用户名: 密码: 验证码:
功能梯度材料运动裂纹及弹性波作用下的断裂行为研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
功能梯度作为一种可设计的复合材料,在航空航天领域有着重要的应用价值和广阔的应用前景,是高温工作条件下最有应用前景的复合材料。随着功能梯度材料广泛地应用于航空航天领域,对功能梯度材料中力学问题的研究意义越来越重要。功能梯度材料是非均匀体,其非均匀性对材料的力学性能有很大的影响。但是,有关功能梯度材料断裂力学的研究还很不够,尤其是有关功能梯度材料运动裂纹和弹性波作用于功能梯度材料裂纹的问题。本文对以上几个难点问题上进行了深入探讨,得到了比较有意义的结论。
     本文所做的主要工作有:
     1.研究无限大功能梯度材料反平面剪切型运动裂纹问题。利用其材料剪切模量和密度的指数模型,通过Fourier积分变换导出无限大功能梯度材料反平面运动裂纹问题的对偶积分方程,利用Jacobi多项式将位移展开成级数形式,并采用Schmidt数值方法计算出了裂纹尖端动应力强度因子的半解析解,分析了裂纹运动速度、梯度参数和正交异性系数对动态应力强度因子的影响。
     2.研究层板结构界面运动裂纹问题。分别考虑了均匀层板和功能梯度涂层—半无限大基体结构模型,利用不同界面的连接条件,将问题中所有各量用单一未知函数表达,用积分变换方法将运动裂纹问题化为对偶积分方程,并采用Schmidt数值方法得到此问题得半解析解。分析了裂纹运动速度、梯度参数和层板厚度对裂纹尖端应力场的影响。
     3.研究无限长条功能梯度材料的运动裂纹问题,对应力场进行了半解析求解,并分析了裂纹运动速度和材料梯度参数对裂纹尖端应力场的影响。研究结果表明:对于无限长条功能梯度材料的约束边界条件下的运动裂纹,其动应力强度因子随着裂纹运动速度的增加而降低。对于无限长条功能梯度材料的自由边界运动裂纹问题,裂纹尖端应力的最大值随着裂纹运动速度的增加而增加。裂纹尖端应力始终随着材料梯度参数的增加而降低。
     4.研究弹性波入射情况下功能梯度材料中反平面裂纹的动力学问题。利用无限大板任意一点承受的时间简谐的位移函数,以及散射波与入射波有相同的时间简谐因子,建立裂纹尖端的散射模型。采用积分变换方法得到对偶积分方程,然后对积分核进行偶部分和奇部分处理,通过Schmidt数值方法,得到了与裂纹相互作用下的散射波位移、应力表达式,研究了无限大板周围的动应力集中情况和动应力强度因子,并给出具体的解,讨论了入射波数、入射角度和材料梯度参数等因素对此问题的影响情况。
     5.研究P波和SV波在功能梯度材料裂纹上的绕射,无论P或SV波单独或同时作用,裂纹散射的波都同时包含膨胀波与剪切波,情况比较复杂,包含了I型裂纹和II型动态裂纹问题。通过Fourier积分变换和微分算子矩阵法导出此问题的对偶积分方程,求解分析了入射波的入射角、材料的梯度参数、入射波的波数和材料的泊松比对动应力强度因子的影响。
     本文的工作可以为功能梯度材料及其结构的动态断裂行为进行分析和评价提供理论根据,它们的解提供了裂纹尖端位移场与应力场的有价值的结论。
FGM which is considered to be the most promising composite material under the high temperature working condition, as a kind of designable composite material, has an important application and potential prospect in the areas of astronautics and aeronautics. With Functionally Graded Materials widely used in the astronautic and aeronautic fields, the mechanics problems research in Functionally Graded Materials become more and more important. FGMs are non homogeneous solid and the nonhomogeneality of FGMs has a great influence on their mechanical behavior. However, the studies on the dynamic fracture mechanics of FGMs are not enough, especially for the problems on moving and expanding cracks. We thoroughly explored several of these difficult issues mentioned and obtained some very important results.
     The main contributions of this dissertation can be read as follow:
     1. The stress at the crack tip on moving crack in an infinite body for FGM subjected to shear loading are studied. The dual integral equation of antiplane moving problem through Fourier transform with the help of the exponent model of the shear modulus and density is obtained. The displacement is expanded into series form using Jacobi Polynomial by Schmidt method, then the semi-analytic and numerical solutions of dynamic stress intensity factor are attained. and the Influences of the crack velocity, graded parameter, and orthotropic coefficient on the stress at crack tip are considered.
