用户名: 密码: 验证码:
近中区瞬时爆炸波识别及其作用规律研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前,由于爆炸本身的复杂性、炮孔近中区介质爆炸波测定试验设备和技术难度的限制等原因,对于岩石类介质中爆炸波作用波形基本特征及作用过程细观特征的定量研究还未见文献报道,而岩石类材料的破坏是爆炸冲击波、应力波及爆生气体膨胀三者共同作用的结果。获取爆炸波信号的试验难度使得对于岩体中爆炸波作用过程的认识大多停留在定性认识之上,缺乏对爆炸波及与爆炸波各分离量作用相关联的岩石类材料断裂损伤演化过程的定量系统研究。针对以上问题,结合教育部“优秀青年教师资助计划”课题“深井采矿爆破高效破岩及其相关灾害预防技术研究(EYTP-2134)”和教育部博士点基金资助课题“不耦合加载瞬间岩体近中区爆炸波识别及作用规律研究(200805331148)”,对岩石类介质中由爆炸激起的瞬时爆炸波特征及其作用下的岩体损伤演化过程进行了系统深入的研究。主要研究成果如下:
     第一,通过超动态测试系统匹配研究和实验技术改进,实现了瞬时爆炸波动应变信号的成功、稳定、重复、高效、全面测定。该应变测试系统及实验技术与其它压电或压力类传感器相比,能够测定压拉应变,使得测试数据无缺陷,波形完整,真实地反映了复杂的爆炸波作用过程,为实现炮孔近中区介质中爆炸波作用下的岩石爆破机理及岩石破岩理论的定量研究奠定了坚实的实验基础。
     第二,基于实测爆炸波信号及岩石破岩机理等理论,将爆炸波识别并分离为爆炸波作用一区、二区和三区,提出了与爆炸波各分离区相关联的爆炸波破岩过程。爆破破岩过程是爆炸波作用一、二区在10~4/S以上的高加卸载应变率下的压缩、再次拉伸与压缩和爆炸波作用三区准静态作用下的复杂作用过程。在空间上,三者同时存在于爆炸波有效作用范围;时间上,三者依次作用于测点,为相互独立的过程,但对混凝土的断裂损伤存在内在联系。
     第三,基于空气不耦合装药条件下混凝土中实测爆炸波信号识别,得到了不同不耦合系数和不同距离处爆炸波各分离区基本特征参数变化的细观特征。通过对爆炸波各分离区的应力、加卸载应变率、质点运动速度、质点加速度等基本特征进行分析,定量建立了各分离区动力学基本特征参数与不耦合系数K、到爆源中心距离R之间的关系,深刻揭示了炮孔周围介质近中区瞬时爆炸波传播及作用过程的细观特征。
     第四,结合前人成果,并通过自由面反射波和接触爆炸爆炸波实验实测波形与孔中爆炸波波形的比较,证实了爆炸波各分离区划分及测试数据的正确性。建立了与炸药爆轰结构、岩石破岩理论相联系的爆炸波各分离区产生机制。混凝土中的爆炸波作用一区是爆轰波前沿波阵面压缩区爆压突跃作用的结果,爆炸波作用三区是爆轰波C-J面后炸药爆轰产物等熵不定型膨胀流动的结果,而爆炸波作用二区产生复杂,可能与损伤有关。
     第五,针对构成瞬时爆炸波动应变各分离区信号具有短时、频带复杂、能量密度分布不均和突变快的特点,将时频能分析技术用于爆炸波信号分析,从线性和非线性时频分析技术对短时非平稳随机能量有限信号分析的适应性出发,通过多种时频分析方法对爆炸波信号的对比评价和定量计算,确定了适宜于爆炸波动应变分析的最优时频分析函数,为使用时频分析技术进行瞬时爆炸波信号分析奠定了坚实的理论和应用基础。
     第六,基于最优时频分析函数Rihaczek分布对不耦合装药条件下实测爆炸波信号进行时频能分析,实现了爆炸波信号在时频能三维空间上的识别定位和爆炸波时频域动应变能量密度区分离,获得了爆炸波各分离区的时频能分布特征、总动应变能和各分离区的动应变能,建立了总动应变能、各分离区的动应变能与不耦合系数K、到炮孔中心距离R的能量动态变化关系,深刻揭示了炮孔周围介质近中区瞬时爆炸波各分离区能量分配及能量中心演化的细观特征。
     第七,运用声波测试技术对爆炸后混凝土损伤效应进行研究,定量建立了与爆炸波各分离区基本特征参数和能量作用过程相关联的岩体体损伤累积演化机理。提出了与介质损伤阈值D_cri有关的动应变能阈值E_cri为岩体是否破裂的能量判据,根据各分离区动应变能与E_cri相比较,作为是否产生新裂纹的依据。爆炸波作用一区的作用主要体现在产生新裂纹和激活微裂纹上,而爆炸波作用二、三区的作用主要是扩展已有裂纹,并在损伤界面上存在应力及能量集中。
     论文获得的上述主要成果,对爆破工程、防护工程、岩体本构关系、爆炸地震波震源特性等学科的研究具有重要的理论及工程应用意义,为应用岩石类材料炮孔近中区介质瞬时爆炸波作用特征及与之作用相关联的介质断裂损伤过程奠定了坚实的实验基础、理论基础和技术基础。
At present, seldom studies have been done on the detailed characteristics about essential parameters of the action course of blast wave, for the reason of its own complexity of explosion, the limitation of the test equipment and technology for testing the wave in adjacent area to a borehole in a concrete model, while destruction of the rock material results from the combination effect for the three kinds of blast stress acting. However, in recently, action course of blast wave still remains in determining the nature because it is difficult to do test to obtain signals of blast wave in adjacent area to a borehole, so studies are seldom done on the blast wave and rock damage evolution course with the separated stress. In order to solve the problems above, the author has done the systematical studies on the detailed characteristics of blast wave and rock damage evolution under blast wave in adjacent area to borehole combining with the two projects: the outstanding young teacher's support plan—Study on the technique of the efficient rock breakage by blasting in deep mining and prevention against relevant catastrophe (EYTP-2134), granted by Ministry of Education, and doctors fund subsidy subject of Ministry of Education "Recognition of blast wave signals and the dynamics process on it in adjacent area to a borehole". The main study results are as follows:
     Firstly, blast wave were tested successfully with characteristic of stabilizing, repeating, and high-efficiently in an all-round way for concrete through match studies on the dynamical measurement system and improving experimental technique for the first time. Comparing with other piezoelectricity or the pressure sensor, the systematic and experimental technique can exhibits the compressive and tensile stress, with non defect for the obtained data while the wave form is intact. The data reflected complicated action course of the blast wave truly. The experiment system and technique establish the solid experiment foundation for further quantitatively mechanism study and theoretical study for the rock blasting under blast wave in adjacent area to a borehole.
