用户名: 密码: 验证码:
关于若干非线性问题算法的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
许多自然现象都是借助于线性、非线性方程来描述的,这些方程作为重要的数学模型在物理学、生物学、控制科学等很多研究领域中有着广泛的应用,而对这些现象的分析一般可归结为微分方程的求解问题,由于获得该类方程精确解的解析表达式是非常困难的,所以发展适用的数值方法就成为既有理论意义又有实际价值的研究课题。因此如何求解这些有实际意义的方程也就变得越来越重要了。
     本文运用再生核空间的技巧,给出了几类线性和非线性微分方程的求解算法。
     文中详细地叙述了再生核空间的应用背景和研究历史,回顾了再生核空间发展状况。并且在文中的每一部分都给出了若干具体的再生核空间。在所有给出的再生核空间中都有具体的再生核函数表达式,并且每一章都进行了相应的数值试验。这些数值试验验证了理论上推出的结论的正确性。
     首先,通过改进原有再生核空间的内积定义,我们简化了再生核函数的表达式,并且通过再生核表达式得到了一组标准正交基,在这组基上进行了Fourier级数展开,从而在第二章中得到了五阶线性方程的解。同时,在第三章又构造了一种适合在计算机上实施的逼近序列来求解奇异线性问题,它的结构简单,对于逼近节点数目很大的离散函数颇为有效。逼近序列的误差在Sobolev范数意义下是递减的并且能保证逼近过程的一致收敛性。
     其次,在再生核空间中构造了一种收敛的迭代序列,通过截断级数的形式得到了方程的近似解,同时若方程解存在不唯一的情况下,可以进一步求出满足一定附加条件的特解。这种迭代法适用于一般的非线性方程,本文运用此方法在第四章和第五章分别对奇异非线性方程组和非线性无限比例延迟方程进行了求解。
     最后,在第六章中求解二阶非线性偏微分方程。主要利用再生核空间中的再生性质,将其转化为线性算子方程进行求解。将边界条件齐次化后融入到二维再生核空间中,运用本文的方法可以求得一个带有未知量的解的表达式,然后通过最小二乘法的技巧,最终获得非线性算子方程的解。
     本文所提的求解算法在理论上和实际试验模拟来看有以下优点:算法简单,通过数值模拟我们也验证了每个模型的各阶导数之间的逼近效果非常好,而且不同于以往的数值算法,本文算法是连续逼近,即对空间任意点均可以算。
Many natural phenomena can be modeled by linear and nonlinear differential equations. These equations as mathematical models have important applications in physics, biology, control science and so on. In general, the analysis of these phenomena can reduce to solving differential equations. It is difficult to obtain the analytical representation of exact solutions, therefore, the research of an efficient numerical method for differential equations is of theoretical and applicable significance and how to solve these significant equations becomes more and more important.
     In this thesis, several numerical methods of solving some classes of linear and nonlinear differential equations are presented by using reproducing kernel theory.
     This thesis introduces application background and history of reproducing kernel spaces and runs back over the development of reproducing kernel spaces. Moreover, we give the concrete representation of the reproducing kernel spaces in which there are the corresponding reproducing kernel functions in the every chapter. Some numerical tests are given in every chapter and numerical results verify the validity of conclusion.
     Firstly, the representation of reproducing kernel is simplied by improving definition of inner product in the original reproducing kernel spaces. The orthonormal basis can be obtained from the representation of reproducing kernel functions. Through Fourier series expanding on this basis, the solutions of fifth-order linear equations can be obtained in Chapter 2. In the mean time, an approximate sequence that is implemented easily on computers is constructed to solve singular linear problems in Chapter 3. Its construction is simple and it can approximate effectively the function with large number of nodes. The error of approximate sequence is decreasing in the sense of Sobolev norm and the uniform convergence can be guaranteed.