     2. The theoretical treatment of an interface moving crack is provided for laminated media. Two physical models, namely homogeneous bonded media and a functionally graded coating-substrate structure, are considered respectively. Using conditions of the welding surface of different media, we express all the quantities in terms of a single unknown function. Using method of integral transform, we formulate the moving crack problem as dual integral equations, then the semi-analytic of dynamic stress intensity factor are attained by Schmidt method. The influences of parameters such as crack velocity, graded parameter and laminated height on dynamic stress intensity factor are studied.
     3. The stress at the crack tip on moving crack in an infinite length strip for FGM subjected to shear loading are studied and the Influences of the crack velocity and graded parameter on the stress at crack tip are considered. The results show that stress intensity factor at the crack tip decrease with increasing crack velocity for the clamped boundary problems of moving crack in an infinite length strip, but for the problem of free boundary, the maximum value of stress at the crack tip increase with increasing crack velocity. Stress field at the crack tip decrease with increasing graded parameter.
     4. The problem of elastic waves scattering and dynamic stress concentration by FGM plane with cracks of any limited lengths near the gap is investigated. Due to the same time factor of scattering wave and incident wave, the scattering model of the crack tip can be constructed by making use of the displacment function of harmonic load on any point of the infinite plane. With the use of the integral transform, the dual integral equation for determining the external forces can be abtained, then have some process on the even and odd term of the integral kernel, the expression of displacement and stress is established while the interaction of infinite plate with cracks is studied with Schmidt method. Dynamic stress concentration near the plate is studied, and dynamic stress intensity factor at crack tip is discussed. Some examples and results are given. The influences of wave number, incident angles of electic wave, and graded parameter are discussed.
     5. Consider the propagation of P-wave and SV-wave, produced by the action of oscillating compressional and shear forces, which vary harmonically in time and are applied in the xy-plane. These input waves are diffracted at the crack in FGM. The indicates that the waves scattered by the crack are composed of both compression and shear waves even if the incident wave may only be of one type, either the P- or SV-waves. By semi-analytic solutions the influences of wave number, incident angles of electic wave, graded parameter and Poisson’s ratio are discussed.
     This work can provide a foundation for the optimization design and property evaluation of Functionally Graded Materials in theory. The results provide valuable conclusion on the displacement field and the stress field of a crack tip.
引文
1马如璋,蒋民华.功能材料学概论.北京:冶金工业出版社. 1999: 437-438.
    2王保林,韩杰才,张幸红.非均匀材料力学,北京:科学出版社. 2003: 3-8.
    3新野正之,平井敏雄,渡边龙三.倾斜机能材料-宇宙机用超耐热材料应用.日本复合材料学会志. 1987, 13(6): 257-264.
    4韩杰才,徐丽,王保林,张幸红.功能梯度材料的研究进展及展望.固体火箭技术. 2004, 27(3): 207-215.
    5高晓霞,姜晓红,田东艳.功能梯度材料研究的进展综述.山西建筑. 2006, 32(5): 143-144.
    6 A.H. Sofiyev. Thermoelastic stability of functionally graded truncated conical shells. Composite Structures. 2007, 77(1): 56-65.
    7 F. Delale, F. Erdogan. The crack problem for a nonhomogeneous plane. ASME Journal of Applied Mechanic. 1983, 50(3): 609-614.
    8 F. Erdogan. Fracture mechanics of functionally graded materials. Composites Engineering. 1995, 5(7): 753-770.
    9 Z. H. Jin, R.C. Batra. Some basic fracture mechanics concepts in functionally graded materials. Journal of the Mechanics and Physics of Solids. 1996, 44(8): 1221-1235.
    10 Z. H. Jin, R.C. Batra. Crack tip fields in functionally graded materials with temperature-dependent properties. AIAA Journal. 2006, 44(9): 2129-2130.
    11 P. Gu, R. J. Asaro. Structural buckling of polymer matrix composites due to reduced stiffness from fire damage. Composite Structures. 2005, 69(1): 65-75.
