用户名: 密码: 验证码:
底泥再悬浮对磷的吸附和不同形态磷转化的影响研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
底泥再悬浮对磷在底泥-水界面的迁移转化有重要的影响,但目前对底泥再悬浮状态下,磷的迁移转化规律以及水体富营养化的发展进程不甚了解。因而研究底泥再悬浮状态下磷的迁移转化规律,对解释扰动在水体富营养化发展进程中的作用机制具有重要的意义。本文探讨了底泥再悬浮状态下,富营养化水体中,上覆水中磷的迁移规律、底泥中不同形态磷的转化规律,并分析了不同形态磷间相互转化的可能性,初步探讨了不同形态磷间的转化机理,为了解底泥中磷形态的演化进程以及了解扰动在水体富营养化进程中的作用提供了一定的理论依据。
     本研究对以往研究中常用的上覆水进行了改变,并延长了试验时间,试图了解底泥再悬浮对实际水体中磷的迁移转化的长期环境效应。结果表明,底泥再悬浮方式、再悬浮频率、再悬浮时间、环境因素等对上覆水中磷的迁移有显著的影响。采用曝气和搅拌等不同方式促使底泥再悬浮,均能促进上覆水中溶解性磷酸盐向底泥迁移。底泥再悬浮频率越高,则对上覆水中磷向底泥迁移的促进作用越大。持续扰动和间歇扰动均可促进上覆水中溶解性磷酸盐向底泥迁移,持续扰动促进了颗粒态磷的释放,但间歇扰动仅在扰动初期的12h内发生颗粒态磷的释放,随后显著下降,并低于初始状态。底泥再悬浮条件下,随着pH值的升高,上覆水磷向底泥迁移的促进作用逐渐减弱;冬季水温时,上覆水中溶解性磷酸盐向底泥迁移的促进作用略高于夏季水温时。而夏季水温时则有助于总磷向底泥迁移;底泥再悬浮状态下,蒸馏水为上覆水时,底泥释放磷的量大于河水为上覆水时。上覆水磷酸盐初始浓度不同对磷酸盐的迁移具有显著的影响。
     研究发现,底泥经再悬浮后,对磷的吸附容量均显著高于初始状态。曝气底泥对磷的最大吸附量(Smax)是初始状态时的1.12~1.29倍。曝气底泥对磷的吸附效果显著优于搅拌底泥,并强化了底泥对磷的持留能力。与初始状态相比,曝气底泥中潜在活性磷含量明显降低,并低于对照试验。底泥再悬浮后,磷平衡浓度(EPC0)显著下降。EPC0与总磷(TP)、生物有效磷(BAP)、铁结合态磷(BD-P)呈显著负相关。而对照试验底泥的EPC0与此恰好相反,这可能与底泥再悬浮状态下形成的形态磷的性质有所改变有关。
     研究揭示了底泥再悬浮状态下底泥中不同形态磷之间的转化过程。底泥再悬浮有助于潜在活性磷向难释放态磷转化以及生物有效磷向难被生物利用态磷转化。与初始状态相比,底泥静止状态下,潜在活性磷在总磷中所占比重显著增加,说明上覆水中磷向底泥迁移时会优先形成潜在活性磷。底泥再悬浮状态下,随着底泥再悬浮频率增加,潜在活性磷向难释放态磷的转化以及生物有效磷向难被生物利用态磷的转化的促进作用得到强化;随着底泥再悬浮时间的延长,铁结合态磷(BD-P)、铝结合态磷(Al-P)、钙结合态磷(Ca-P)含量显著增加,而弱吸附态磷(NH4Cl-P)则有所减少;并且底泥再悬浮状态下形成的BD-P与底泥静止状态下形成的BD-P的性质有所不同。底泥再悬浮后,生物有效磷含量显著降低。藻类可利用磷(AAP)和NaHCO3可提取磷(Olsen-P)的形成机制相似。当上覆水中磷被结合到沉积物中时,沉积物中形态磷的变化以潜在活性磷为主,难释放态磷基本保持不变,潜在活性磷的形成机制以物理、化学转化机制为主,而且潜在活性磷的含量和性质对生物有效磷的形成具有显著的影响。
     本文初步认为,底泥再悬浮可以降低上覆水中磷浓度,并提高底泥对磷的持留能力,进而延缓水体富营养化的发展进程。
Sediment re-suspension has significant effect on phosphorus migration and transformation. However, the information about phosphorus migration and transformation and the effect on the development process of waterbody eutrophication are limited under the conditions of sediment re-suspension. So it is necessary to study the law of phosphorus migration and transformation under the conditions of sediment re-suspension. It is important to explain the mechanism on the development process of waterbody eutrophication under the conditions of sediment re-suspension induced by disturbance. In the article, the phosphorus migration in overlaying water and the transformaiton of phosphorus forms in the sediments under sediment re-suspendion were investigated and the transformation possability of different phosphorus forms was analyzed. The transformation mechanism of different phosphorus forms was discussed, too.