     Next, a convergent iterative sequence is constructed. The approximate solutions can be obtained by truncating series. If the solutions of equations are not unique, the particular solutions satisfying addictive conditions can be given. This iterative method is suitable for solving general nonlinear equations. Using this method, we solve singular nonlinear systems and nonlinear infinite-delay-differential with proportion delay respectively in Chapter 4 and Chapter 5.
     Finally, second order nonlinear partial differential equations are solved in Chapter 6. In terms of the reproducing property of reproducing kernel spaces, we convert them to operator equations .After homogenizing the boundary conditions , we put them into two-dimensional reproducing kernel spaces. By using this method in this thesis, we can obtain the presentation of solutions with a unknown. Then by using least squares algorithm, we can give the solutions of operator equations .
     In summary, the algorithms in this thesis have the following advantages: First, they are very simple; Second, the rate of convergence is fast; Third, the derivatives of approximate solutions can also approximate the derivatives of exact solutions well respectively; Fourth, the algorithms are continuous approximation, that is , the value of arbitrary point can be obtained, which is different from numerical algorithms.
引文
1 王德焴,吴德金,黄光力.空间等离子体中的孤波(第一版).上海科技教育出版社,2000
    2 S.Bergman.(U|¨)ber die Entwicklung der Harmonischen Funktionen der Ebeneunddes Raumes Nach Orthogonal-Funkionen.Math.Ann.1922,86:238-271
    3 S.Bergman.Zur Theorie der Funktionen,die eine Linear Partielle Differentialgleichung Befriedigen.Rec.Math.[Mat.Sbornik]N.S.1937,44:1169-1198
    4 S.Bergman.The Approximation of Functions Satisfying A Linear Partial Differential Equation.Duke Math.J.1940,6:537-561
    5 J.Mercer.Function of Positive and Negative Type and Their Connection with The Theory of Integral Equation.Philosophical Transactions of the Royal Society of London.Series A.1909,209:415-446
    6 S.Bochner.Vorlesungen(u|¨)ber Fouriersche Integrale.Leipzig.1932
    7 S.Bergman.A Remark on the Mapping of Multiply-Connected Domains.Amer.J.Math.1946,68:20-28
    8 S.Bergman.Partial Differential Equations.Advanced Topics.Brown University Providence.1941
    9 N.Aronszain.Theory of Reproducing Kernels.Trans.Amer.Math.Soc.1950,68:337-404
    10 F.M.Larkin.Optimal Approximation in Hilbert Space with Reproducing Kernel Function.Math.Comp.1970,22(4):911-921
    11 M.M.Chawla.Optimal Rules with Pilynomial Precision for Hilbert Spaces Possessing Reproducing Kernel Functions.Numer.Math.1974,22:207-218
    12 J.S.Chen,V.Kotta,H.Lu,et al.A Variational Formulation and A Double-Grid Method for Meso-Scale Modeling of Stressed Grain Growth in Polycrystalline Materials.Computer Methods in Applied Mechanics and Engineering.2004,193:1277-1303
    13 S.Shimorin.Complete Nevanlinna-Pick Property of Dirichlet-Type Spaces.J.Funct.Anal.2002,191:276-296
    14 D.Alpay.A Structure Theorem for Reproducing Kernel Pontryagin Spaces.J. Comput.Appl.Math.1998,99:413-422
    15 D.Alpay,C.Dubi.Carath(?)odory Fej(?)r Interpolation in the Ball with Mixed Derivatives.Linear Algebra and Its Applications.2004,382:117-133