     Secondly, blast waves are recognized and divided into three sub areas, named first zone, second zone and third zone of stress wave action, based on analyzing the blast wave signals that had been tested in concrete and the theories of rock broken mechanism, etc. A rock broken course related to the each zone has been proposed for the first time. The damage process of the concrete is very complicated, in which occurs compressive, tensile by frist zone and second zone under the high strain rate with 10~4/s as well as the quasi-static effect by third zone. On the space, the three kinds of blast wave act on the effective sphere of concrete at the same time. On time, they act on the measuring point sequentially and are the separate course, but. exist in inner link to the damage of the concrete.
     Thirdly, based on the reorganization for the blast wave under the condition of air decoupling charge, the detailed characteristics of the essential feature parameters in the separating area are obtained from different place in different coupling coefficient for the first time. Through analyzing essential features of the separating zones of blast wave, such as stress, loading strain rate and unloading rate, velocity and acceleration of particle,etc, the relationship among dynamics essential feature parameter of separating zones and the decoupling coefficient K and the distance from measuring point to bore hole is quantitatively established which have revealed deeply the detailed characteristics of propagating and mechanism of the instantaneous explosion wave in adjacent area to a borehole in a concrete model.
     Fourthly, combining with the others' former achievement, while comparing the wave form of a back wave tested from free face and contact explosion experiment to the wave form in the bore hole, the dividing action zones and the tested data of separated area of blast wave are verified correctly. The producing mechanism of the separating zones of blast wave is set up interrelated with detonation structure of explosive and the theory of rock breaking. First zone of blast wave in concrete is the acting result of explosion pressure in the wave front of explosion detonation, and third zone is the acting result of the detonation product with isentropic amorphous expansion flow after C-J interface of explosion detonation. And second zone of balst wave in concrete produces complicatedly, and may relate to the damage of the rock.
     Fifthly, the technology of time-frequency energy is used to analyze the blast wave for the first time, in which the signal of the separating blast wave zones has the characteristics of short time, frequency band complicatedness, the maldistribution of energy density and fast sudden change. From adaptability that the technology of linear and non-linear time frequency distribution analyze non-steady random limited signal of energy in short-term, optimum function of time-frequency distribution is selected to analyze dynamical strain of blast wave by the contrast of many kinds of analytical methods of time-frequency distribution appraising and calculating to the blast wave signal. And it establishes solid theory and application foundation for using time-frequency distribution to analyze instantaneous blast wave.
     Sixthly, based on the selected optimum function, Rihaczek distribution is used to analyze the blast waves tested near the cavity of concrete under the condition of radial air decoupling charge. Blast wave is recognized accurately at three-dimensional space of time-frequency energy, and is separated to dynamical strain energy density zones by Rihaczek distribution. Then the time-frequency energy distribute characteristic of every zone, dynamic strain energy of every zone and total energy are calculated. The dynamic change relation relationship between total energy or dynamic strain energy of every zone with decoupling coefficient K and the distance R from measuring point to bore hole are established. They deeply reveal the energy mechanism of the separating zones and detailed characteristic of the energy centre evolving on instantaneous explosion waves.
     Finally, acoustic wave measurement technology is used to study the concrete damage after exploded and the damage evolving mechanism of structure which interrelated with the essential feature parameters and energy in the separating area is set up. Dynamic strain energy threshold E_(cri) related to damaging threshold value D_(cri) is put forward as energy criterion of rock damage. By comparing with E_(cri) and the dynamical strain energy of separating zones, it can be judged whether new cracks are produced. The function of first zone of blast wave action reflects in producing new cracks and expanding the cracks mainly. The function of second zone and third zone action is to expand the new cracks, and stress and energy centralized in damaging boundary.
     The above main conclusions obtained in the project have significant value both in theoretical investigation and engineering application with discipline of blasting engineering, defense engineering, constitutive relation of rock body, the characteristic of the seismic wave etc., and build a solid experiment foundation, a theoretical and technological basis for studying action characteristics of instantaneous blast wave and damage evolution of rock related blast wave in adjacent area to a borehole in concrete models
引文
[1]杨军,金乾坤,黄风雷.岩石爆破理论模型及数值计算[M].北京:科学技术出版社,1999.
    [2]钮强.岩石爆破机理[M].沈阳:东北工学院出版社,1990.
    [3]杨善元.岩石爆破动力学基础[M].北京:煤炭工业出版社,1993.
    [4]孟吉复,惠鸿斌.爆破测试技术[M].北京:冶金工业出版社,1992.
    [5]刘建亮.工程爆破测试技术[M].北京:北京理工大学出版社,1994.
    [6]高全臣.爆破测试技术[M].北京:煤炭工业出版社,1996.
    [7]黄正平,何远航.爆炸测试技术(英文版)[M].北京:北京理工大学出版社,2005.
    [8]张立.爆破器材性能与爆炸效应测试[M].合肥:中国科学技术大学出版社,2006.