     These will provide beneficial references to explain the mechanism on the evolution of phosphorus and the development process of waterbody eutrophica- tion under the conditions of sediment re-suspension induced by disturbance. The overlying water in this project was different from that in the previous study and the scale of experiment time was extended, so the aim was to try to probe the environmental effects of sediment re-suspension on the migration and transformation of phosphorus in the waterbody. The results showed that phosphorus migration in overlaying water is obviously affected by sediment re-suspension ways, frequency, disturbance time, environment factors. Sediment re-suspendion induced by aeration to sediment and disturbance could promote the dissolved inorganic phosphorus(DIP) from overlying water to sediment. The enhancement on phosphorus migration from overlying water to sediment increases with the increase of the frequency of sediments re-suspension. The migration of dissolved phosphorus from water to sediment is evidently promoted by continuing disturbance and interval disturbance, compared with the control experiment. Continuing disturbance could enhance the release of particulate phosphorus(PP) and can maintain the concentrations of PP and total phosphorus(TP) in high levels. However, PP was released from the sediment in the first 12 hours for interval disturbance, and reduced evidently in overlying water, and the concentration of PP and TP was maintained in low levels, compared with the initial state. The enhancement on phosphorus migration from overlying water to sediment was reduced with pH increase under sediment re-suspension. The enhancement at winter temperature on DIP from overlying water to sediment was better than that at summer temperature. Summer temperature could promote TP migration to sediment, compared with winter temperature. Under the conditons of sediment re-suspension, the amount of phosphorus was released from sediment to distilled water was larger than to river water. Different initial phosphate concentration in overlying water has evidently effect on DIP migration.
     It was found that the capability of phosphorus adsorption onto sediments after re-suspended was increased obviously, compared with the initial state. Smax of sediment after aeration was 1.12~1.29 times of that of initial state. the capability of phosphorus adsorption onto the sediment after aeration was larger than the sediment by disturbance and the long-term phosphorus storage was enhanced evidently. The amount of potentially mobile phosphorus(PMP) was decreased marked, compared with that of the initial state and the control experiment. By sediments re-suspension, EPC0 was decreased obviously, compared with that of raw sediments. Remarkable negative correlation was shown between the EPC0 of re-suspended sediments and its TP, BAP, BD-P concentrations. It was doubt that the features of phosphorus forms in re-suspended sediments could be changed obviously, compared with that of raw sediments and the sediments in control experiment.
     This paper also studied the transformation of sedimentary phosphorus forms under sediment re-suspension. Sediment re-suspension could promote the transformation of phosphours from potentially mobile forms to refractory forms. The percentage of PMP to TP was increased obviously in the sediment not re-suspendsion, compared with that of initial state, indicating that phosphorus was transformed into potentially mobile phosphorus at the first step in migration of phosphorus from overlying water to sediments. Sediment re-suspension would enhance the transformation from potentially mobile phosphorus to refractory forms and from bioavailable phosphorus(BAP) to nonbioavailable phosphorus in sediment with the increase of sediment re-suspension frenquency. With the time of sediment re-suspension increase, the amount of BD-P, Al-P, Ca-P was increased evidently, while the amount of NH4Cl-P was reduced. In addition, the features of BD-P in