    16 N.E.Askour,A.Intissar and Z.Mouayn.Explicit Formulas for Reproducing Kernels of Generalized Bargmann Spaces.Computes Rendus de l'Academie des Sciences Series I Mathematics.1997,325(1):707-712
    17 J.K.Misiewicz.Infinite Divisibility of Sub-Stable Processes.Part Ⅰ.Geometry of Sub-Spaces of L_α-Space.Stochastic Processes and Their Applications.1995,56:101-116
    18 A.Daniela,B.Vladimira,D.Aadb,et al.Hilbert Spaces Contractively Included In the Hardy Space of The Bidisk.Comptes Rendus de I'Academie des Sciences Series Ⅰ Mathematics.1998,326(12):135-1370
    19 A.Daniela,V.Victora.Fonctions de Carath(?)odory Surune Surface de Riemann et Espaces(?)Noyau Reproduisant Associ(?)sl.Comptes Rendus de I' Academie des Sciences Series Ⅰ Mathematics.2001,333(6):523-528
    20 A.Daniela,B.Vladimirb and T.Kaptanoglu.The Schur Algorithm and Reproducing Kernel Hilbert Spaces in the Ball.Linear Algebra and Its Applications.2002,342(1-3):163-186
    21 A.Daniela,K.H.Turgayb.Integral Formulas for A Sub-Hardy Hilbert Space on the Ball With Complete Nevanlinna-Pick Reproducing Kernel.Comptes Rendus de I'Academie des Sciences Series Ⅰ Mathematics.2001,333(4):285-290
    22 S.Saitoh.Linear Integro-Differential Equations and the Theory of Reproducing Kernels,Volterra Equations and Applications.Gordon and Breach Science Publishers.2000
    23 T.Tada,S.Saitoh.A Method by Separation of Variables for the First Order Nonlinear Ordinary Differetian Equations.J.of Analysis and Applications.2004,2(1):51-63
    24 T.Matsuura,S.Saitoh.Numerical Inversion Gormulas in the Wave Equation.J.Comput.Math.Optim.2005,1(1):1-19
    25 崔明根,邓中兴,吴勃英.再生核空间中的数值泛函方法.哈尔滨工业大学出版社.1988
    26 M.G.Cui,Z.X.Deng.On the Best Operator of Interpolation.Math Numerical Sinica.1986,8(2):207-218
    27 M.G.Cui.Two Dimensional Reproducing Kernel and Surface Interpolation.J.Comput.Math.1986,4(2):177-181
    28 张艳英,么焕民,黄丽波.多元插值.哈尔滨师范大学自然科学学报.1997,1:9-12
    29 张艳英.空间中多元迭代插值.哈尔滨理工大学学报.1997,6:81-84
    30 文松龙,崔明根.空间中最佳插值逼近算子.计算数学.1997,2:177-184
    31 文松龙,金昌录,朴东哲.空间中有界线性算子的最佳逼近及其应用.计算数学.2000,2:151-158
    32 邓彩霞,濮安山,邓中兴.再生核空间中的微分算子样条插值.黑龙江大学自然科学学报.2001,4:10-13
    33 M.G.Cui,Z.X.Deng.Solutions to the Definite Solution Problem of Differential Equation in Space W_2~l.Adv.Math.1986,17(3):327-328
    34 M.G.Cui,Z.X.Deng.The Analytic Solutions of Operator Equation of the First Kind.Adv.Math.1998,17(11):103-104
    35 吴勃英.空间函数的近似再生.黑龙江师范大学自然科学学报.1995,3:14-24
    36 吴勃英.空间第一类算子方程的近似解函数的近似再生.高等学校计算数学学报.1999,21(4):369-376
    37 B.Y.Wu,Q.L.Zhang.The Numerical Methods for Dolving Euler System of Equations in Reproducing Kernel Space.J.Comput.Math.2001,19(3):327-336
    38 吴勃英.再生核和小波理论及其应用若干问题研究.哈尔滨工业大学博士学位论文.2001
    39 谢树森.空间W_2~1[0,+∞)中的最佳插值逼近及半直线上积分方程数值解.山东大学学报(自然科学版).1995,4:12-15
    40 李云晖,崔明根.再生核空间W_2~1[0,+∞)中第一类积分微分方程精确解的表示.计算数学.1999,21(2):189-198
    41 C.L.Li,M.G.Cui.How to Solve the Equation AuBu+Cu-f.Appl.Math.Comput.2002,19:285-302
    42 D.K.Ruch,J.Patrick and V.Fleet.Gibbs'Phenomenon for Nonnegative Compactly Supported Scaling Vectors.J.Math.Anal.Appl.2005,304:370-382
    43 S.Smale,D.X.Zhou.Shannon sampling Ⅱ:Connections to learning theory. Appl. Comput. Harmon. Anal. 2005, 133(2-3): 643-653
    