    [9]龚敏,贾聚平,王德胜.爆破模型的动态光测力学方法研究综述[J].爆破,2005,22(1):7-12.
    [10]陆渝生,邹同彬,连志颖,等.应力波和动光弹等差条纹的分析与判读[J].力学与实践,2004,26(1):34-37.
    [11]Christie D G.A multiple spark camera for dynamic stress analysis[J].J Photogr Sci 1955,(3):153-159.
    [12]Dally J W,Thau S A.Observations of stress wave propagation in a half-plane with boundary loading[J].International Journal of Solids and Structures,1968,77:116-120.
    [13]Riely W F.A photo elastic analysis of stress wave propagation in a layered model[J].Geophysics,1966,31:881-889.
    [14]Daniel I M,Rowlands R E.On wave and fracture propagation in rock media[J].Experimental Mechanics,1975,15(12):449-457.
    [15]Reinhart H W,Dally J W.Dynamic photo elastic investigation of stress wave interaction with a bench face[J].Trans Soc Mining Eng AIME,1971,250(1):35-42.
    [16]Dally J W.Dynamic photo elasticity and its application to stress wave propagation[J].Fracture Mechanics and Fracture Control,1987.278-269.
    [17]Shukla A,Singh R.Explosively generated pulse propagation through particles containing natural cracks[J].Mechanics of Materials,1996,23:255-270.
    [18]Shukla A,Jain N.Dynamic damage growth in particle reinforced graded materials[J].International Journal of Impact Engineering,2004,30:777-803.
    [19]Durelli A J,Shukla A.Identification of isochromatic fringe[J].Exp.Mech,1983,23(1):111-119.
    [20]Xu LRoy,YonggangYHuang,Ares JRosakis.Dynam-ic Crack Deflection and Penetration at Interface inHom-ogeneous Materials:Experimental Studies and Model Predictions[J].JournaloftheMechanics and Physics of Solids,2003,51:461-486.
    [21]Raman P Singh,Venkitanarayamam Parameswaran.An Ex-permi ental Investigation of Dynamic Crack Propagation in aBrittleMaterialReinforcedwith aDuctile Layer [J].Opticsand Lasers in Engineering,2003,40:289-386.
    [22]Gomez J T,Shukla A,Shauma A.Static and DynamicBehavior of Concrete and Granite in Tension with Dam-age[J].Theoretical and Applied Fracture Mechanics,2001,1:37-49.
    [23]Lee S,Ravichandran G.An Investigation ofCracking inBrittle Solids underDynamic CompressionUsing Photoe-lasticity[J].Optics and Lasers in Engineering,2003,40:341-352.
    [24]朱振海,杨永琦.多火花动态光弹性仪在爆炸力学实验中的初步应用[J].爆破与冲击,1985,5(3):67-76.
    [25]王树仁,朱振海,魏有志.空孔导向作用的动光弹研究[J].爆破,1985,2(2):6-12.
    [26]邓志勇,张志毅,王中黔.条形药包端部爆炸应力场的动光弹实验研究[J].爆炸与冲击,1996,16(1):86-90.
    [27]龚敏,于亚伦,佟景伟.爆破等差与等和条纹图分析方法探讨[J].爆炸与冲击,1997,17(3):265-271.
    [28]龚敏,于亚伦.爆破动态应力场量化研究原理与初步实验[J].爆炸与冲击,1997,17(1):43-49.
    [29]陆渝生,连志颖.爆炸焊接中应力波作用的动光弹试验研究[J].解放军理工大学学报,2002,13(2):41-44.
    [30]王汉军,黄风雷.岩石定向断裂爆破的力学分析及参数研究[J].煤炭学报,2003,28(4):399-402.
    [31]朱振海,杨永琦.多火花动态光弹性仪在爆炸力学实验中的初步应用[J].爆破与冲击,1985,5(3):67-76.
    [32]励争,苏先基.动态光弹性方法的定量研究[M].兵工学报,2000,21(增刊):26-28.
    [33]李彦涛,杨永琦.脉冲全息干涉法在岩石爆破机理研究中的应用[J].煤炭学报,1996,21(2):168-172.
    [34]闫海青,唐晨.光弹性图像的计算机模块化处理研究[M].沈阳航空工业学院学报,2001,18(3):32-34.
    [35]中国矿业大学北京研究生部.国家自然科学基金项目:三维激光动光弹超动态岩石爆破机理模型试验研究鉴定材料[R].1991.
    [36]顾伯良.爆炸作用下岩石板中应力波传播和裂纹扩展的反射式动光弹探讨[D].北京:中国矿业大学北京研究生部,1986.
    [37]谢源,刘庆林.附加载荷下介质爆破特性的全息动光弹试验研究[J].工程爆破,2000, 6(2):11-15.
    [38]张建华,王玉杰.偏心不耦合装药爆炸应力场的动光弹研究[J].爆破,2001,18(1):8-12.
    [39]龚敏,王德胜,程西江.条形药包不同空腔比试验研究[J].爆破,2004,21(4):1-4.
    [40]Daniel IM,Rowlands R E.On Waves and Fracture Propagation in Rock Media[J].Exp Mech,1975,15(12):449-457.
    [41]毕谦,杨邦成.初应力场中多孔爆破研究[A].第六届全国实验力学学术会议论文集[C].北京:北京大学出版社,1989.704-707.
    [42]方如华,曹正元.动态分析结构的瞬态响应[A].第七届全国实验力学学术会议论文集[C].北京:北京大学出版社,1992.10,971-974.
    [43]励争,苏先基,王仁.动态光弹性方法的主应力分离的研究[J].力学学报,1998,26(1):60-69.
    [44]Holloway D C.Application ofHolographic Interferometryto Stress Wave and Crack Propagation Problems[J].Optical Engineering,1982,21(3):468-473.
    [45]Lallemand J P.Lagarde a Separation of Isochromatics and Isopachics Using a Faraday Rotator in Dynamic Holographic Photoelasticity[J].Exp Mech,1982,22(5):174-179.