re-suspended sediments could be changed obviously, compared with that of the sediments in control experiment. After sediment re-suspension, the content of BAP was reduced, while the amount of BAP was increased in the sediment in the control experiment, compared with that of initial state. The formation mechanism of algae available phosphorus(AAP) and Olsen-P was similar. When phosphorus in overlying water was incorporated into the sediments, the changes of phosphorus forms are outstanding for PMP, while the refractory forms are kept constant. The formaiton mechanism of PMP is phisical and chemical transformation. The formaiton of BAP is affected by the amount and features of PMP.
     Finally, sediment re-suspension could reduce the content of phosphorus in the overlying water and could enhance the long-term phosphorus storage in the sediments. Therefore, it is suggested that the development of eutrophication of the waterbody could be delayed.
引文
1 Y. W. Chen, B. Q. Qin, K. Teubner, et al. Long-term Dynamics of Phytoplankton Assemblages: Microcystis-domination in Lake Taihu, a Large Shallow Lake in China. Journal of Plankton Research. 2003c, 25(4): 445~453
    2 H. W. Paerl. Nuisance Phytoplankton Blooms in Coastal, Estuarine and Inland Waters. Limnology and Oceanography. 1988, 33: 823~847
    3 R. C. Nijboer, P. F. M. Verdonschot. Variable Selection for Modelling Effects of Eutrophication on Stream and River Ecosystems. Ecological Modelling. 2004,177: 17~39
    4 A. M. Zhou, D. S. Wang, H. X. Tang. Phosphorus Fractionation and Bio-availability in Taihu Lake(China) Sediments. J Environmental Sciences. 2005, 17(3): 384~388
    5 X. C. Jin, S. R. Wang, Y. Pang, et al. The Asorption of Phosphate on Different Trophic Lake Sediments. Collides and Surfaces A. 2005,254: 241~248
    6 L. H. Kim, E. Choi, K. I. Gil, et al. Phosphorus Release Rates from Sediments and Pollutant Characteristics in Han River, Seoul, Korea. Science of the Total Environment. 2004, 321: 115~125
    7 P. Banaszuk, A. Wysocka-Czubaszek. Phosphorus Dynamics and Fluxes in Lowland River: the Navew Anastomosoing River System, NE Poland. Ecological Engineering. 2005, 25: 429~441
    8朱广伟,秦泊强,高光.风浪扰动引起大型浅水湖泊内源磷爆发性释放的直接证据.科学通报.2005,50(1):66~71
    9 R. G. Perkins, G. J. C. Underwood. The Potential for Phosphorus Release Across the Sediment-Water Interface in an Eutrophic Reservoir Dosed with Ferric Sulphate. Water Research. 2001,35(6): 1399~1406
    10 W. A. House, F. H. Denison. Factors Influencing the Measurement of Equilibrium Phosphate Concentrations in River Sediments. Water Research. 2000,34(4): 1187~1200
    11徐玉霞,江霞,金相灿等.太湖东北部沉积物生物可利用磷的季节性变化.环境科学. 2006, 27(5): 869~873
    12王圣瑞,金相灿,赵海超等.长江中下游浅水湖泊沉积物对磷的吸附特征.环境科学. 2005, 26(3): 38~43
    13 B. Nixdorf, R. Deneke. Why“Very Shallow”Lakes are More Successful Opposing Reduced Nutrients Loads. Hydrobiological. 1997, 342/343: 269~284
    14 E. B. Welch, G. D. Cooke. Effectiveness and Longevity of Phosphorus Inactivation With Alum. Lake and Reservoir Management. 1999,15: 5~27
    15 M. Sφndergaard, J. P. Jensen, E. Jeppesen. Internal Phosphorus Loading in Shallow Danish lakes. Hydrobiologia. 1999,408/409: 145~152
    16 M. Sφndergaard, J. P. Jensen, E. Jeppesen. Retention and Internal Loading of Phosphorus in Shaollow, Eutrophic Lake. The Scientific World. 2001, 1: 427~442
    17 E. Varjoa, A. Liikanen, V. Salonen. A New Gypsum-Based Technique to Reduce Methane and Phosphorus Release from Sediments of Eutrophied Lakes: Gypsum Treatment to Reduce Internal Loading. Water Research. 2003,37: 1~10
    18 K. E. Havens, T. Fukushima, P. Xie, et al. Nutrient Dynamics and the Eutrophication of Shallow Lakes Kasumigaura(Japan), Donghu(PR China), and Okeechobee(USA). Environmental Pollutions.2001,111: 263~272
    19 K. E. Havens, C. L. Schelske. The Importance of Considering Biological Processes When Setting Total Maximum Daily Loads(TMDL) for Phophorus in Lakes and Reservoirs. Environmental Pollutions.2001,113: 1~9