    44 H. Hult. Approximating Some Volterra Type Stochastic Integrals with Applications To Parameter Estimation. Stochastic Processes and Their Applications.2003, 10: 1-32
    
    45 J. Xian, S. P. Luo and W. Lin. Weighted Sampling and Signal Reconstruction in Spline Subspaces. Signal processing. 2006, 86: 331-340
    
    46 M. Pontil. A Note on Different Coveringnumbers in Learning Theory. J. of Complexity. 2003, 19: 665-671
    
    47 S. Mendelson. Learnability in Hilbert Dpaces with Reproducing Kernels. J. of Complexity. 2002, 18: 152-170
    
    48 S. Xiong. Simulation of Bulk Metal Forming Processes Using the Reproducing Kernel Particle Method. Computers and Structures. 2005, 83: 574-587
    
    49 J. Wang, K. M. Liew, M. J. Tan, et al. Analysis of Rectangular Laminated Composite Plates Via FSDT Meshless Method. International Journal of Mechanical Sciences. 2002, 44: 1275-1293
    
    50 J. X. Zhou, X. M. Wang, Z. Q. Zhang, et al. Explicit 3-D RKPM Shape Functions in Terms of Kernel Function Moments for Accelerated Computation.Comput. Methods Appl. Mech. Engrg. 2005, 194: 1027-1035
    
    51 H. Li, J. Q. Cheng, T. Y. Nga, et al. A Meshless Hermite-Cloud Method for Nonlinear Fluid-Structure Analysis of Near-Bed Submarine Pipelines Under Current. Engineering Structures. 2004, 26: 531-542
    
    52 J. S. Chen, X. W. Zhang and T. Belytschko. An Implicit Gradient Model by A Reproducing Kernel Strain Regularization in Strain Localization Problems.Comput. Methods Appl. Mech. Engrg. 2004, 193: 2827-2844
    
    53 Y. Xu. Representation of Reproducing Kernels and the Lebesgue Constants on the Ball. Journal of Approximation Theory. 2001, 112: 295-310
    
    54 G. W. Wasilkowskia, H. Wozniakowskib. Finite-Order Weights Imply Tractability of Linear Multivariate Problems. J. of Approximation Theory.2004, 130: 57-77
    
    55 G. E. Fasshauer. Dual Bases and Discrete Reproducing Kernels: A Unified Frame-Work For RBF and MLS Approximation. Engineering Analysis with Boundary Elements. 2005, 29: 313-325
    56 O. Christensena, T. Strohmerb. The Finite Section Method and Problems in Frame Theory. J. of Approximation Theory. 2005, 133: 221-237
    
    57 Y. Liu, H. Yu. Existence and Uniquess of Positive Solution for Singular Boundary Value Problem . Comput. Math. Appl. 2005, 50: 133-143
    
    58 Y. Liu, A. Qi. Positive Solutions of Nonlinear Singular Boundary Value Problem in Abstract Space. Comput. Math. Appl. 2004, 47: 683-688
    
    59 X. Xu, J. P. Ma. A Note on Singular Nonlinear Boundary Value Problems. J.Math. Anal. Appl. 2004, 293: 108-124
    
    60 A. S. V. R. Kanth, Y. N. Reddy. Highr Order Finite Difference Method for A Class of Singular Boundary Value Problems. Appl. Math. Comput. 2004, 155:249-258
    
    61 A. S. V R. Kanth, Y. N. Reddy. Cubic Spline for A Class of Singular Boundary Value Problems. Appl. Math. Comput. 2005, 170: 733-740
    
    62 R. K. Mohanty, P. L. Sachder. An O(h~4) Accurate Cubic Spline TAGE Method for Nonlinear Singular Two Point Boundary Value Problem. Appl. Math. Comput. 2004, 158: 853-868
    
    63 H. M. Yao, M. G. Cui. A New Algorithm for A Class of Singular Boundary Value Problems. Appl. Math. Comput. 2007, 186: 1183-1191
    
    64 R. P. Agarwal. Boundary Value Problems for High Order Differential Equations.World Scientific. Singapore. 1986
    
    65 H. N. Caglar, S. H. Caglar and E. H. Twizell. The Numerical Solution of Fifth-Order Boundary-Value Problems with Sixth-Degree B-Spline Functions. Appl.Math. Lett. 1999, 12: 25-30
    
    66 A. M. Wazwaz. The Numerical Solution of Fifth-Order Boundary-Value Problems by Adomian Decomposition. J. Comput. Appl. Math. 2001, 136: 259-270
    
    67 S. Islam, M. A. Khan. A Numerical Method Based on Nonpolynomial Sextic Spline Tunctions for the Solution of Special Fifth-Order Boundary Value Problems. Appl. Math. Comput. 2006, 181: 356-361
    