    [46]秦玉文,杜长泰.在全息光弹中用旋光法求解瞬态应力[A].1985年北京国际实验力学会议论文集[C].112-118.
    [47]Manogg P.Anwendung der schattenoptik zur untersuchung des zerreissvorgangs von platten [D].West Germany:West Germany Freiburg University,1964.
    [48]Beinert J,Kalthoff J F.Experimental determination of dynamic stress intensity factors by shadow patterns[A].Exp Evaluation of Stress Concentration and Intensity Factors[C].Boston:Martinus Nijhoff Publishers,1981.281-290.
    [49]杨仁树.岩石炮孔定向断裂控制爆破机理动焦散试验研究[D].北京:中国矿业大学力学与建筑工程学院,1997.
    [50]姚学锋,方竞,熊春阳.爆炸应力波作用下裂纹与孔洞的动态焦散线分析[J].爆炸与冲击,1998,18(3):231-236.
    [51]杨仁树,牛学超,商厚胜,等.爆炸应力波作用下层理介质断裂的动焦散实验分析[J].煤炭学报,2005,30(1):36-39.
    [52]李清,杨仁树,李均雷,等.爆炸荷载作用下动态裂纹扩展试验研究.岩石力学与工程学报,2005,24(6):2912-2916.
    [53]肖同社,杨仁树,边亚东,等.含节理岩体爆生裂纹扩展的动焦散模型实验研究[J].实验力学,2006,21(4):540-542.
    [54]朱振海.爆炸加载下光弹性材料动念性能参数的测定[J].爆炸与冲击,1988,8(1):29-36.
    [55]孟祥跃.反射型云纹干涉法在岩石爆破机理研究中的应用[J].爆炸与冲击,1994,14(3):193-198.
    [56]Post D,Baract W.A high-sensitivity moire interferometry-a simplified approach[J].Exp Mech,1981,21(3):100-104.
    [57]戴福隆,傅承诵.云纹干涉法的波前干涉理论及发展[A].第四届实验应力分析会议论文[C].1984.
    [58]钟国成,任晓辉.云纹干涉法同时测定三维位移场[J].力学学报,1988,20(5):421-429.
    [59]钟国成,洪学明,郑润生.云纹干涉法瞬态应变分析[J].力学学报,1995,25(4):479-484.
    [60]苏先基,雷志辉.动态焦散线实验方法及其在断裂力学中的初步应用[J].力学学报,1987,19(4):357-365.
    [61]姚学锋,方竞,熊春阳.爆炸应力波作用下裂纹孔洞的动态焦散线分析[J].爆炸与冲击,1998,18(3):231-236.
    [62]中国力学学会《爆破量测技术研究》编委会主编.爆破量测技术研究[R].山东矿业学院建井研究室,1982.
    [63]黄正平.爆炸测试技术[R].未公开出版,1984.
    [64]Brinkmann J R.分离冲击波与气体膨胀作用的破碎机理.见:长江科学院等编译,第二届爆破破岩国际会议论文(译文)集[内部资料],1990,1.
    [65]刘汉丞,于为,等.岩石爆破中瞬态应变测试.中国力学学会工程爆破专业委员会编,工程爆破文集(第四辑).北京:冶金工业出版社,1993,267.
    [66]刘利青.论含水炮孔的预裂爆破[D].长沙:中南工业大学资源环境与建筑工程学院,1986.5.
    [67]周培银.水介质耦合爆破的机理及预裂爆破参数设计[D].长沙:中南工业大学资源环境与建筑工程学院,1989,6.
    [68]张强.不同耦合系数下水耦合爆破研究[D].长沙:中南工业大学资源环境与建筑工程学院,1997,1.
    [69]祝方才.不耦合装药爆破的实验研究[D].长沙:中南工业大学资源环境与建筑工程学院,1997,3.
    [70]徐国元.坚硬矿岩爆破破裂行为机理的研究[D].长沙:中南工业大学资源环境与建筑工程学院,1995.
    [71]徐国元,古德生,陈寿如.爆破破岩机理的实验研究[J].中南工业大学学报,1997,28(6):522-525.
    [72]徐国元.加载过程优化爆破破岩技术的理论及应用研究[R].长沙:中南工业大学博士后研究工作报告,1998,7.
    [73]胡刚,郝传波,景海河.爆炸作用下岩石介质应力波传播规律研究[J].煤炭学报,2001,26(3):270-273.
    [74]邱贤德,余永强,杨小林,等.层状复合岩体路堑开挖中预裂爆破技术实验[J].重庆大学学报(自然科学版),2003,26(7):108-112.
    [75]王占江,李孝兰,戈琳,等.装药不耦合系数对爆破裂纹控制的试验研究[J].岩石力学与工程学报,2003,22(11):1827-1831.
    [76]韩秀凤,蔡瑞娇,严楠.雷管输出冲击波在有机玻璃中传播衰减的实验研究[J].含能材料,2004,12(6):293-332.
    [77]韩秀凤,严楠,蔡瑞娇.锰铜传感器保护介质对雷管输出记录波形的影响[J].北京理工大学学报,2004,24(5):462-464.
    [78]何翔,吴祥云,李永池,等.石灰岩中爆炸成坑和地冲击传播规律的试验研究[J].岩石力学与工程学报,2004,23(5):725-729.
    [79]余尚江,李科杰.混凝土结构内冲击波应力传感器设计及其行为[J].爆炸与冲击,2005,25(4):350-354.
    [80]赵红平,叶琳,赵汝兵,等.岩石爆炸变形流场的全息预测方法-灰色理论的应用[J].岩石力学与工程学报,2005,24(1):39-43.
    [81]李清,王汉军,杨仁树.多孔台阶爆破破裂过程的模型试验研究[J].煤炭学报,2005,30(5):576-579.
