J. Ma, N. J. D. Graham. Preliminary Investigation of Manganese-Catalyzed Ozonation for the Destruction of Atrazine. Ozone Science and Engineering. 1997, 19(3): 227-240
    69 J. Ma, N. J. D. Graham. Degradation of Atrazine by Manganese Catalysed Ozonation-Influence of Humic Substances. Water Research, 1999, 33(3): 785-793
    70 J. Ma, N. J. D. Graham. Degradation of Atrazine by Manganese Catalysed Ozonation Influence of Radical Scavengers. Water Research, 2000, 34(15): 3822-3828
    71 R. Andreozzi, V. Caprio, A. Insola, R. Marotta, V. Tufano. The Use of Manganese Dioxide as a Heterogeneous Catalyst for Oxalic Acid Ozonation in Aqueous Solution. Applied catalysis A: General, 1996, 138(1): 75-81
    72 R. Andreozzi, V. Caprio, A. Insola, M.G. D’Amore. The Kinetics of Mn (II)-catalysed Ozonation of Oxalic Acid in Aqueous Solution. Water Research, 1992, 26(7): 917-921
    73 R. Andreozzi, V. Caprio, A. Insola, R. Marotta, V. Tufano. The Ozonation of Pyruvic Acid in Aqueous Solutions Catalyzed by Suspended and Dissolved Manganese. Water Research, 1998, 32(5): 1492-1496
    74 Shao-ping Tong, Wei-ping Liu, Wen-hua Leng, Qian-qing Zhang. Characteristics of MnO2 Catalytic Ozonation of Sulfosalicylic Acid and Propionic Acid in Water. Chemosphere. 2003, 50(10): 1359-1364
    75 N. Al. Hayek, B. Legube, M. Dore. Fe(Ⅲ)/Al2O3-Catalysed Ozonation of Phenol and its Ozonaiton By-Products. Environmental Technology Letters, 1989, 10: 415-426
    76张彭义,祝万鹏,吕斌. Ni、Fe氧化物对吐氏酸废水催化臭氧化研究.上海环境科学, 1996, 15(10): 25-27
    77 Jong- Sup Park, Heechul Choi, Jaewon Cho. Kinetic Decomposition of Ozone and para- Chlorobenzoic Acid during Catalytic Ozonation. Water Research, 2004, 38(9): 2284-2291
    78 H. Paillard, M. Doré, M. Bourbigot. In: Proceedings of the 10th Ozone World Congress, IOA, Monaco, 19-21 March 1991,p:313
    79 H. Paillard, E. Carbonnier, P. Roche. in: Proceedings of the Conference ACS on Emerging Technologies for Hazardous Waste Management, Atlanta, 1-3 October 1991
    80 D. Pines, R. Humayan, D. A. Reckhow, C. Spangenberg. A Catalytic Oxidation Process for Removal of Ozone By-products. Water Quality Technology Conference, San Francisco, 6–10 November 1994, CA, USA, part II– session 4A, p. 1493
    81 R. Gracia, S. Cortes, J. Sarasa, P. Ormad, J. L. Ovelleiro. TiO2-Catalysed Ozonation of Raw Ebro River Water. Water Research, 2000, 34(5): 1525-1532
    82 B. Dhandapani, S. T. Oyama. Gas Phase Ozone Decomposition Catalysts. Applied Catalysis B: Environmental, 1997, 11(2):129-166
    83 K. M. Bulanin, J. C. Lavalley, A. A. Tsyganeneko. Infrared Study of Ozone Adsorption on TiO2 (anatase). Journal of Physical and Chemical, 1994, 99(25): 10294-10298
    84 Mathias Ernst, Franck Lurot, Jean-Christophe Schrotter. Catalytic Ozonation of Refractory Organic Model Compounds in Aqueous Solution by Aluminum Oxide. Applied Catalysis B: Environmental, 2004, 47(1): 15-25
    85 B. Kasprzyk- Hordern, U. Raczyk- Stanislawiak, J. Swietlik, J. Nawrocki. Catalytic Ozonation of Natural Organic Matter on Alumina. Applied Catalysis B: Environmental, 2006, 62(3-4): 345-358
    86 Winn-Jung Huang, Guor-Cheng Fang, Chun-Chen Wang. A Nanometer- ZnO Catalyst to Enhance the Ozonation of 2,4,6-Trichlorophenol in Water. Colloids and Surfaces A: Physicochemical Engineering Aspects, 2005, 260(1-3): 45-51
    87 B. Legube, N. Karpel Vel Leitner. Catalytic Ozonation: A Promising Advanced Oxidation Technology for Water Treatment. Catalysis Today, 1999, 53(1): 61-72