    68 S. S. Siddiqi, G. Akram. Sextic Spline Solutions of Fifth Order Boundary Value Problems. Appl. Math. Lett. 2007, 20: 591-597
    
    69 S. S. Siddiqi, G. Akram. Solution of Fifth Order Boundary Value Problems Using Nonpolynomial Spline Technique. Appl. Math. Comput. 2006, 175: 1574- 1581
    
    70 M. A. Khan, S. Islam, I. A. Tirmizi, et al. A Class of Methods Based on Non-polynomial Sexic Spline Functions for the Solution of A Special Fifth-Order Boundary-Value Problems. J. Math. Anal. Appl. 2006, 321: 651-660
    
    71 H. Caglar, N. Caglar. Solution of Fifth Order Boundary Value Problems by Using Local Polynomial Regression. Appl. Math. Comput. 2007, 186: 952-956
    
    72 L. E. J. Brouwer. Uber Abbildung von Manigfaltigkeiten. Math. Ann. 1972, 71:97-115
    
    73 S. Banach. Sur les Operations dans les Rnsembles Abstraits et Leur Applecation Auxequations Integrals. Fund. Math. 1922, 3: 133-181
    
    74 K. Deimling. Nonlinear Functional Analysis. Springer-Verlag. 1985
    
    75 L. V. Kantorovich, G. P. Akilov. Functional Analysis. Pergamon Press. 1982
    
    76 J. M. Ortega, W. C. Rheinboldt. Iterative Solution of Nonlinear Equation in Several Variables. Academic Press. 1970
    
    77 A. G. Ramm. A Numerical Method for Some Nonlinear Problem. Math. Models and Meth. in Appl. Sci. 1999, 9(2): 325-335
    
    78 R. Courant. Variational Methods for the Solution of Problems of Equilibrium and Vibrations. Bull. Amer. Math. Soc. 1943, 49: 1-23
    
    79 M. K. Gavurin. Nonlinear Functional Equations and Continuous Analogues of Iterative Methods. Izv. Vyssh. Uchebn. Zaved. Mat. 1958, 14: 18-31
    
    80 E. P. Zhidkov. Solving of the Boundary Problems for Second Order Nonlinear Differential Equations by Means of the Stabilization Method. Soviet Math.Dokl. 1967, 8: 614-616
    
    81 Y. I. Alber. The Regularization Method for Variational Inequalities with Nons-mooth Unbounded Operators in Banach Space. Appl. Math. Lett. 1993, 6(4):63-68
    
    82 Y. I. Alber. A New Approoach to the Investigation of Evolution Differential Equations in Banach Spaces. Nonlinear Anal. 1994, 23(9): 1115-1134
    