    12 W. Olaszak. Nonhomogeneous in elasticity and plasticity. Pro IUTAM Symposium. Warasaw, Pergamon Press. 1958.
    13 M. K. Kassir. Boussinesq problem for nonhomogeneous solid. ASCE J Eng Mech Div. 1972, 98: 457-470.
    14 N. A. Rostovtsev. On the theory of elasticity of a nonhomogeneous medium. PMM, 1964, 28: 601-611.
    15 G. I Belik, V. S. Protesenko. The contact problem of a half-plane for which the modulus of elasticity of a material is expressed by a power function of the depth. Prikladnaya Mekhanica. 1976, 3(6): 137-140.
    16 G. I. Popov. Axisymmetric contact problem for an elastic inhomogeneous half space in the presence of cohesion. PMM. 1973, 37:1052-1059.
    17 V. S. Protsenko. Torsion of an elastic half apace with the modulus of elasticity varying according to a power law. Prikladndnaya Mekhanika. 1967, 11(3): 127-130.
    18 M. K. Kassir. ressenr-sagoci problem for a nonhomogeneous solid. International Journal of Engineering Science. 1970, 8(10): 875-885.
    19 M. K. Kassir. Note on the twisting deformation of a nonhomogeneous shaft containing a circular crack. Int J Fracture Mechanics. 1972, 8: 325-334.
    20 R. S. Dhaliwal, B M. Singh. On the theory of elasticity of a nonhomogeneous medium. Journal of Elasticity. 1978, 8(2): 211-219.
    21 F. Erdogan. Crack problem for bonded nonhomogeneous materials under antiplane shear loading. American Society of Mechanical Engineers. 1985, 52: 823-825.
    22 F. Delale, F. Erdogan. On the mechanical modeling of the interfacial region in bonded half planes. American Society of Mechanical Engineers. 1988, 55: 317-325.
    23 F. Erdogan, A. C. Kaya, P. Joseph. The III model crack problem in bonded material with a nonhomogeneous interfacial zone. American Society of Mechanical Engineers. 1991, 58: 419-427.
    24 M. Ozturk, F. Erdogan. Diffusion problem in bonded nonhomogeneous materials with an interface cut. International Journal of Engineering Science. 1992, 30: 1507-1523.
    25 B. Yildirim, F. Erdogan. Edge crack problems in homogenous and functionally graded material thermal barrier coatings under uniform thermal loading. Journal of Thermal Stresses. 2004, 27(4): 311-329.
    26 H. J. Choi. The problem for bonded half-planes containing a crack at an arbitrary angle to the graded interfacial zone. International Journal of Solids and Structures. 2001, 38(36-37): 6559-6588.
    27 F. Erdogan, T. C. Chiu. Plane strain and axisymmetric spallation of gradedcoatings under thermal loading. Journal of Thermal Stresses. 2003, 26(6): 497-523.
    28 Kadioglu, F. Suat. Axisymmetric crack problem for a hollow cylinder imbedded in a dissimilar medium. International Journal of Engineering Science. 2005, 43(8-9): 617-638.
    29 H. T. Xiao, Z. Q. Yue, L. G. Tham, Y. R. Chen. Stress intensity factors for penny-shaped cracks perpendicular to graded interfacial zone of bonded bi-materials. Engineering Fracture Mechanics. 2005, 72(1): 121-143.
    30 W. J. Feng, Z. Z. Zou. Dynamic stress field for torsional impact of a penny-shaped crack in a transversely isotropic functional graded strip. International Journal of Engineering Science. 2003, 41(15): 1729-1739.
    31 Z. G. Zhou, B. Wang. The scattering of the harmonic anti-plane shear stress waves by two collinear interface cracks between two dissimilar functionally graded piezoelectric/piezomagnetic material half-infinite planes dynamic loading. Journal of Mechanical Engineering Science. 2006, 220(2): 137-148.
    32 C. Y. Li, Z.Z.Zou, Z. P. Duan. Torsional impact of transversely isotropic solid with functionally graded shear moduli and a penny-shaped crack. Theoretical and Applied Fracture Mechanics. 1999, 32(3):157-163.
    33 L. Ma, L. Z. Wu, Z. G. Zhou, T. Zeng. Crack propagating in a functionally graded strip under the plane loading. International Journal of Fracture. 2004, 126(1): 39-55.
    34果立成.功能梯度材料静态与冲击断裂行为的研究.哈尔滨工业大学博士学位论文. 2004.