    [82]王荣波,何莉华,田建华,等.两种光纤探针在冲击波作用下的时间响应特性[J].高压物理学报,2005,19(3):284-287.
    [83]王荣波,吴廷烈,王贵朝,等.冲击作用下快响应光纤探针研究[J].爆炸与冲击,2003,23(4):375-379.
    [84]宗琦,罗强.炮孔水耦合装药爆破应力分布特性试验研究[J].实验力学,2006,21(3):393-398.
    [85]张德志,李焰,钟方平等.冲击波壁面反射压力的压杆测试法[J].兵工学报,2007,28(10):1256-1260.
    [86]文尚刚,龚晏青,董树南,等.高量程压力传感器在含能材料燃烧转爆轰实验中的应用[J].含能材料,2007,15(2):165-168.
    [87]巫绪涛,胡时胜,田杰.PVDF应力测量技术及在混凝土冲击实验中的应用[J].爆炸与冲击,2007,27(5):411-415.
    [88]焦楚杰,孙伟,高培正.钢纤维高强混凝土抗爆炸研究[J].工程力学,2008,25(3):15--166.
    [89]Thorne B J,A damage model for rock fragmentation and comparison of calculation with blasting experiments in granite[J].SAND,90-1389,1990.
    [90]Thorne B J,Application of a damage model for rock fragmentation to the straight creek mine blast experiments,SAND,91-0867,1991.
    [91]杨军,金乾坤,高文学,等.岩石爆破损伤模型研究的几个问题[J].岩石力学与工程学报,1999,18(3):255-258.
    [92]东兆星.高应变率下岩石损伤模型研究综述与展望[J].工程爆破,2006,12(2):24-27.
    [93]Margolin,L.G.and Adams,T.F.,Spatial differencing for finite difference code[R].LA-10249 Los Alamos National Laboratory Report,1985.
    [94]Margolin,L.G.,等.动力引起的破坏和破碎的模拟[A].第一届国际爆破破岩会议论文集(译文集)[C].长沙:中国长沙岩石力学工程技术咨询公司,1985:234-243.
    [95]Mchugh,S.,等.破坏的数值模拟[A].第一届国际爆破破岩会议论文集(译文集)[C].长沙:中国长沙岩石力学工程技术咨询公司,1985:218-226.
    [96]刘殿书.岩石爆破破碎的数值模拟[D].北京:中国矿业大学北京研究生部,1992.
    [97]Grady D E,Kipp M E.Continuum modeling of explosivefracture in oil shale[J].International Journal of RockMechanics and Mining Sciences and Geomechanics Abstracts.1980,17:147-157.
    [98]Taylor L M,Chen Erping.Microcrack induced damage allumulation in brittle rock under dynamic loading[J].Comp.Mech.Appl.Mech.Engng,1986(55):301-320.
    [99]Kuszmaul J S.A technique for predicting fragmentation and fragment sizes resulting from rock blasting[A].In:Proc.28th U.S.Symp.Rock Mech.,Tcuson,Adz,1987,893-900.
    [100]Kusmail J S.A new constitutive model for fragmentation of rock under dynamic loading[C].The 2nd Int.Symp.on Rock Frag.by Blast.[S.l.]:[s.n.],1987:412-424.
    [101]Yang R.A new constitutive model for blast damage[J].Int.J.Rock Mech.Min.Sci.,Geomech.Abstr.1996(33):245-254.
    [102]刘殿书,王树仁.柱状装药爆破破碎过程的数值模拟研究[A].工程爆破文集第五辑[C].武汉:中国地质大学出版社,1993.16-22.
    [103]杨小林,王树仁.岩石爆破损伤及数值模拟[J].煤炭学报,2000,25(1):19-23.
    [104]杨军,王树仁.岩石爆破分形损伤模型研究[J].爆炸与冲击,1996,16(1):5-10.
    [105]杨军.岩石爆破分形损伤模型研究[D].北京:中国矿业大学(北京),1994.
    [106]李清,杨仁树,李均雷,等.爆炸荷载作用下动态裂纹扩展试验研究[J].岩石力学与工程学报,2005,24(16):2912-2916.
    [107]蒋金宝,林英松,阮新芳,等.爆炸波对水泥试样损伤破坏的实验研究[J].岩土工程学报,2007,29(6):922-926.
    [108]张贤达.现代信号处理[M].北京:清华大学出版社,2002.
    [109]王祝文,刘菁华,聂春燕.阵列声波测井信号的时频局域相关能量分析[J].吉林大学学报(地球科学版),2008,38(2):341-346.
    [110]何军,于亚伦,梁文基.爆破振动信号的小波分析.岩土工程学报,1998,20(1):47-50.
    [111]黄文华,徐全军,沈蔚,等.小波变换在判断爆破地震危害中的应用.工程爆破,2001,7(1):24-27.
    [112]娄建武,龙源,徐全军.小波分析在结构爆破振动响应能量分析法中的应用.世界地震工程,2001,17(1):64-68.
    [113]娄建武,龙源.爆破震动信号的特征提取及识别技术研究.振动与冲击,2003,22(3):80-82
    [114]娄建武,龙源,徐全军,等.基于小波包技术的爆破地震波特征提取及预报.爆炸与冲击,2004,24(31):261-267.
    [115]宋光明,曾新吾,陈寿如,等.爆破条件对爆破震动信号分析中小波包时频特征的影响.工程爆破,2002,8(3):5-12.
    [116]宋光明,曾新吾,陈寿如,等.位置条件对爆破震动信号分析中小波包时频特征的影响.工程爆破,2002,8(4):1-6.
    [117]宋光明,曾新吾,陈寿如,等.传播介质特性对爆破震动信号分析中小波包时频特征的影响.工程爆破,2003,9(1):64-68.
    [118]林大超,施惠基,白春华,等.爆破震动时频分布的小波包分析.工程爆破,2002,8(2):1-5.