    20 D. R. Robarts, M. J. Waiser, O. Hadas, et al. Relaxation of Phosphorus Limitation Due to Typhoon-indued Mixing in Two Morphologically Distinct Basins of Lake Biwa, Japan. Limnology and Oceanography. 1998, 43(6): 1023~1036
    21 R. D. Evans. Empirical Evidence of the Importance of Sediment Resuspension in Lakes. Hydrobiologia.1994, 284: 5~12
    22 M. Sφndergaard, J. P. Jensen, E. Jeppesen. Phosphorus Release From Resuspended Sediment in the Shallow and Wind-Exposed Lake Arresoe, Demark. Hydrobiologia.1992, 228(1): 91~99
    23范成新,张路,秦伯强等.风浪作用下太湖悬浮态颗粒物中磷的动态释放估算.中国科学(D辑). 2003, 33(8): 760~768
    24 H. Wang, A. Appan, J. S. Gulliver. Modeling of Phosphorus Dynamics in Aquatic Sediments:Ⅰ-Model Development. Water Research. 2003,37(16): 3928~3938
    25胡俊,刘剑彤,刘永定.沉积物与悬浮物中磷分级分离形态差异的初步研究.环境科学学报. 2005, 25(11): 1517~1522
    26 K. R. Reddy, M. M. Fisher,D. Ivanoff. Resuspension and Diffusive Flux of Nitrogen and Phosphorus in a Hypereutrophic Lake. J of Environmental Quality. 1996, 25: 363~371
    27 H. J. Carrick, F. J. Aldridge, C. L. Schelske. Wind Influences Phytoplankton Biomass and Composition in a Shallow, Productive Lake. Limnology and Oceanography. 1993,38: 1179~1192
    28 D. E. J. Ccanfield, M. V. Hoyer. The Eutrophication of Lake Okeechobee. Lake and Reservoir Management. 1988,4:91~99
    29 M. Sφndergaard, J. P. Jensen, E. Jeppesen. Role of Sediment and Internal Loading of Phosphorus in Shallow Lake. Hydrobiologia. 2003, 506-509: 135~145
    30 A. Laenen, A. P. Le Tourneau. Upper Kaimath Basin Nutrient-load Study/Estimate of Wind-indued Resuspension of Bed Sediment During Periods of Low Lake Elevation. Geological Survey Openfile Report. 95~414. Portland Oregon, 1996
    31秦伯强,胡维平,高光等.太湖沉积物悬浮的动力机制及内源释放的概念性模式.科学通报. 2003,48(17): 1822~1831
    32 E. E. Prepas, P. M. Tom, J. M. Crosby, et al. Reduction of Phosphorus and Chicrophyll a Concentrations Following CaCO3 and Ca(OH)2 Additions to Hypereutrophic Figue Eight Lake, Alberta. Environmental Science and Technology. 1990,24: 1252~1258
    33 C. P. Mainstone, W. Parr, M. Day. Phosphorus and River Ecology: Tackling Sewage Inputs. Peterborough, England: Northminster House, Peterborough. 2000.1~46
    34 C. Neal, H. P. Jarvie, S. M. Howarth, et al. The Water Quality of the River Kennet: Initial Observation on a Lowland Chalk Stream Impacted by Sewage Inputs and Phosphorus Remediation. Science of Total Environment.2000, 251/252: 477~496
    35秦伯强,朱广伟,张路等.大型浅水湖泊沉积物内院营养盐释放模式及其估算方法-以太湖为例.中国科学(D辑). 2005,35(增刊Ⅱ):33~44
    36孙小静,秦伯强,朱广伟等.风浪对太湖水体中胶体态营养盐和浮游植物的影响.环境科学.2007,28(3): 506~511
    37高光,朱广伟,秦伯强等.太湖水体中碱性磷酸酶的活性及磷的矿化速率.中国科学D辑,2005,35(增刊Ⅱ): 157~165
    38 J. Horppila, L. Nurminen. The Effect of an Emergent Macrophyte(Typha angustifolia)on Sediment Resuspension in a Shallow North Temperate Lake. Freshwater Biol. 2001, 46: 1447~1455
    39朱广伟,秦伯强,高光.强弱风浪扰动下太湖的营养盐垂向分布特征.水科学进展. 2004, 15:775~780
    40孙小静,朱广伟,罗潋葱等.浅水湖泊沉积物磷释放的波浪水槽试验研究.中国科学(D辑). 2005, 35(增刊Ⅱ):81~89
    41 P. A. Moore, K. R. Reddy. Role of Eh and pH on Phosphorus Geochemistry in Sediments of Lake Okeechobee, Florida. J Environment Quality. 1994,23: 955~964
    42张路,范成新,秦伯强等.模拟扰动条件下太湖表层沉积物磷行为的研究.湖泊科学. 2001,13(1): 35~42
    43张丽萍,袁文权,张锡辉.底泥污染物释放动力学研究.环境污染治理与设备.2003,4(2): 22~26
    44胡雪峰,高效江,陈振楼.上海市郊河流底泥氨氮释放规律的初步研究.上海环境科学. 2001, 20(2): 66~70
    45 V. Istanovics. Seasonal Viration of Phosphorus Release from the Sediments of Shallow Lake Balaton(Hungary). Water Research. 1988, 22(12): 1473~1481
    46 L. Q. Xie, P. Xie, H. X. Tang. Ehancement of Dissolved Phosphorus Release from Sediment to Lake Water by Microsystis Blooms-an Enclosure Experiment in a Hyper-eutrophic, Subtropical Chinese Lake. Environmental Pollution. 2003, 122: 391~399
    47 C. J. Redshaw, C. F. Mason, C. R. Hayes, et al. Factors Influencing Phosphoate Exchange Across the Sediment-water Interface of Eutrophic Reserviors. Hydrobiologia. 1990, 192: 233~245
    48 A. Gunnars, S. Blomqvist. Phosphate Exchange Across the Sediment-water Interface When Shifting from Anoxic to Oxic Conditions-an Experimental Comparison of Freshwater and Brackishmarine Systems. Biogeochemistry. 1997, 37: 203~206