    35 J. H. Kim, G. H. Paulino. Mixed-mode fracture of orthotropic functionally graded materials using finite elements and the modified crack closure method. Engineering Fracture Mechanics. 2002, 69(14-16): 1557-1586.
    36 C. E. Rousseau, H.V. Tippur. Evaluation of crack tip fields and stress intensity factors in functionally graded elastic materials: Cracks parallel to elastic gradient. 2002, 114(1): 87-111.
    37 E. B. Sami, F. Erdogan, F. B. Hatira. An interface crack between a functionally graded coating and a homogeneous substrate under thermo-mechanical loading. Materials Science Forum. 2003, 423-425: 601-606.
    38 V. Tvergaard. Theoretical investigation of the effect of plasticity on crackgrowth along a functionally graded region between dissimilar elastic- plastic solids. Engineering Fracture Mechanics. 2002, 69(14-16):1635-1645.
    39 Z. Q. Yue, H. T. Xiao, L. G. Tham. Boundary element analysis of crack problems in functionally graded materials. International Journal of Solids and Structures. 2003, 40(13-14): 3273-3291.
    40惠军峰,周振功,吴林志.功能梯度材料与均质材料交界面上I-型裂纹对简谐动载的响应分析.力学季刊. 2006, 27(1): 52-59.
    41王保林,杜善义,韩杰才.非均匀复合材料反平面裂纹的动态断裂力学研究.复合材料学报. 1998, 15(4): 119-127.
    42 B. L. Wang. J. C. Han, S. Y. Du. Cracks problem for non-homogeneous composite material subjected to dynamic loading. International Journal of Solids and Structures. 2000, 37(9): 1251-1274.
    43 B. L. Wang. J. C. Han, S. Y. Du. Fracture mechanics for multilayers with penny-shaped cracks subjected to dynamic torsional loading. International Journal of Engineering Science. 2000, 38(8): 893-901.
    44 B. L. Wang. J. C. Han, S. Y. Du. Functionally graded penny-shaped cracks under dynamic loading. Theoretical and Applied Fracture Mechanics. 1999, 32(3): 165-175.
    45 G. G. Sheng, X. Wang. Effects of thermal loading on the buckling and vibration of ring-stiffened functionally graded shell. Journal of Thermal Stresses. 2007, 30(12): 1249-1267.
    46 B. P. Patel, S. S. Gupta, M. S. Loknath, C. P. Kadu. Free vibration analysis of functionally graded elliptical cylindrical shells using higher-order theory. Composite Structures. 2005, 69(3): 259-270.
    47 M. S. Kirugulige, R. Kitey, H. V. Tippur. Dynamic fracture behavior of model sandwich structures with functionally graded core: A feasibility study. Composites Science and Technology. 2005, 65(7-8): 1052-1068.
    48 P. S. Dineva. T. V. Rangelov. G. D. Manolis. Elastic wave propagation in a class of cracked, functionally graded materials by BIEM. Computational Mechanics. 2007, 39(3): 293-308.
    49张红燕,杨维阳.各向异性功能梯度材料板反平面断裂问题的力学模型.太原科技大学学报. 2007, 28(1): 46-49.
    50 R. Babaei, S. A. Lukasiewich. Dynamic response of a crack in afunctionally graded material between two dissimilar half planes under anti-plane shear impact load. Engineering Fracture Mechanics. 1998, 60(4): 479-487.
    51 P. R. Marur, H. V. Tippur. Dynamic response of bimaterial and graded interface cracks under impact loading. International Journal of Fracture. 2000, 103(1): 95-109.
    52 A. Berezovski, J. Engelbrecht, G. A. Maugin. Numerical simulation of two-dimensional wave propagation in functionally graded materials. European Journal of Mechanics. A/Solids. 2003, 22(2): 257-265.
    53 C. C. Wu, P. X. He, Z. R. Li. Extension of J integral to dynamic fracture of functional graded material and numerical analysis. Computers and Structures. 2003, 80(5-6): 411-416.
    54 Z. Q. Cheng, Z. Zheng. Analysis of a moving crack in a functionally graded strip between two homogeneous layers. International Journal of Mechanical Sciences. 2007, 49(9): 1038-1046.
    55高廷凯.各向异性功能梯度材料平面断裂力学分析.中北大学学报. 2006. 27(1): 78-81.
    56冯文杰,苏启亮,邹振祝.功能梯度条共线Griffith裂纹反平面剪切冲击.力学学报. 2003, 35(4): 474-478.