    [119]林大超,施惠基,白春华,等.基于小波变换的爆破振动时频特征分析.岩石力学与工程学报,2004,23(1):101-106.
    [120]凌同华,李夕兵.爆破振动信号不同频带的能量分布规律.中南大学学报,2004,34(2):310-315.
    [121]凌同华,李夕兵.基于小波变换的时-能分布确定微差爆破的实际延迟时间.岩石力学与工程学报,2004,23(13):2266-2270.
    [122]凌同华,李夕兵.地下工程爆破振动信号能量分布特征的小波包分析.爆炸与冲击,2004,24(1):63-68.
    [123]中国生,徐国元,赵建平.基于小波变换的爆破地震信号阈值去噪的应用研究.岩土工程学报,2005,27(9):1055-1059.
    [124]中国生,徐国元,江文武.基于小波变换的爆破地震信号去噪的应用.中南大学学报,2006,37(1):155-159.
    [125]徐国元,中国生,熊正明.基于小波变换的爆破地震安全能量分析法的应用研究.岩土工程学报,2006,28(1):24-28.
    [126]中国生.基于小波变换爆破振动分析的应用基础研究[D].长沙:中南大学资源与安全工程学院,2006.
    [127]Mackown,A.F.Perimeter controlled blasting for underground excavations in fractured and weathered roeks[J].Bull.Assoc.Engg.Geol.ⅩⅩⅢ(4),1986:461-478.
    [128]Ricketts T.E.Estimating Underground mine damage Produeed by blasting[A].In:4th Mini SymP.On Explosive and Blasting Res Soe.,Explosive Engg,Anaheim,California,1988:1-156
    [129]Forsyth W.W.A discussion on the blast indueed over-break around underground exeavations [J|.Fraghlast,1993,(4):161-166.
    [130]Persson,P.A.,Holmberg,R.& Lee,J.Rock blasting and explosive engineering[M].CRC Press,Tokyo,1996:265-285.
    [131]Raina A.K.,Chakraborty A.K.,Ramulu M.et al.Rock mass damage from underground blasting,a literature review,and lab- and full scale tests to estimate crack depth by ultrasonic method[J].Fragblast,2000,(4):103-125.
    [132]陈庆发,张世雄,王官宝,等.倾斜薄层岩体巷道围岩松动圈测试研究[J].矿压力与顶板管理,2005,(2):61-63.
    [133]赵奎,万林海,饶运章,等.基于声波测试的矿柱稳定性模糊推理系统及其应用[J].岩石力学与工程学报,2004,23(11):1804-1509.
    [134]Liu Zhu-ping,Wu Xiao-wei,Chu Ze-han.Laboratory study of acoustic Parameters of rock [J].Aeta Geophysical Seiences,1994,37(5):659-666.
    [135]许波涛,王煌霞.动测法确定岩体动力参数的对比试验研究[J].岩石力学与工程学报,2004,23(2):284-288.
    [136]Insun Song,Maneheol Suh,Yong-Kyun Woo,et al.Determination of the elastic modulus set of foliated rocks from ultrasonic velocity measurements[J].Engineering Geology,2004,72(3):293-308.
    [137]胡运兵,宋劲,徐宏武.声波透射法在桥桩安全检测中的应用[J].地下空间与工程学报,2005,1(5):800-803.
    [138]赵明阶,吴德伦.工程岩体的超声波分类及强度预测[J].岩石力学与工程学报,2000,19(1):89-92.
    [139]黄仁东.金属矿山隐患空区声波层析成像识别及其安全控制技术研究[D].长沙:中南大学资源与安全工程学院,2005.
    [140]张志沛,刘旭,徐汉民,等.煤矿采空区注浆工程质量检测的试验研究[J].岩土工程学报,2005,27(5):604-606.
    [141]徐鸣洁,钟楷,俞缙,等.南京地铁工程勘察中声波测试与分析[J].岩石力学与工程学报,2005,24(6):1015-1024.
    [142]Meglis I.L,Chow T.M,and Martin C.D.Assessing in situ microcraek damage using ultrasonic velocity tomography[J].Interational Joumal of Rock Mechanics & Mining Seiences,2005,42(1):25-34.
    [143]Sayers C.M,Kachanov M.Microcrack-induced elastic wave anisotropy of brittle rocks[J].Joumal of GeoPhysical Research,1995,100(B3):4149-4156.
    [144]Otto Schulze,Till Pop,Hartmut Kerm.Development of damage and Permeability in deforming rock salt[J].Engineering Geology,2001,61(2):163-180.
    [145]Puseh,R.,Stanfors,R.The zone of disturbance around blasted tunnels at depth[J].Intemational Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1992,29(5):447-456.
    [146]程爱宝.软岩巷道在周边作用下的稳定性研究[D].长沙:中南大学资源与安全工程学院,2004.
    [147]Rubln A M,Ahrens T.J.Dynamic tensile failure induced velocity deficits in rock [J].Geophys ResLett,1991,18(2):219-223.
    [148]Krautkrammer,J.,Krautkranuner,H.Ultrasonic Testing of Materials[M].New Delhi:Narosa Publishing House,1993.
    [149]He Hong-liang,Athens T.J.Mechanical Properties of shock-damaged rocks[J].International Journal of Rock Mechanics & Mining Seienees,1994,31(5):525-533.
    [150]张志呈,蒲传金,史瑾瑾.不同装药结构光面爆破对岩石的损伤研究[J].爆破,2006,23(1):36-39.
    [151]朱传云,喻胜春.爆破引起岩体损伤的判别方法研究[J].工程爆破,2001,7(1):12-16.
    [152]胡建敏,付晖.弹性波法检测大孔径爆破对基岩松驰层厚度影响的探讨[J].岩土力学,2003,24(增):172-174.
    [153]曹孝君,吴青山,张继春,等.顺层岩质边坡的爆破振动控制标准试验[J].岩石力学与工程学报,2003,22(11):1924-1928.