    49 R. D. Evans, A. Provini, J. Mattice, et al. Interactions Between Sediments and Water Summary of the 7th International Symposium, Water. Air and Soil Pollution.1997, 99: 1~7
    50朱广伟,秦伯强,高光等.长江中下游浅水湖泊沉积物中磷的形态及其与水相磷的关系.环境科学学报.2004, 24(3): 381~388
    51吴根福,吴秀昌,金承涛.杭州西湖底泥释磷的初步研究.中国环境科学. 1998,18(2): 107~110
    52汪家权,孙亚敏,钱家忠等.巢湖底泥磷的释放模拟实验研究.环境科学学报. 2002,22(6): 738~742
    53孙晓杭,张昱,张斌亮等.微生物作用对太湖沉积物磷释放影响的模拟实验研究.环境化学. 2006,25(1): 24~27
    54 A. Appan, D. S. Ting. A Laboratory Study of Sediment Phosphorus Flux in Two Tropical Reseroirs. Wat Sci Tech. 1996, 7-8: 45~52
    55 C. J. Watts. The Effect of Organic Matter on Sedimentary Phosphorus Release in an Australian Reservoir. Hydrobiologia. 2000a, 431(1): 13~25
    56 G. C. Holdren, E. David. Armstrong Factors Affecting Phosphorus Release from Intact Lake Sediments Cores. Environ Sci Technol. 1980,14(1): 79~87
    57 D. Gunnison, J. M. Brannon, I. J. Smith, et al. A Reaction Chamber for Study of Interactions Between Sediments and Water Under Conditions of Static of Continuous Flow. Water Research. 1980,14: 1529~1532
    58 J. J. Frentte, W. F. Warwick, L. Legendre, et al. Biological Response to Typhoon-induced Mixing in Two Morpholoically Distinct Basins in Lake Biwa, Japan. J of Limnology.1996, 4: 501~510
    59 R. Portielje, L. Lijklema. Estimation of Sediment-Water Exchange of Solutes in Lake Veluwe, the Netherlands. Water Research. 1999, 33(1): 279~285
    60 B. Q. Qin, W. P. Hu, G. Gao, et al. The Dynamics of Resuspension and Conceptual Mode of Nutrient/Releases from Sediments in Large Shallow Lake Taihu, China. Chinese Sciences Bulletin. 2004,49: 54~64
    61朱广伟,秦伯强,张路等.太湖底泥悬浮中营养盐释放的波浪水槽试验.湖泊科学. 2005,17(1): 61~68
    62孙小静,秦伯强,朱广伟等.持续水动力作用下湖泊底泥胶体态氮、磷的释放.环境科学. 2007, 28(6): 1223~1229
    63张智,刘亚丽,段秀举.双龙湖底泥磷释放强度影响因素试验研究.云南环境科学. 2006,25(1): 38~41
    64范成新,张路,包先明等.太湖沉积物-水界面生源要素迁移机制及定量化-2.磷释放的热力学机制及源-汇转化.湖泊科学. 2006,18(3): 207~217
    65 M. R. Penn, M. T. Auer, S. M. Doerr, et al. Seasonality in Phosphorus Release Rates from the Sediments of a Hypereutrophic Lake Under a Matrix of pH and Redox Conditions. Can J Fish Aquat Sci. 2000,57: 1033~1041
    66 T. Gonsiorczyk, P. Casper, R. Koschel. Mechanisms of Phosphorus Release from the Bottom Sediment of the Oligotrophic Lake Stechlin: Importance of Thepermanently Oxic Sediment Surface. Arch Hydrobiol. 2001,151(4): 203~219
    67 F. O. Andersen, P. Ring. Comparison of Phosphorus Release from Littoral and Profundal Sediments in a Shallow, Eutrophic Lake. Hydrobiologia. 1999, 408(409): 173~183
    68 C. J. Watts. Seasonal Phosphorus Release from Exposed, Re-inundated Littoral Sediments of Two Austrlian reservoirs. Hydrobiologia. 2000(b), 431(1): 27~39
    69韩莎莎,温琰茂.富营养化水体沉积物中磷的释放及其影响因素.生态学. 2004, 23(2): 98~101
    70李文红,陈英旭,孙建平.不同溶解氧水平对控制底泥向上覆水体释放污染物的影响研究.农业环境科学学报. 2003,22(2): 170~173
    71蔡景波,丁学峰,彭红云等.环境因子及沉水植物对底泥磷释放的影响研究.水土保持学报. 2007, 21(2): 151~154
    72 J. F. Peng, B. Z. Wang, Y. H. Song, et al. Adsorption and Release of Phosphorus in the Surface Sediment of a Wastewater Stabilization Pond. Ecological Engineering. 2007, 31(2): 92~97
    73 D. Zak, J. Gelbrecht. Phosphorus Retention at the Redox Interface of Peatlands Adjacent to Surface Waters. Wasser & Boden. 2002, 54: 71~76
    74 G. Anneli, B. Sven, J. Peter. Formation of Fe(III) Oxyhydroxide Colloids in Freshwater and Brackish Seawater, with Incorporation of Phosphate and Calcium. Geochim et Cosmochim Acta. 2002, 66: 745~758
    75 M. N. Long. Phosphate Incorporation and Transformation in Surface Sediments of a Sewage-impacted Wetland as Influenced by Sediment Sites, Sediment pH and Added Phosphate Concentration. Ecol Eng. 2000, 14: 139~155
    76 N. Sridharan, G. F. Le. Phosphorus Studies in Lower Green Bay Lake Michigan. J Water Pollution control Fed. 1974, 46: 648~696
    77王晓燕.密云水库水质特征及吸附、释放磷的实验研究.首都师范大学学报(自然科学版). 1997, 18(3): 85~90
    78周启星,俞洁,陈剑等.某城市湖泊中磷的循环特征及富营养化发生趋势.环境科学. 2004, 25(5): 138~142
    79范成新,张路,包先明等.太湖沉积物-水界面生源要素迁移机制及定量化-2.磷释放的热力学机制及源-汇转化.湖泊科学. 2006,18(3): 85~90