    57毕贤顺,程靳,陈晓岚.无限长条功能梯度材料的反平面裂纹问题.哈尔滨工业大学学报. 2002. 34(3): 363-366.
    58马力,吴林志.各向异性功能梯度材料中裂纹对弹性波的散射.中国力学学会学术大会. 2005.
    59刘俊俏,李星. SH波在正交各向异性功能梯度材料直裂纹处的散射.临沂师范学院学报. 2006.28(3):16-19.
    60 R. L. Williamson, B. H. Rabin, J. T. Drake. Finite element analysis of thermal residual stress at graded ceramic-metal interfaces. Part I: Modal description and geometrical effects. Journal of Applied Physics. 1993, 74(2): 1310-1320.
    61 J. T. Drake, R. L. Williamson, B. H. Rabin. Finite element analysis of thermal residual stresses at graded ceramic-metal interfaces. Part II. Interface optimization for residual stress reduction. Journal of Applied Physics. 1993, 74(2): 1321-1326.
    62 O. Inan, S. Dag, F. Erdogan. Three dimensional fracture analysis of FGM coatings. Materials Science Forum. 2005, 492-493: 373-378.
    63 B. Yildirim, S. Dag, F. Erdogan. Three dimensional fracture analysis of FGM coatings under thermomechanical loading. International Journal of Fracture. 2005, 132(4): 369-395.
    64 R. L. Williamson, B. H. Rabin and J. T. Drake. Finte element analysis of thermal residual stress at graded ceramic-metal interfaces. Part I: Model description and geometrical effects. Journal of Applied Physics. 1993, 74(2): 1310-1320.
    65 C. H. Hsueh, S. Lee. Modeling of elastic thermal stresses in two materials joined by a graded layer. Composites Part B: Engineering. 2003, 34(8): 747-752.
    66 C. H. Hsueh, L. C. Dejonghe, S. Lee. Modeling of thermal stresses in joining two layers with multi- and graded interlayers. Journal of the American Ceramic Society. 2006, 89(1): 251-257.
    67 G. Bao, L. Wang. Multiple cracking in functionally graded ceramic/metal coatings. International Journal of Solids and Structures. 1995, 32(19): 2853-2871.
    68 G. Bao, H. Cai. Delamination cracking in functionally graded coating/metal substrate systems. Acta Mechnica. 1997, 45(3): 1055-1066.
    69 N. Noda. Thermal stress intensity factor for functionally gradient plate with an edge crack. Journal of Thermal Stresses. 1997, 20(3-4): 373-387.
    70 Y. D. Lee, F. Erdogan. Interface cracking of FGM coating under steady state heat flow. Engineering Fracture Mechanics. 1998, 59(3): 361-380.
    71吴振强,夏原,李光,徐方涛.多层陶瓷涂层厚度配比应力场有限元分析.大连理工大学学报. 2006, 46(S1): 60-65.
    72 J. H. Kim, G H. Paulino. Finite element evaluation of mixed mode stress intensity factors in functionally graded materials. International Journal for Numerical Methods in Engineering. 2002, 53(8): 1903-1935.
    73 J. H. Kim, G. H. Paulino. Mixed-mode fracture of orthotropic functionally graded materials using finite elements and modified crack closure method. Engineering Fracture Mechanics. 2002, 69(14-16):1557-1586.
    74 D. Serkan, B. Yildirim, D. Q. Sarikaya. Mixed-mode fracture analysis oforthotropic functionally graded materials under mechanical and thermal loads. International Journal of Solids and Structures. 2007, 44(24): 7816-7840.
    75 P. R. Marur, H. V. Tippur. Numerical analysis of crack-tip fields in functionally graded materials with a crack normal to the elastic gradient. International Journal of Solids and Structures. 2000, 37(38): 5353-5370.
    76 J. H. Kim, G. H. Paulino. Finite element evaluation of mixed mode stress intensity factors in functionally graded materials. International Journal for Numerical Methods in Engineering. 2002, 53(8): 1903-1935.
    77 J. E. Dolbow, M. Gosz. On the computation of mixed-mode stress intensity factors in functionally graded materials. International Journal of Solids and Structures. 2002, 39(9): 2557-2574.
    78 P. R. Marur, H. V. Tippur. Dynamic response of biomaterial and graded interface cracks under impact loading. International Journal of Fracture. 2000, 103: 95-109.