    83 R. G. Airapetyan. Continuous Newton Method and Its Modification. Applicable Anal. 1999, 73(3-4): 463-484
    
    84 R. G. Airapetyan. Newtonian Iterative Scheme with Simultaneous Iterations of Inverse Derivative.Comp.Phys.Comm.1997,102:97-108
    85 M.T.Necepurenko.On Chebyshev's Method for Functional Equations (Russian).Uspehi Mat.Nauk.1954,9:163-170
    86 V.Candela,A.Marguina.Recurrence Relations for Rational Cubic Methods Ⅱ.The Chebyshev Method.Computing.1990,45:355-367
    87 J.A.Ezquerro.A Modification of the Chebyshev Method.IMA J.Numer.Anal.1997,17:511-525
    88 J.M.Gutierrez,M.A.Hernandz.A Family of Chebyshev-Halley Type Methods in Banach Spaces.Bull.Austral.Math.Soc.1997,55:113-130
    89 M.Davies,B.Dawson.On the Gobal Convergence of Halley's Ireration Formula .Numer.Math.1975,24:133-135
    90 D.Chen,I.K.Argyros and Q.Qian.A Local Convergence Theorem for the Super-Halley Method in Banach Spaces.Appl.Math.Lett.1994,7(5):49-52
    91 J.M.Gutierrez,M.A.Hernandez.Recurrence Relations for the Super-Halley Method.Comput.Math.Appl.1998,36(7):54-62
    92 黄象鼎,增钟钢.非线性数值分析.武汉大学出版社.2000
    93 O.H.EI-Kalaawy.Exact Solutions for Some Nonlinear Reaction-Diffusion Equations.Chaos,Solutons and Fractals.2002,14(4):547-552
    94 M.Meehan,D.O'Regan.Existence Principles for Nonlinear Resonant Operator and Integral Equations.Comput.Math.Appl.1998,36(8):41-52
    95 孙经先.Hilbert空间中非线性算子方程的解.江西师范大学学报(自然科学版).2000,1:1-3
    96 C.Alberto,J.J.Nieto.Fixed Points and Approximate Solutions for Nonlinear Operator Equations.J.Comput.Appl.Math.2000,113(1-2):17-25
    97 M.O.Osilike.Iterative Solutions of Strongly Accretive Operator Equations in Abitrary Banach Spaces.Nonlinear Anal.1999,36(1):1-9
    98 C.L.Li,M.G.Cui.How to Solve the Equation AuBu+Cu=f.Appl.Math.Comput.2002,133(2-3):643-653
    99 S.S.Siddiqi,G.Akram and S.A.Malik.Nonpolynomial Sextic Spline Method for the Solution Along with Convergence of Linear Special Case Fifth-Order two-point boundary value problems.Appl.Math.Comput.2007,190(1):532-541
    100 C. L. Li, M. G. Cui. The Exact Solution for Solving A Class of Nonlinear Operator Equation in the Reproducing Kernel Space. Appl. Math. Comput.2003, 143(2-3): 393-399
    
    101 P. Jamet. On the Convergence of Finite Difference Approximations to One Dimensional Singular Boundary Value Problems. Numer. Math. 1970, 14: 355-378
    
    102 B. Gustafsson. A Numerical Method for Solving Singular Boundary Value Problems. Numer. Math. 1973, 21: 328-344
    
    103 A. M. Cohen, D. E. Jones. A Note On the Numerical Solution of Some Singular Second Order Differential Equations. J. Int. Math. Appl. 1974, 13: 379-384
    
    104 G. W. Reddien. On the Collocation Method for Singular Two Point Boundary Value Problems. Numer. Math. 1975, 25: 427-432
    
    105 F. Z. Geng, M. G. Cui. Solving A Nonlinear System of Second Order Boundary Value Problems. J. Math. Anal. Appl. 2007, 327: 1167-1181
    
    106 M. K. Kadalbajoo, V. K. Agarwal. Numerical Solution of Singular Boundary Value Problems via Chebyshev Polynomial and B-Spline. Appl. Math. Comput.2005, 160: 851-863
    
    107 J. Y. Zhou, Y. M. Wei. A Two-Step Algorithm for Solving Singular Linear Systems with Index One. Appl. Math. Comput. 2006, 175: 472-485
    
    108 Y. P. Guo, W. R. Shan and W. G. Ge. Positive Solution of Singular Ordinary Differential Equations with Nonlinear Boundary Conditions. Appl. Math. Lett.2005, 18: 1-9
    
    109 Z. T. Zhang. Critical Points and Positive Solution of Singular Elliptic Boundary Value Problems. J. Math. Anal. Appl. 2005, 302: 476-483
    
    110 X. Feng, M. A. Han and W. J. Zhang. Existence of Canard Manifolds in A Class of Singularly Perturbed System. Nonlinear Anal. 2006, 64: 457-470
    
    111 R. P. Agarwal, C. G. Philos. Global Solutions of A Singular Initial Value Problem to Second Order Nonlinear Delay Differential Equations. Math. Comput.Modell. 2006, 43: 854-869
    
    112 D. Bonheure, J. M. Gomes and L. Sanchez. Positive Solutions of A Second Order Singular Ordinary Differential Equation. Nonlinear Anal. 2005, 61: 1383-1399
    113 H. Y. Lit, H. M. Yu and Y. S. Liu. Positive Solution for Singular Boundary Value Problems of A Coupled System of Differential Equation. J. Math. Anal.Appl. 2005, 302: 14-29
    
    114 Y. Bozhkov, E. Mitidieri. Existence of Multiple Solutions for Quasilinear Systems Via Fibering Method. J. Differential Equations. 2003, 190: 239-267
    