    80 A. N. U. Liikanen. Effects of Temperature and Oxygen Availability on Greenhouse Gas and Nutrient Dynamic Sin Sediment of an Atrophic Mid-boreal Lake.Biogcochemistry. 2002, 9(3): 269~286
    81 J. Koski Vahala, H. Hartikainen, P. Tallberg. Phosphorus Mobilization from Various Sediment Pools Inresponse to Increased pH and Silicate Concentration. J Environmental Quality. 2001, 30(2): 546~552
    82 F. N. Ponnamperuma. The Chemistry of Submerged Soils.Adv Agron. 1972,24: 29~96
    83 C. De Montigny, Y. Prairie. The Relative Importance of Biological and Chemical Processes in the Release of Phosphorus from a Highly Organic Sediment. Hydrobiology. 1993, 253: 141~150
    84 B. C. M. Paul. The Influence of pH on Phosphorus Release from Lake Sediments. Water Research.1991,25(3): 309~3l1
    85林建伟,朱志良,赵建夫.曝气复氧对富营养化水体底泥氮磷释放的影响.生态环境. 2005, 14(6): 512~815
    86 X. J. Niu, J. J. Geng, X. R. Wang, et al. Dletmar Glindemann Temporal and Spacial Distributions of Phosphine in Taihu Lake, China. Science of the Total Environment. 2004, 323(1-3): 169~178
    87史晓丽,王凤平,蒋丽娟等.光照时间对外源性磷在模拟水生态系统中迁移的影响.环境科学. 2003, 24(1): 40~45
    88姜霞,金相灿,姚扬等.光照对对水环境变化和沉积物吸收磷酸盐的影响.应用生态学报. 2005,16(11): 2194~2198
    89 R. J. Ritchie, D. A. Trautman, A. W. D. Larkum. Phosphate Uptake in the Cyanobacterium Synechococcus R-2PCC7942. Plant and Cell Physiology. 1997, 38(11): 1232~1241
    90孙宏发,刘占波,谢安.湿地磷的生物地球化学循环及影响因素.内蒙古农业大学学报. 2006,27(1): 148~152
    91侯立军,陆健健,刘敏等.长江口沙洲表层沉积物磷的赋存形态及生物有效性.环境科学学报. 2006, 26(3): 488~494
    92 F. Andersen, H. S. Jensen. Regeneration of Inorganic Phosphorus and Nitrogen from Decomposition of Seston in a Freshwater Sdiment. Hydrobiologia. 1992, 228: 71~81
    93黄清辉,王磊,王子健.中国湖泊水域中磷形态转化及其潜在生态效应研究动态.湖泊科学. 2006, 18(3): 199~206
    94邹迪,肖琳,杨柳燕等.不同形态磷源对铜绿微囊藻与附生假单胞菌磷代谢的影响.环境科学. 2005,26(3): 118~121
    95 B. Bostrom, G. Persson, B. Broberg. Bioavailability of Different Phosphorus Forms in Fresh Water Systems. Hydrobiologia. 1988, 170: 133~155
    96黄清辉,王东红,马梅等.沉积物和土壤中磷的生物有效性评估新方法.环境科学. 2005, 26(2): 206~208
    97 V. N. De Jonge, M. M. Engelkes, J. F. Bakker. Bio-availability of phophorus in sediments of the weatern Dutch Eadden sea. Hydrobiologia. 253,151~163
    98 Rydin E. Potentially Mobile Phosphorus in Lake Erken Sediment. Water Research. 2000, 34(7): 2037~2042
    99王琦,姜霞,金相灿等.太湖不同营养水平湖区沉积物磷形态与生物可利用磷的分布相互关系.湖泊科学. 2006,18(2): 120~126
    100 K. R. Reddy, E. G. Flaig, D. A. Graetz. Phosphorus Storage Capacity of Uplands, Wetlands, and Streams of the Lake Okeechobee Watershed, Florida. Agriculture Ecosystems﹠ Environment. 1996, 59: 203~216
    101 E. Rydin, A. K. Brunberg. Seasonal Dynamics of Phosphorus in Lake Erken Surface Sediments. Arch Hydrobiol Special Issue: Adv Limnol. 1998, 51:157~167
    102 E. Tornblom, E. Rydin. Benthic Microbial Response to a Simulated Autumn Sedimentation Event in Lake Erken; Bacterial Impact on Phosphorus Fluxes. In: Tornblom E, Editor. Microbial Activity and Biomass in Aquatic Surface Sediments-a Community Level Approach(Doctoral Thesis). Uppsala University. 1995
    103 K. Pettersson. Phosphorus Characteristics of Settling and Suspended Particles in Lake Erken. The Sci of the Total Environ. 2001, 266: 79~86
    104 L. M. Nguyen. Phosphate Incorporation and Transformation in Surface Sediments of a Sewage-impacted Wetland as Influenced by Sediment Sites, Sediment pH and Added Phosphate Concentration. Ecological Engineering. 2000,14: 139~155
    105 Y. Y. Zhou, J. Q. Li, M. Zhang. Vertical Variations in Kinetics of Alkaline Phosphatase and P Species in Sediments of a Shallow Chinese Eutrophic Lake (Lake Donghu). Hydrobiologia. 2001,450: 91~98
    106 L. H. Kim, E. Choi, M. K. Stenstrom. Sediment Characteristics, Phosphorus Types and Phosphorus Release Rates Between River and Lake Sediments. Chemosphere. 2003,50: 53~61
    107 J. D. H. Williams, H. Shear, R. L. Thomas. Availability to Scenedesmus Quadricauda of Different Forms of Phosphorus in Sedimentary Materials from the Great Lakes. Limnol Oceanogr. 1980, 25: 1~11