    88 B. Delano?, N. Acedo, Leitner Karpel Vel, B. Legube. Relationship Between the Structure of Ru/CeO2 Catalysts and Their Activity in the Catalytic Ozonation of Succinic Acid in Aqueous Solutions. Applied Catalysis B: Environmental, 2001, 29(4): 315-325
    89 H. B. Kasprzyk, M. Ziólek, J. Nawrocki. Catalytic Ozonation and Methods of Enhancing Molecular Ozone Reactions in Water Treatment. Applied Catalysis B: Environmental, 2003, 46(4): 639-669
    90 N. Karpel Vel Leitner, B. Delouance, B. Legube, F. Luck. Effects of Catalysts during Ozonation of Salicylic Acid, Peptides and Humic Substances in Aqueous Solution. Ozone Science and Engeerging, 1999, 21(3): 261-276
    91 J. Ma, M. H. Sui, T. Zhang. Effect of Ph on MnOx/GAC Catalyzed Ozonation for Degradation of Nitrobenzene. Water Research, 2005, 39(5): 779-786
    92 F. P. Longemann, J. H. J. Annee. Water Treatment with A Fixed Bed Catalytic Ozonation Process. Water Science and Technology, 1997, 35(11-12):353-360
    93 J. W. Munch, D. J. Munch. Winslow, S. D., Wendelken, S. C., Pepich, B. V., 1998. EPA Method 556: Determination of Carbonyl Compounds in Drinking Water by Pentafluorobenzyblydroxylamine Derivatisation and Capillary Gas Chromatography with Electron Capture Detection, pp. S. 556-1-556-37
    94 H. Bader, J. Hoigné. Determination of Ozone in Water by the Indigo Method. Water Research, 1981, 15(4): 449-456
    95张昱,杨敏,黄霞.铈铁复合氧化物阴离子吸附剂的表面酸碱特性研究.离子交换与吸附, 2003, 19(5):423-429
    96 H. Tamura, A. Tanaka. Surface Hydroxyl Site Densities on Mental Oxides as a Measure For the Ion-Exchange Capacity. Journal of Colloid and Interface Science, 1999, 209(1): 225-231
    97 M. S. Gamal, E. L. Shafel. The Polarizing Power of Metal Cations in (Hydro) Oxides. Journal of Colloid and Interface Science, 1996, 182(2): 294-253
    98 GB5749-2006生活饮用水卫生标准. 2006
    99王占生,刘文君.微污染水源饮用水处理.北京:中国建筑工业出版社, 1999, 43-45
    100 U. Von Gunten. Ozonation of drinking Water: Part II Disinfection and by Product Formation in Presence of Bromide, Iodide or Chlorine [J]. Water Research, 2003, 37(7): 1469-1487
    101 U. Von Gunten, J. Hoigne. Bromate Formation during Ozonation of Bromide Containing Water: Interaction of Ozone and Hydroxyl Radical Reactions. Environmental Science and Technology, 1994, 28(7): 1234-1242
    102 P. Dowideit, C. Von Sonntag. Reaction of Ozone with Ethane and its Methyl- and Chlorine- Substituted Derivatives in Aqueous Solution. Environmental Science and Technology, 1998, 32(8): 1112-1119
    103 Z. S. Can, M. Gurol. Formaldehyde Formation during Ozonatin of Drinking Water. Ozone Science and Engeering, 2003, 25(1):41-51
    104 W. B. Anderson, P. M. Huck. Ozone Byproducts in Three Different Types of Surface Waters. Proc. Water Quality Technology Conference Am. Water Works Assoc., San Francisco, CA, Part I, Nov. 6-10:871-879 (1994)
    105 H. Matsuda, H. Yammamori, Mutagenicity of Ozonation Products from Humic Substances and Their Components. Water Science and Technology, 1992, 25(11): 363-370
    106 AWWA Research Foundation and Compagie Generale des Eaux Foundmental Aspects. Ozone in Water Treatment: Application and Engineering. Michigan, USA: Lewis Publisher, 1991: 18-19
    107 J. Hoigné, H. Bader. Rate Constants of Reactions of Ozone with Organic and Inorganic Compounds in WaterⅢ: Inorganic Compounds and Radicals. Water Research, 1995, 19(8): 993-1004
    108 J. Staehelin, J. Hoigné. Decomposition of Ozone in Water in the Presence of Organic Solutes Acting as Promoters and Inhibitors of Radical Chain Reactions. Environmental Science and Technology, 1985, 19(12): 1206-1213