    [154]李建军,段祝平.节理裂隙岩体爆破试验研究[J].爆破,2005,22(3):12-16.
    [155]闫长斌.爆破作用下岩体累积损伤效应及其稳定性研究[D].长沙:中南大学资源与安全工程学院,2004.
    [156]HUANG Zheng-ping,HEYuan-hang.Explosion measurement techniques[M].Beijing:Beijing Institute of Technology Press,2005.
    [157]李世义.动态测试技术基础[M].北京:国防工业出版社,1989:39.
    [158]李夕兵,古德生.岩石冲击动力学[M].长沙:中南工业大学出版社,1994.
    [159]王礼立.应力波基础[M].北京:国防工业出版社,2005,8.
    [160]愈茂宏.强度理论百年总结[J].力学进展,2004,34(4):529-559.
    [161]俞茂宏,M.Yoshimine,强洪夫,等.强度理论的发展和展望[J].工程力学,2004,21(6):1-20.
    [162]过镇海.混凝土的强度和变形[M].北京:清华大学出版社,1997.
    [163]李杰.张其云.混凝土随机损伤本构关系研究进展[J]_结构工程师,2000,(54):54-61.
    [164]梅泰P.混凝土的结构、性能与材料[M].祝永年译.上海:同济大学出版社,1991.
    [165]俞茂宏,卢楚芬.三轴应力状态下混凝土的一种新强度准则[J].固体力学学报,1999,20(3):272-280.
    [166]唐欣薇,张楚汉.基于改进随机骨料模型的混凝土细观断裂模拟[J].清华大学学报(自然科学版),2008,48(3):348-351.
    [167]丁发兴,余志武.基于损伤泊松比的混凝土多轴强度准则[J].固体力学学报,2007, 28(1):13-19.
    [168]孟宪昌,张俊秀.爆轰理论基础[M].北京:北京理工大学出版社,1988.
    [169]张守中.爆炸与冲击动力学[M].北京:兵器工业出版社,1993.
    [170]胡绍鸣,李辰芳.对爆轰CJ模型和ZND模型合理性的讨论[M],高压物理学报,2003,17(3):214-219.
    [171]郑应民,顾晓辉,王树有.混凝土靶中炸测试方法研究[M],弹道学报,2003,15(4):51-54.
    [172]曾辉,余尚江.PVDF传感器性能试验报告[R],国防科学技术报告.洛阳:总参工程兵科研三所,2003.
    [173]胡永乐,林俊德,金飞华,等.应变式压杆压力传感器在冲击波载荷测试中的应用[M],实验力学,2006,21(5):547-552.
    [174]石培杰,叶湘滨,胡永乐.压杆应变式压力传感器在爆炸冲击波载荷测试中的应用[M],振动与冲击,2007,26(4):126-128.
    [175]杨军,高文学,金乾坤.岩石动态损伤特性实验及爆破模型[M].岩石力学与工程学报,2001,20(3):320-323.
    [176]陶俊林,李玉龙,田常津,等.10~4/S应变率下SHPB系统实验相关问题探讨[J].爆炸与冲击,2004,24(3):245-250.
    [177]谢和平,陈忠辉.岩石力学[M].北京:科学出版社,2004.
    [178]Rasorenov S.V.,Kanel G I.,Fortov V.E.,et al.The fracture of glass under high pressure implusive loading[J].High Pressure Research,1991,6:225-232.
    [179]章冠人.冲击压缩脆性材料中破碎波的几个问题[J].高压物理学报,1998,12(2):81-85.
    [180]He Hongliang.Dynamic response and microstructure damage of brittle materials under shock wave loading[R].Mianyang,Sichuan:Southwest Institute of Fluid Physics,1997.
    [181]Grady D E.Dynamic failure in bittle solids[R].USA:SAND94-0777C984,1994.
    [182]Bourne N.On the origin of failure waves in glass[J].J Appl Phys,1997,81(10):6670-6674.
    [183]赵剑衡,孙承纬,段祝平.冲击压缩玻璃等脆性材料中失效波的研究进展[J].物理学进展,2001,21(2):157-175.
    [184]赵剑衡,谭显祥,孙承纬,等.用高速阴影技术研究K9玻璃中的失效波[J].爆炸与冲击,2001,21(2):150-156.
    [185]徐松林,唐志平,谢卿.压剪联合冲击下K9玻璃中的失效波[J].爆炸与冲击,2005,25(5):385-392.
    [186]刘本永.非平稳信号分析导论[M].北京:国防工业出版社,2006,2.
    [187]马世伟.非平稳信号的参数自适应时频表示及其应用的研究[D].上海:上海大学出版社,2000
    [188]胡广书.现代信号处理教程[M].北京:清华大学出版社,2004.
    [189]宋爱国,刘文波,王爱民.测试信号分析与处理[M].北京:机械工业出版社,2005.
    [190]段红,魏俊民.现代测试信号处理理论与实践[M].北京:中国纺织工业出版社,2005,7.
    [191]王宏.MATLAB 6.5及其在信号处理中的应用[M].北京:清华大学出版社,2004,10.
    [192]Cohen L,Posh T.Positivity of time-frequency distribution.IEEE Trans On ASSP,1985,33(1):31-37.
    [193]Cohen L,Generalized phase-space distribution functions.Proc IEEE Conf On ASS,Tampa,March 1985,27.6.1-27.6.4.
    [194]Peyrin F.,Prost R.A.A unified definition for the discrete-time,discrete freguency and discrete-time/frequency W igner distributions.IEE trans.ASSP,1986,34(4):858-867.
    [195]Jeong J.,Williams W.J.Alias-free generalized discrete-time time-frequency distributions.IEEE trans.Signal Processing,1992,40(11):2757-2765.
    [196]Harms B.computing time-frequency distributions.IEEE trans.SIGNAL Processing,1991:39(3):727-729.