    79 C. E. Rousseau, H. V. Tippur. Evaluation of crack tip fields and stress intensity factors in functionally graded elastic materials: Cracks parallel to elastic gradient. International Journal of Fracture. 2002, 114(1):87-111.
    80 T. Honein, G. Herrmann. Conservation laws in nonhomogeneous plane elastostatics. Journal of the Mechanics and Physics of Solids. 1997, 45(5): 789-805.
    81 G. Anlas, M. H. Santare, J. Lambros. Numerical calculation of stress intensity factors in functionally graded materials. International Journal of Fracture. 2000, 104(2): 131-143.
    82 S. Dag. Mixed-mode fracture analysis of functionally graded materials under thermal stresses: A new approach using Jk-integral. Journal of Thermal Stresses. 2007, 30(3): 269-296.
    83 L. B. Lucy. A numerical approach to the testing of the fission hypothesis. The Astron. J. 1977, 8(12): 1013-1024.
    84 T. Belytschko, Y. Krongauz, D. Organ, M. fleming, P. Krysl. Meshless Methods: An overview and recent developments. Computer Methods in Applied Mechanics and Engineering. 1996, 139(1-4): 3-47.
    85 W. K. Liu, S. Jun, Y. F. Zhang. Reproducing kernel particle methods.International Journal for Numerical Methods in Engineering. 1995, 20(8-9): 1081-106.
    86 T. Rabczuk, S. P. Xiao, M. Sauer. Coupling of mesh-free methods with finite elements: Basic concepts and test results. Communications in Numerical Methods in Engineering. 2006, 22(10): 1031-1065.
    87 M. Y. Zhang, H. Zhang, L. L. Zheng. Application of smoothed particle hydrodynamics method to free surface and solidification problems. Numerical Heat Transfer; Part A: Applications. 2007, 52(4): 299-314.
    88 M. B. Liu, G. R. Liu, Z. Zong. An overview on smoothed particle hydrodynamics. International Journal of Computational Methods. 2008, 5(1): 135-188.
    89 B. Nayroles, G. Touzot, P. Villon. Generalizing the finite element method: Diffuse approximation and diffuse elements. Computational Mechanics. 1992, 10(5): 307-318.
    90 T. Belytschko, Y. Y. Lu, L.Gu. Element-free galerkin methods. International Journal for Numerical Methods in Engineering. 1994, 37(2): 229-256.
    91 C. A. Duarte, J. T. Oden. Hp-clouds: A meshless method to solve boundary-value problems. Technical report 95-05. Texas Institute for Computational and Applied Mechanics, University of Texas at Austin. 1995.
    92 M. Fleming, Y. A. Chu, B. Moran and T. Belytschko. Enriched element-free galerkin methods for crack tip fields. International Journal for Numerical Methods in Engineering. 1997, 40(8): 1483-1504.
    93 T. Belytschko, M. Fleming. Smoothing, enrichment and contact in the element-free Galerkin method. Computers and Structures. 1999, 71(2): 173-195.
    94 Y. Xu, S. Saigal. Element free Galerkin formulation for stable crack growth in an elastic solid. Computer Methods in Applied Mechanics and Engineering. 1998, 154(3-4): 331-343.
    95 J. P. Ponthot, T. Belytschko. Arbitrary Lagrangian-Eulerian formulation for element-free Galerkin method. Computer Methods in Applied Mechanics and Engineering. 1998, 152(1-2): 19-46.
    96 J. Chen, L. Z. Wu, S. Y. Du. Element-free Galerkin methods for fracture of functionally-graded materials. Key Engineering Materials. 2000, 183-187:487-492.
    97何沛祥,李子然,吴氏春.无网格法与有限元法的耦合及其对功能梯度材料断裂计算的应用.中国科学技术大学学报. 2001, 31(6): 673-680.
    98 B. N. Rao, S. Rahman. A coupled meshless-finite element method for fracture analysis of cracks. International Journal of Pressure Vessels and Piping. 2001, 78(9): 647-657.
    99 C. K. Lee, C. E. Zhou. On error estimation and adaptive refinement for element free Galerkin method: Part II: Adaptive refinement. Computers and Structures. 2004, 82(4-5): 429–443.
    100 G. R. Liu, Z. H. Tu. An adaptive procedure based on background cells for meshless methods. Computer Methods in Applied Mechanics and Engineering. 2002, 191(17-18): 1923–1943.