    109 J. Staehelin, J. Hoigné. Decomposition of Ozone in Water: Rate of Initiation by Hydroxide Ions and Hydrogen Peroxide. Environmental Science and Technology, 1982, 16(10): 676-681
    110王凯雄.水化学.北京:化学工业出版社, 2001: 252-253
    111 S. Esplugas, J. Gimenez, S. Contreras, E. Pascual, M. Rodriquez. Comparison of Different Advanced Oxidation Processes for Phenol Degradation. Water Research, 2002, 36(4): 1034-1042
    112 American Water Works Association, Water Quality Division. Taste and odor Committee Report: Options for a Taste and Odor Standard. Journal American Water Works Association, 2002, 94(6): 80-86
    113 M. L. Bao, K. Barbieri, D. Burrini, O. Griffini, F. Pantani. Determination of Trace Levels of Taste and Odor Compounds in Water by Microextraction and Gas Chromatography-Ion-Trap Detection-Mass Spectrometry. Water Research, 1997, 31(7): 1719-1727
    114 C. Battu, P. Marquet, A. Fauconnet, E. Lacassie, G. Lachare. Screening Procedures for 21 Amphetamine-Related Compounds in Urine Using SPME and Gas Chromatography- Mass Spectrometry. Journal of Chromatogram Science, 1998, 36(1): 1-7
    115 P. Piriou, C. Soulet, J. L. Acero, A. Bruchet, U. Von Gunten, I. H. Suffet. Understanding Medicinal Taste and Odour Formation in Drinkingwaters. Water Science and Technology, 2007, 55(5): 85-94
    116 J. L. Acero, P. Piriou, U. Von Gunten. Kinetics and Mechanisms of Formation of Bromaphenols during Drinking Water Chlorination: Assessment of Taste and Odor Development. Water Research, 2005, 39(13): 2979-2993
    117 R. S. Siva, Mohseni Madjid. The Impact of UV/H2O2 Advanced Oxidation on Molecular Size Distribution of Chromophoric Natural Organic Matter. Environmental Science and Technology, 2007, 41(24): 8315-8320
    118 T. K. Lau, W. Chu, N. Graham. Reaction Pathways and Kinetics of Butylated Hydroxyanisole with UV, Ozonation, and UV/O3 Processes. Water Research, 2007, 41(4): 765-774
    119 K. Rana, H. I. Nilsun. Ultrasonic Destruction of Phenol and Substituted Phenols: a Review of Current Research. Ultrasonics Sonochemistry, 2006, 13(3): 195-199
    120 B. S. Kim, H. Fujita, Y. Sakai, A. Sokoda, M. Suzuki. Catalytic Ozonaion of an Organophosphorus Pesitcide Using Microporous Siliscate and its Effect on Total Toxicity Reduction. Water Science and Technology, 2002, 46(4-5): 35-41
    121 G. L. Elizarova, Hydroxides of Transition Metals as Artificial Catalysts for Oxidation of Water to Dioxygen. Catalysis Today, 2000, 58(2-3): 71-78
    122 Y. Z. Pi, E. Mathisa, C. S. Jean. Effect of Phosphate Buffer Upon CuO/Al2O3 and Cu(II) Catalyzed Ozonation of Oxalic Acid Solution. Ozone Science andEngineering, 2003, 25(5): 393-397
    123 J. Staehelin, J. Hoigne. Decomposition of Ozone in Water: Rate of Initiation by Hydroxide Ion and Hydrogen Peroxide. Environmental and Science and Technology, 1982, 9(4): 335-352
    124 W. H. Glaze, J. W. Kang. The Chemistry of Water Treatment Process Involving Ozone, Hydrogen Peroxide and Ultraviolet Radiation. Ozone Science and Engineering, 1987, 9(4):335-352
    125 S. E. Michael, U. Von Gunten. Hydroxyl Radical/Ozone Ratios during Ozonation Process. I. The Rct Concept. Ozone Science and Engineering, 1999, 21(3): 239-260
    126 C. D. Yao, W. R. Haag. Rate Constants for Direct Reactions of Ozone with Several Drinking Water Contaminants. Water Research, 1991, 25(7): 761-773
    127 G. V. Buxton, C. L. Greenstock, W. P. Helman, A. B. Ross. Critical Review of Rate Constants for Reactions of Hydrated Electrons, Hydrogen Atoms and Hydroxyl Radicals in Aqueous Solution. Journal of Physical Chemistry Reference Data, 1988, 17: 513-886