    [197]Chiang H.C.,Liu J.C.Fast approximation of time-frequency representations at arbitrary frequencies.Signal Processing,1998,(68):228-231.
    [198]Richman M.S.,Parks T.W.and Sheney R.G.Discrete-time,Discrete -frequency,time-frequency analysis.IEEE trans.Signal Processing,1998,46(6):1517-1527.
    [199]Wexler J.,Raz S.Wigner-space synthesis of discrete-time periodic signals.IEEE trans.Signal Processing,1992,40(8):1997-2006.
    [200]Cuningham G.S.Williams W.J.Fast implementation of generalized discrete time-frequency distributions.IEEE trans.Signal Processing,1994,42(6):1496-1508.
    [201]Amin M.G.Spectral decomposition of time-frequency distributions kernels.IEEE trans.Signal Processing,1994,42(5):1156-1165.
    [202]黄筑平,杨黎明,潘客麟.材料的动态损伤和失效[J].力学进展,1993,23(4):433-467.
    [203]Grady D E,Kipp M L.Continuum modeling of explosive fracture in oil shale[J].Rock Mech Sci & Geomech,1987,17:147-157.
    [204]Taylor L M,Chen E P,Kuszmaul J S.Microcrack-induced accumulation in brittle rock under dynamic loading[J].Computer Method in Applied Mechanics and Engineering,1986,55:301-320.
    [205]Thorne B J.Experimental and computational investigation of the fundamental mechanisms of cratering[A].In 3ndInt Symp on Rock Frag by Blasting[C].Brisbane,1990.117-124.
    [206]杨小林.岩石爆破损伤断裂的细观机理及其力学特性研究[D].北京:中国矿业大学北京校区,1999.
    [207]杨小林,王树仁.岩石爆破损伤模型及评述[J].工程爆破,1999,5(3):71-75.
    [208]Cangli Liu,Ahren T.J.Stress wave attenuationin shock-damaged rock[J].J.Geophys.Res, 1997,102(B2):5243-5250.
    [209]李造鼎.岩体测试技术[M].北京:冶金工业出版社,1993.
    [210]夏祥,李俊如,李海波,等.广东岭澳核电站爆破开挖岩体损伤特征研究[J].岩石力学与工程学报,2007,26(12):2510-2516.
    [211]THORNE B J,HOMMER P J,BROWN B.Experimental and computational investigation of the fundamental mechanisms of cratering[C]//Proceedings of the 3rd International Symposium onRock Fragmentation by Blasting.Brisbane,Australia:[s.n.],1990:26-31.
    [212]LIU L Q,KATSABANIS P D.Development of a continuum damage model for blasting analysis[J].International Journal of Rock Mechanics and Mining Sciences,1997,34(2):217-231.
    [213]YANG R,TURCOTTE R.Blast damage modeling using ABAQUS/explicit[C]//User's Conference Proceedings.[S.l.]:[s.n.],1994:1-3.
    [214]张继春.三峡工程基岩爆破振动特性的实验研究[J].爆炸与冲击,2001,21(2):131-137.
    [215]YANG R,BAWDEN W F,KATSABANIS P D.A new constitutive model for blast damage [J].International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts,1996,33(3):245-254.
    [216]Itasca Consulting Group Inc..Fast Lagrangian analysis of continua in 3 dimensions(Version 2.1)user's guide[R].Minneapolis,USA:Itasca Consulting Group Inc.,2003.
    [217]Hao H,Wu C Q.Scaled-distance relationships for chamber blast accidents in underground storage of explosives[J].International Journal of Blasting and Fragmentation,2001,5(1/2):57-90.
    [218]Ma G W,Hao H,Zhou Y X.Modeling of wave propagation induced by underground explosion[J].Computers and Geotechnics,1998,22(3/4):283-303.
    [219]杨小林,王梦恕.爆生气体作用下岩石裂纹的扩展机理[J].爆炸与冲击,2001,21(2):111-116.
    [220]杨小林,王树仁.岩石爆破损伤断裂的细观机理[M],煤炭学报,2000,25(1):19-23.
    [221]Lemaitre J.损伤力学教程(中译本)[M].北京:科学出版社,1996.
    [222]Nilson R H.Modelling of Gas-Driven Fractures Induced by Propellant Combustion Within a Borehole[J].Int J Rock Mech Min Sci,1985,22(1):3-19.
    [223]Paine A S,Please C P.An ImprovedModel of Fracture Propagation byGas During Rock Blastin-Some Analytical Re-suits[J].Int J Rock Mech Min Sci,1994,31(6):699-706.
    [224]I.E.Shkolnik.Influence of high strain rates on stress-strain relationship,strength and elastic modulus of concrete.Cement and Concrete Composites,Volume 30,Issue 10,November 2008:1000-1012.
    [225]X.Q.Zhou,H.Hao.Mesoscale modelling of concrete tensile failure mechanism at high strain rates.Computers & Structures,Volume 86,Issues 21-22,November 2008,Pages 2013-2026.
    [226]Zhou X Q,Hao H,Kuznetsov VA,Waschl J.Numerical calculation of concrete slab response to blast loading.In:First international conference on analysis and design of structures against explosive and impact loads,September 15-17 2006,Tianjin,China,Transaction of Tianjin University,vol.12(Suppl);2006.94-103.
    [227]Malvar L J,Ross CA.Review of strain rate effects for concrete in tension.ACI Mater J 1998;95:735-744.
    [228]Schuler H,Mayrhofer C,Thoma K.Spall experiments for the measurement of the tensile strength and fracture energy of concrete at high strain rates.Int J Impact Eng 2006;32:1635-1685.
    [229]余寿文,冯西桥.损伤力学[M].北京:清华大学出版社,1997.
    [230]彭瑞东.基于能量耗散及能量释放的岩石损伤与强度研究[D].北京:中国矿业大学,2005.
    [231]谢和平,陈忠辉.岩石力学[M].北京:科学出版社,2004.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700