    101 Y. Liu, X. Zhang, M. W. Liu. A meshless method based on least-squares approach for steady- and unsteady-state heat conduction problems. Numerical Heat Transfer, Part B: Fundamentals. 2005, 47(3): 257-275.
    102 V. Parameswaran, A. Shukla. Dynamic fracture of a functionally gradient material having discrete property variation. Journal of Material science. 1998, 33(13): 3303-3311.
    103 R. J. Butcher, C. E. Rousseau, H. V. Tippur. A functionally graded particulate composite: Preparation, measurements and failure analysis. Acta Materialia. 1999, 47(1): 259-268.
    104 C. E. Rousseau, H. V. Tippur. Compositionally graded materials with cracks normal to the elastic gradient. Acta Materialia. 2000, 48(16): 4021-4033.
    105 P. R. Marur, H. V. Tippur. Dynamic response of bimaterial and graded interface cracks under impact loading. International Journal of Fracture. 2000, 103(1): 95-109.
    106 C. E. Rousseau, H. V. Tippur. Dynamic fracture of compositionally graded materials with cracks along the elastic gradient: Experiments and analysis. Mechanics of Materials. 2001, 33(7): 403-421.
    107 J. Abanto-Bueno, J. Lambros. Investigation of crack growth in functionally graded materials using digital image correlation. Engineering Fracture Mechanics. 2002, 69(14-16):1695-1711.
    108刘栋梁,姚学锋,许蔚.功能梯度材料的静态断裂特性实验.清华大学学报(自然科学版). 2007, 47(2): 276-279.
    109范天佑.断裂理论基础.北京:科学出版社, 2003: 250.
    110 E. H. Yoffe. The moving Griffith Crack. Philosophical Magazine. 1951, 42(330): 739-750.
    111 J. W. Graggs. On the propagation of a crack in an elastic-brittle material. Journal of the Mechanics and Physics of Solids. 1960, 8: 66-75.
    112 K. B. Broberg. The propagation of a brittle crack. Arkiv for Fysik. 1960, 18: 159-192.
    113 B. R. Baker. Dynamic stress created by a moving crack. Journal of Applied Mechanics. 1962, 24: 449-454.
    114 G. T. Hahn, M. F. Kanninen, Fast fracture and crack arrest, ASTM Special Technical Publication. 1977, 627: 95-108.
    115 J. A. Aberson, et al, Fast Fracture and Crack Arrest, ASTM Special Technical Publication. 1977, 627: 123-134.
    116 P. N. R. Keegstra, et al, Proc. ICF4, Vol. 3(ed. by D. M. R. Taplin), Univ. of Waterloo Press, Waterloo, Canada. 1977: 513-522.
    117 G. Yagawa, et al, Fast Fracture and Crack Arrest, ASTM STP. 1977, 627: 109-122.
    118 Y. Z. Chen, X. Y. Lin. Singular integral eqaution method for a moving crack problem in antiplane elasticity of functionally graded materials. International Journal of Computational Methods. 2007, 4(3): 475-492.
    119 Z. Q. Cheng, Z. Zheng. Moving mode III crack in functionally graded strip. Yingyong Lixue Xuebao. 2008, 25(1): 62-65.
    120 J. Cheng, X. G. Li, N. C. Lü. Mode III Yoffe dynamic crack in an infinite length strip for orthotropic anisotropy functionally graded material. Key Engineering Materials. 2006, 324-325: 287-290.
    121 M. H. Xu, X. F. Yao, X. Q. Feng, H. Y. Yeh. Anti-plane Yoffe moving crack problem in isotropic functionally graded materials. Journal of Reinforced Plastics and Composites. 2007, 26(2): 127-137.
    122 L. Ma, L. Z. Wu, L. C. Guo. On the moving Griffith crack in a nonhomogeneous orthotropic strip. International Journal of Fracture. 2005, 136(1-4): 187-205.
    123 J. G. Wang, X. S. Bi, X. L. Chen. Finite length crack moving problem for ainfinite length strip of FGM under antiplane shear loading. Harbin Gongye Daxue Xuebao. 2006, 38(2): 310
    124 F. Delae, F. Erdogan. On the mechanical modeling of the interfacial region in bonded half-planes. Journal of Applied Mechanics, Transactions ASME. 1988, 55(2): 317-324.