    128 W. Stumm, J. Morgan(著),汤鸿宵等(译).水化学.北京:科学出版社, 1987, 460-465
    129 B. Kasprzyk-Hordern. Chemistry of Alumina, Reactions in Aqueous Solution and its Application in Water Treatment. Advances in Colloid and Interface Science, 2004, 110(1-2): 19-48
    130 M. Grǖn, A. A. Kurganov, S. Schacht, F. Schuth, K. K. Unger. Comparison of an Ordered Mesoporous Aluminosilicate, Silica, Alumina, Titania and Zirconia in Normal-Phase High-Performance Liquid Chromatography. Journal of Chromatography A, 1996, 740(1): 1-9
    131 D. E. Yates, T. W. Healy. Mechanism of Anion Adsorption at the Ferric And Chromic Oxide/Water Interface. Journal of Colloid Interface Science, 1999, 52: 222-228
    132 J. Hoigné, H. Bader. Rate Constants of Reactions of Ozone with Organic and Inorganic Compounds in Water -Ⅲ. Inorganic Compounds and Radicals. Water Research, 1985, 19(8): 993-1004
    133 B. Zaitlin, S. B. Watson. Actinomycetes in Relation to Taste and Odour in Drinking Water: Myths, Tenets and Truths. Water Research, 2006, 40 (9): 1741-1753
    134 T. F. Lin, J. Y. Wong, H. P. Kao. Correlation of Musty Odor and 2-MIB in Two Drinking Water Treatment Plants in South Taiwan. The Science of the Total Environment, 2002, 289(1): 225-235
    135 M. R. Graham, R. S. Summers, M. R. Simpson, B. W. MacLeod. Modeling Equilibrium Adsorption of 2-Methylisoborneol and Geosmin in Natural Waters. Water Research, 2000, 34(8):2291-2300
    136 C. Z. Liang, D. S. Wang, M. Yang, W. Sun, S. F. Zhang. Removal of Earthy-Musty Odorants in Drinking Water by Powdered Activated Carbon. Journal of Environmental Science and Health - Part A, 2005, 40(4): 767-778
    137 H. Lionel, N. Gayle, C. Jean-Philippe. Influence of the Character of NOM on The Ozonation of MIB and Geosmin. Water Research, 2002, 36(3): 511-518.
    138周勤,孙伟.给水中的致味物质及其检测方法.工业水处理, 2004, 24(1): 5-7
    139 S. D. Faust, O. M. Aly. Chemistry of Water Treatment. 2nd end, New York: Lewis Publishers, 1999, 1-5
    140 S. D. Lambert, N. J. D. Graham. Removal of Non-Specific Dissolved Organic Matter from Upland Potable Water Supplies - I. Adsorption. Water Research, 1995, 29(10): 2421-2426
    141 R. Gracia, S. Cortes, J. Sarasa. Heterogeneous Catalytic Ozonation with Supported Titanium Dioxide in Model and Natural Waters. Ozone Science and Engineering, 2000, 22(5): 461-471
    142 S. Cortes, J. Sarasa, P. Ormad, R. Gracia, J. L. Ovelleiro. Comparative Efficiency of the Systems O3/High Ph and O3/Catalyst for the Oxidation of Chlorobenzenes in Water. Ozone Science and Engineering, 2000, 22(4): 415-426
    143孙中溪,郭淑云.纳米四氧化三铁表面酸碱性质研究.高等学校化学学报, 2006, 27(7): 1351-1354
    144 A. R. Bowers, C. P. Huang. Adsorption Characteristics of Metal-EDTA Complexes onto Hydrous Oxides. Journal of Colloid and Interface Science, 1986, 110(2): 575-590
    145魏俊峰,吴大清.矿物-水界面的表面离子化和络合反应模式.地球科学进展, 2000, 15(2): 90-96
    146 H. N. Lim, H. Choi, T. W. Hwang, J. W. Kang. Characterization of Ozone Decomposition in a Soil Slurry: Kinetics and Mechanism. Water Research, 2002, 36(1): 219–229
    147 J. Ma, M. H. Sui, Z. L. Chen, N. W. Li. Degradation of Refractory Organic Pollutants by Catalytic Ozonation - Activated Carbon and Mn Loaded Activated Carbon as Catalysts. Ozone Science and Engineering, 2004, 26(1): 3–10
    148 U. Von Gunten. Ozonation of Drinking Water: Part I. Oxidation Kinetics and Product Formation. Water Research, 2003, 37(7), 1443–1463
    149 W. Stumm. Chemistry of the Solid–Water Interface. John Wiley & Sons Inc., 1992, New York, USA

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700