    115 J. Diblik, C. Nowak. A Nonuniqueness Criterion for A Singular System of Two Ordinary Differential Equations. Nonlinear Anal. 2006, 64: 637-656
    
    116 S. Bellew, E. O'Riordan. A Parameter Robust Numerical Method for A System of Two Singularly Perturbed Convection-Diffusion Equations. Appl. Numer. Math. 2004, 51: 171-186
    
    117 J. Biazar, E. Babolian and R. Islam. Solution of the System of Ordinary Differential Equations by Adomian Decomposition Method. Appl. Math. Comput.2004, 147: 713-719
    
    118 L. H. Yang, M. G. Cui. New Algorithm for A Class of Nonlinear Integro-Differential Equations in the Reproducing Kernel Space. Appl. Math. Comput.2006, 174: 942-960
    
    119 A. Bellen. Preservation of Superconvergence in the Numerical Integration Of Delay Differential Equations With Proportional Delay. IMA J. Numer. Anal.2002, 22: 529-536
    
    120 E. Ishiwata, Y. Muroya. Rational Approximation Method for Delay Differential Equations with Proportional Delay. Appl. Math. Comput. 2007, 187: 741-747
    
    121 Y. Muroya, E. Ishiwata and H. Brunner. On the Attainable Order of Collocation Methods for Pantograph Integro-Differential Equations. J. Comput. Appl. Math.2003, 152: 347-366
    
    122 J. G. Si, X. P. Wang. Analytic Solutions of A Second-Order Iterative Functional Differential Equations. Comput. Math. Appl. 2002, 43: 81-90
    
    123 H. J. Tian, L. Q. Fan, Y. Y. Zhang, et al. Spurious Numerical Solutions of Delay Differential Equations. J. Comput. Math. 2006, 24(2): 181-192
    
    124 X. Leng, D. G. Liu, X. Q. Song, et al. A Class of Two-Step Continuity Runge-Kutta Methods for Solving Singular Delay Differential Equations and Its Stability Analysis. J. Comput. Math. 2005, 23(6): 647-656
    
    125 R. D. Nussbaum. Existence and Uniqueness Theorems for Some Functional Differential Equation of Neutral Type. J. Differential Equations. 1972, 11: 607- 623
    126 A.Iserles,Y.Liu.On Neutral Functional-Differential Equation with Proportional Delays.J.Math.Anal.Appl.1997,207:73-95
    127 C.J.Zhang,G.Sun.Nonlinear Stability of Runge-Kutta Methods Applied to Infinite-Delay-Differential Equations.Math.Comput.Modell.2004,39:495-503
    128 C.J.Zhang,G.Sun.The Discrete Dynamics of Nonlinear Infinite-Delay-Differential Equations.Appl.Math.Lett.2002,15(5):521-526
    129 M.G.Cui,Z.X.Deng.Solution to the Definite Solution Problem of Differential Equations in Space W_2~l[0,1].Adv.Math.1986,17:327-328
    130 M.C.Cross,P.C.Hohenberg.Pattern Formation Outside of Equilibrium.Rev.Mod.Phys.1993,65:851
    131 M.J.Ablowitz,D.J.Kaup,A.C.Newell,et al.The Inverse Scattering Transform-Fourier Analysis for Nonlinear Problems Study.Appl.Phys.1974,53:249
    132 R.Hirota.Exact Envelope-Soliton Solution of A Nonlinear Wave Equation.J.Math.Phys.1973,14:805-809
    133 J.Weoss,M.Tabor and G.Carnevale.The Painleve Property for Partial Differential Equations.J.Math.Phys.1983,24:522
    134 A.H.Khater,O.H.EI-Kalauwy.Two New Classes of Exact Solutions for the KdV Equation Via Backlund Transformation.Chaos,Solitons and Fractals.1997,8:1901
    135 J.A.Ferreira.Supraconvergence of A Class of Moving Grid Methods for Solving A Nonlinear Problem.Appl.Numer.Math.1996,21:43-56
    136 S.L.Wen,M.G.Cui.Best Approximate Interpolation Operator in Space W.J.Comput.Math.Appl.1997,3:177-184
    137 M.G.Cui,Z.Chen.How to Solve Nonlinear Operator Equation A(v~2)+cv=f.Appl.Math.Comput.2004,153(2):403-416

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700