    125 M. Ozturk, F. Erdogan. Axisymmetric crack problem in bonded materials with a graded interfacial region. International Journal of Soids and Structures. 1996, 33(2): 193-219.
    126 C. Li, G. J. Weng. Dynamic stress intensity factors of a cylindrical interface crack with a functionally graded interlayer. Mechanics of Materials. 2001, 33(6):325-333.
    127 B. L. Wang, J. C. Han, S. Y. Du. Crack problem for non-homogeneous composite materials subjected to dynamic loading. Internationl Journal of Solids and Structures. 2000, 37(9): 1251-1274.
    128 Y. S. Wang, D. Gross. Analysis of a crack in a functionally graded interface layer under static and dynamic loading. Key Engineering Materials. 2000, 183-187: 331-336.
    129黄干云,汪越胜,余寿文.功能梯度材料的平面断裂力学分析.力学学报. 2005, 37(1): 1-8.
    130 G. Y. Huang, Y. S. Wang. Dynamic fracture of a functionally graded coating. Materials Science Forum. 2003, 423-425: 645-650.
    131 C. H. Zhang, J. Sladek, V. Sladek. Effects of material gradients on transient dynamic mode-III stress intensity factors in a FGM. International Journal of Solids and Structures. 2003, 40(20): 5251-5270.
    132 B. Jin, Z. Zhong. A moving mode-III crack in functionally graded piezoelectric material: Permeable problem. Mechanics Research Communications. 2002, 29(4): 217-224.
    133 V. Parameswaran, A. Shukla. Crack-tip stress fields for dynamic fracture in functionally graded materials. Mechanics of Materials. 1999, 31(9): 579-596.
    134 A. W. Maue, Zeitschrift fur angewandte Math. und Mech. 1953, 33: 1-12.
    135 A. W. Maue, Zeitschrift fur angewandte Math. und Mech. 1954, 34: 1-12.
    136 Noble B., Methods based on the Wiener-Hopf technique, Pergamon Press,London. 1958.
    137 G. C. Sih, G. T. Embley, R. S. Ravera. Impact response of finite crack in plane extension. International Journal of Solids and Structures. 1972, 8(7): 977-993.
    138 J. A. Aberson, et al, Mechanics of Fracture, Noodhoff International Publishing, Leyden. 1977(4): 249-294.
    139 T. Y. Fan, H. G. Hahn, Application of the boundary integral equation method to dynamic fracture mechanics. Engineering Fracture Mechanics. 1985, 21(2): 307-313.
    140 G. C. Sih, E. P. Chen. Crack in composite materials. Mechanics of Fracture, Matinus Nihoffi Publish, The Hague. 1981, 6: 1-97.
    141盖秉政,李开标.梯度非均匀有限层-基结构界面裂纹动态断裂的数值分析.应用力学学报. 2007, 24(2): 327-331.
    142 Y. D. Li, J. Bin, N. Zhang, L. Q. Tang, D. Yao. Dynamic stress intensity factor of the weak/micro-discontinuous interface crack of a FGM coating. International Journal of Solids and Structures. 2006, 43(16): 4795-4809.
    143 Y. D. Li, H. C. Zhang, W. Tan. Fracture analysis of functionally gradient weak/micro-discontinuous interface with finite element method. Computational Materials Science. 2006, 38(2): 454-458.
    144 G. C. Sih, E. P. Chen. Moving crack in a finite strip under tearing action. J. of the Franklin Institute. 1970, 290: 25-35.
    145 G. C. Sih, E. P. Chen. Crack propagation in a strip of material under plane extension. International Journal of Engineering Science. 1972, 10: 537-551.
    146 F. Nilsson. Dynamic stress-intensity factor for finite strip problems. International Journal of Fracture. 1972, 8(4): 403-411.
    147 S. A. Meguid, X. D. Wang, L.Y. Jiang. On the dynamic propagation of a finite crack in functionally graded materials. Engineering Fracture Mechanics. 2002, 69(14-16): 1753-1768.
    148 G. C. Sih, E. P. Chen. Mechanics of fracture elastodynamic crack problems. Noordhoff International Publishing Leyden. 1977, 4: 131-141.
    149 Z. G. Zhou, B. Wang, Y. G. Sun. Investigation of the dynamic behavior of a finite crack in the functionally graded materials by use of the Schmidt method, Wave Motion. 2004, (39): 213-225.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700