    108 S. C. Chang, M. L. Jackson. Fractionation of Soil Phosphorus. Soil Science. 1957,84: 133~144
    109 J. C. Bonzongo, G. Bertru, G. Martin. Speciation Phosphorus Techniques in the Sediments: Discussion and Propositions to Evaluate Inorganic and Organic Phosphorus. Arch Hydrobiol. 1989,116: 61~69
    110 K. C. Ruttenberg. Development of a Sequential Extraction Method for Differ-ent Forms of Phosphorus in Marine Sediments. Limnol Oceanogr. 1992, 37: 1460~1482
    111 M. Hufer, R. Gachter, R. Giovanoli. Transformation of Phosphorus in Setting Seston and During Early Diagenesis. Aquatic Sciences. 1995,57: 305~324
    112 H. L. Golterman, A. Booman. Sequential Extraction of Iron-phosphate andCalcium-phosphate from Sediments by Chelating Agents. Verh Int Ver Limnol. 1988,23: 904~909
    113 C. J. De Groot, H. L. Golterman. Sequential Fractionation of Sediment Phosphate. Hydrobiologia. 1990,192: 143~149
    114 H. L. Golterman. Fractionation of Sediment Phosphate with Chelating Compounds; A Aimplification and Comparision with Other Methods. Hydrobiologia. 1996, 335: 87~95
    115 R. Gilbin, E. Gomez, B. Picot. Phosphorus and Organic Matter in Wetland Sediments: Analysis Through Gel Permeation Chromatography(GPC). Agronomie. 2000,20: 567~576
    116 H. J. Patrick, F. Ulrich. Concept of Subequeous Capping of Contaminated Sediments With Active Barrier System(ABS) Using Natural and Modified Zeolite. Water Research.1999,33(3): 2083~2087
    117 T. P. Murphy, A. Lawson, M. Kumagai, et al. Review of Emerging Issues in Sediment Treatment. J Aquatic Ecosystem Health and Management. 1999,2: 419~434
    118 U. Berga, T. Neumannb, D. Donnert, et al. Sediment Capping in Eutrophic Lakes Efficiency of Undisturbed Calcite Barries to Immobilize Phosphorus. Applied Geochemistry. 2004, 19: 1739~1771
    119叶恒朋,陈繁忠,盛彦清等.覆盖法控制城市河涌底泥磷释放研究.环境科学. 2006,26(2): 262~268
    120袁东海,景丽洁,高士祥等.几种人工湿地基质净化磷素污染性能的分析.环境科学. 2005,26(1): 51~55
    121薛传东,杨洁,刘星.天然矿物材料修复富营养化水体的实验研究.岩石矿物学杂志. 2003,22(4): 381~385
    122林建伟,朱志良,赵建夫.天然沸石覆盖层控制底泥氮磷释放的影响因素.环境科学. 2006,27(5): 58~62
    123袁宪正,潘纲,田秉晖等.氯化镧改性黏土固化湖泊底泥中磷的研究.环境科学. 2007,28(2): 403~406
    124陈春华,王焰新,万昆.化学药剂处理湖泊沉积物磷污染的实验研究.安全与环境工程. 2006,13(2): 21~23
    125 I. Takeda, A. Fukushima. Phosphorus Purification in a Paddy Field Watershed Using a Circular Irrigation System and the Role of IronCompounds. Water Research. 2004,38: 4065~4074
    126林建伟,朱志良,赵建夫.硝酸钙对底泥有机物及氮磷迁移循环的影响.农业环境科学学报. 2007,26(1): 58~63
    127张亚雷,章明,李建华等. CaO2不同投加方式对底泥磷释放的控制效果分析.环境科学. 2006,27(11): 2188~2193
    128 P. Willenbring, W. Weidenbacher, M. Miller. Reducing Sediment Phosphorus Release Rates in Long Lake Through the Use of Calcium Nitrate. Aqutaic Ecosystem Health and Management.1983, 212~223
    129 M. Feibicke. Impact of Nitrate Addition on Phosphorus Availability in Sediment and Water Column on Plankton Biomass-Experimental Field Study in the Shall Brackishi Schlei Fjord(Western Baltic. Germany). Water, Air and Soil Pollution.1997, 99: 445~456
    130唐玉斌,郝永胜,陆柱等.景观水体的生物激活剂修复.城市环境与城市生态. 2003,16(4): 37~39
    131陈芳艳,唐玉斌.污染水体的生物修复技术进展.环境科学与技术. 2004,8: 133~136
    132马立珊,骆永明,吴龙华等.浮床香根草对富营养化水体氮、磷取出动态及效率的初步研究.土壤. 2000,2:99~101
    133钟继承,范成新.底泥疏浚效果及环境效应研究进展.湖泊科学. 2007, 19(1): 1~10
    134范成新,张路,王建军等.湖泊底泥疏浚对内源释放影响的过程与机理.科学通报. 2004,49(15): 1523~1528
    135王栋,孔繁翔,刘爱菊等.生态疏浚对太湖五里湖湖区生态环境的影响.湖泊科学. 2005,17(3): 263~268
    136 J. E. Ruley, K. A. Rusch. An Assessment of Long-Term Post-Restoration Water Quality Trends in a Shallow, Subtropical, Urban Hypereutrophic Lake. Ecological Engineering. 2002,19: 265~280
    137 A. J. Kenny, H. L. Rees. The Effects of Marine Gravel Extraction on the Macrobenthos: Results 2years Postdredging. Mar Poll Bull. 1996. 32: 615~622
    138 F. Pranovi, O. Giovanardi, G. Franceschini. Recolonization Dynamics in Areas Disturbed by Bottom Fishing Gears. Hydrobiologia. 1998, 375/376: 125~135
    139孙小静,秦伯强,朱广伟等.持续水动力作用下湖泊底泥胶体态氮、磷的释放.环境科学. 2007, 28(6): 1223~1229
    140 P. J. Wallbrink, C. E. Martin, C. J. Wilson. Quantifying the Contributions of Sediment, Sediment-P and Feriliser-P from Forested, Cultivated and Pasture Areas at the Landuse and Catchment Scale Using Fallout Radionuclids and Geochemistry. Soil and Tillage Research. 2003,69: 53~68
    141 J. Horppila, L. Nurminen. Effects of Submerged Macrophytes on Sediment Resuspension and Internal Phosphorus Loading in Lake Hiidenvesi(Southern Finland). Water Research. 2003,37: 4468~4474
    142 D. T. Van Der Molen, R. Portielje, P. C. M. Boers, et al. Changes in Sediment Phosphorus as a Result of Eutrophication and Oligotrophication in Lake Veluwe, The Netherlands. Water Research. 1998,32(11): 3281~3288
    143石晓勇,史致丽,余恒等.黄河口磷酸盐缓冲机制的探讨Ⅰ.黄河口悬浮物对磷酸盐的吸附-解吸研究.海洋与湖沼.1996,30(2): 192~198
    144付强,尹澄清,马允.源头农业区不同类型水塘中水体沉积物磷吸附容量.环境科学. 2005,26(4): 70~76
    145袁文权,张锡辉,张丽萍.不同供氧方式对水库底泥氮磷释放的影响.湖泊科学.2004,16(1): 28~34
    146钱嫦萍,陈振楼,胡玲珍等.崇明东滩沉积物再悬浮对沉积物-水界面氮,磷交换行为的影响.环境科学. 2003,24(5): 114~119
    147 K. Sakadevan, H. J. Bavor. Phosphate Adsorption Characteristics of Soils, Slags and Zeolite to be Used as Substrates in Constructed Wetland Systems.Wat Res. 1998,32(2): 393~399
    148 K. R. Reddy, G. A. O’Connor, P. M. Gale. Phosphorus Sorption Capacities of Wetland Soils and Stream Sediments Impacted by Dairy Effulent. J Environ Qual. 1998,27: 438~447
    149张彬,李涛,刘会娟等.模拟扰动条件下太湖水体悬浮物的结构特性.环境科学. 2007,28(1): 70~74
    150张瑞瑾.河流泥沙动力学.北京:中国水利水电出版社. 1998,63~147
    151胡春宏,惠遇甲.明渠挟沙水流运动的力学和统计规律.北京:科学出版社. 1995,181~220
    152 P. N. Froelich. Kinetic Control of Dissolved Phosphate in Natural Rivers and Esturies: a Primer on the Phosphorus Buffer Mechanism. Limnology andOceanography. 1988, 334(4): 649~668
    153周爱民,王东升,汤鸿霄.磷(P)在天然沉积物-水界面上的吸附.环境科学研究. 2005,25(1): 64~68
    154金相灿,王圣瑞,庞燕.太湖沉积物磷形态及pH值对磷释放的影响.中国环境科学. 2004,24(6): 707~711
    155谭林立.环境因子对浅水湖泊沉积物中磷释放的影响.江苏环境科技. 2006,9(1): 90~92
    156张路,范成新,朱广伟等.长江中下游湖泊沉积物生物可利用磷分布特征.湖泊科学. 2006,18(1): 36~42
    157 I. Fox, M. A. Malati, R. A. Perry. The Adsorption and Release of Phosphate from Sediments of a River Receiving Sewage Effluent. Wat Res.1989, 23: 725~732
    158 B. Katarina, O. Eraamus, B. Elisabetta. Phosphorus Sorption in Reation to Soil Properties in Some Cultivated Swedish soils. Nutri Cycling in Agroecosystems. 2001,59: 39~46
    159 V. D. Nair, D. A. Graetz, K. R. Reddy. Dairy Manure Influences on Phosphorus Retention Capacity of Spodosols. J Environ Qual. 1998,27: 522~527
    160 T. Mayer, C. Ptacek, L. Zanini. Sediments as a Source of Nutrients to Hyertropic Marshes of Point Pelee. Ontario, Canada. Wat Res. 1999,33(6): 1460~1470
    161戴纪翠,宋金明,李学刚等.胶州湾沉积物中的磷及其环境指示意义.环境科学. 2006,27(10): 1953~1962
    162 Q. H. Huang, Z. J. Wang, D. H. Wang, et al. Origins and Mobility of Phosphorus Forms in the Sediments of Lakes Taihu and Chaohu, China. J Environ Sci & Health, Part A. 2004, 40(1): 91~102
    163 I. Dévai, L. Felfldy, I. Wittner, et al. Detection of Phosphine: New Aspects of the Phosphorus Cycle in the Hydrosphere. Nature. 1988,333(26): 343~345
    164母清林,宋秀贤,俞志明.磷化氢在胶州湾沉积物中的分布特征.环境科学.2005,26(4): 135~138
    165王彩虹,牛晓君,任洪强.湖泊沉积物内源磷分布及其相关性研究.农业环境科学学报. 2006,25(5): 1328~1332
    166 G. Gassmann. Phosphine in the Fluvial and Marine Hydrosphere.Marine Chemistry. 1994,45: 197~205
    167牛晓君,耿金菊,马宏瑞等.富营养浅水湖泊中新发现的磷化氢.中国环境科学. 2004,24(1): 85~88
    168 D. L. Heleen, L. Lijklema, M. Coenraats. Iron Content of Sediment and Phosphate Adsorption Properties. Hydrobiologia.1993, 253: 311~317
    169卜玉山,F. R. Magdoff.十种土壤有效磷测定方法的比较.土壤学报. 2003, 40(1): 140~146
    170 H. Yamada, K. Mitsu, S. Kazuo, et al. Suppression of Phosphate Liberation from Sediment by Using Iron Slag. Wat Res. 1987, 21: 325~333
    171 E. Gomez, C. Durillon, G. Rofes, et al. Phosphate Adsorption and Release from Sediments of Brackish Lagoons: pH, O2 and Loading Influence. Wat Res.1999, 33: 2437~2447
    172 A. Kaiswerli, D. Voutsa, C. Samara. Phosphorus Fraction in Lake Sediments-Lake Volvi and Koronia, N, Greece. Chemosphere. 2002, 46: 1147~1155
    173黄清辉,王东红,王春霞等.沉积物中磷形态与湖泊富营养化的关系.中国环境科学. 2003, 23(6): 583~586
    174徐玉慧,姜霞,金相灿等.太湖东北部沉积物生物可利用磷的季节性变化.环境科学. 2006, 27(5): 869~873

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700