用户名: 密码: 验证码:
深海钴结壳采集之微地形探测技术(浅水实验阶段)研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
深海富钴结壳是一种生长在水深500~3000m的平顶海山、海台顶部或坡上的壳状物,厚度一般为2~6cm,在水深800~1500m的高集区,壳厚可达10~20cm。它除含锰、镍、铁、铜等金属外,富含钴、铂等稀贵金属,是一种重要的战略矿产资源。我国在太平洋海底圈定了一块7.5万平方公里的“战略金属资源基地”。由此研究钴结壳的采集技术与装备具有重大的经济价值和战略意义。
     成功采集钴结壳的关键技术之一是有效控制下层岩石的贫化。在钴结壳矿层厚度和微地形表面特征已知情况下可获得最佳采集深度。
     国家自然科学基金项目“深海钴结壳微地形监测技术与最佳采集深度建模研究”(50474052)的主要研究内容是寻求适合钴结壳采集的海底微地形探测技术与方法;研究的目的是为采矿车的最佳采集深度计算提供实时的规则格网DEM数据。论文在此课题背景下,从探测方案选取到微地形DEM建立始终围绕着实时性和高精度两大基本要求展开研究工作。旨在为开发出真正能用于海底微地形探测的装置提供理论指导和实验依据。
     作者首先从水下微地形探测方案着手,查阅大量有关声、光、电的水下地形探测技术资料,并结合钴结壳特殊赋存环境和具体开采方案,提出一种摆动式单波束探测方法。随后,研制出实验用的摆动式单波束探测装置。利用该装置进行一系列的探测实验,为后面的高程数据预处理及DEM建立提供必要的验证数据。
     其次是实现高程数据预处理。摆动式单波束探测受掠射角、底质特性等因素的影响,不可避免地产生高程异常值。高程异常值是导致“伪”地形的首要因素,加上背向超声波的地形坡面无法被探测以及必须建立规则格网DEM等原因,有必要对高程数据进行预处理。采取的主要措施有:
     1)通过一种改进的数据加窗法剔除高程异常值;
     2)采用改进的中值滤波算法实施高程数据滤波;
     3)通过支持向量回归模型确定横向(X方向)测线高程值;
     4)利用坡度信息对高程值进行检测与修正。
     经过预处理后的高程数据简化了微地形规则格网DEM的内插问题。X方向测线上可由支持向量机回归预测任意间隔的高程值,只考虑沿Y方向实施高程值内插,而待定点都处在沿Y方向高程值的连线上,采用线性内插方法可建立分辨率为25mm的规则格网DEM。并且通过几何量计算和逼真性评价检验这种方式建立的微地形DEM达到了工程中要求的精度等级。
     最后,为了增强DEM的地形表达效果,作者在AVS/Express软件环境下利用VC++编程语言创建一个VMTerrain模块,通过该模块实现微地形可视化。
Deep-ocean cobalt-rich crusts (CRC) is the shell covering top-flat mountains, the top or the slop of sea plateau, under the sea ranging from 500 to 3000 meters deep. Generally, the crust is 2~6 centimeters thick, and it can be 10~20 centimeters thick in high enriched areas which is 800~1500 meters deep under the water. CRC contains manganese, nickel, iron, copper and other common metals. Especially, it is rich in rare and precious metals such as cobalt, platinum and so on. That makes it one of important strategic mineral resources. China has designated an area of 75 thousand square kilometers on the Pacific seafloor as the strategic metal resource base. Thus, the research on the exploiting techniques and equipments is of great economic value and strategic importance.
     To efficiently control the ore dilution is one of the key techniques to successfully exploit cobalt-rich crusts. When the seam thickness of cobalt-rich crusts and the surface feature of micro-terrain are known, the best cutting depth can be acquired.
     The main research of the project "Research on detection technology of deep-ocean cobalt-rich crusts micro-terrain and best cutting-depth controlling model"(NO.50474052), supported by the National Natural Science Foundation of China, is to find methods and techniques of detecting the micro-terrain of seafloor which is suitable to exploit CRC. Under the background of the project, the research of this dissertation, from the selection of detecting plan to the construction of micro-terrain DEM, consistently revolved around the two fundamental requirements of good detecting real-time property and high detecting precision in order to provide theoretical guide and experimental basis to construct practical equipment to detect seafloor micro- terrain.
     The author started with the underwater detecting plan of micro-terrain and put forward a detecting method with a pendulum single beam after consulting a large quantity of acoustic, optical and electronic technique materials on detecting underwater micro-terrain and considering the specific surrounding and methods of exploiting CRC. Then the pendulum single beam bathymeter was constructed. A series of detecting experiments were performed using this equipment. These experiments provided necessary testifying data for the subsequent pretreatment of elevation data and DEM construction.
     Secondly, the pretreatment of elevation data was realized. Abnormal elevation data is the chief factor leading to produce pseudo-terrain. Additionally, the back side of the slope is unable to be probed by ultrasound, regular grid DEM model must be constructed and other constraints exist. It is necessary to pre-treat elevation data, including rejecting abnormal elevation data, forecasting and revising elevation data and so forth. In terms with these, the author obtained many achievements and inventions as follows:
     1. Am improved method of data window was used to eliminate abnormal elevation values when the pendulum single beam bathymeter was detecting.
     2. The filtering of elevation data was conducted by improved median filtering algorithm.
     3. Support vector machine was used to forecast elevation values in X-axis direction detecting trajectory.
     4. Forecasted elevation was checked and rectified in the light of slope information.
     The pretreated elevation data simplified the interpolation of regular grid DEM model of micro-terrain. The elevation of arbitrary interval in X-axis direction was able to be forecasted by way of support vector machine, only the interpolation of elevation in Y-axis direction was under consideration. However, candidate points settled on the line of forecasted elevation in Y-axis direction. The regular grid DEM model of resolution of 25mm can be constructed by way of linear interpolation. The author testified by geometric calculation and verisimilitude assessment that the micro-terrain constructed in above method was qualified to the precision level as practical engineering required.
     Finally, the author enclosed the VMTerrain visualizing module using VC++ in the AVS/Express software environment, and visualized micro-terrain DEM through this module.
引文
[1]Manheim F T.Marine Cobalt Resources[J].Science,Newseries,V232,Issue 4750,1986:600-603.
    [2]James Hein.Cobalt-rich ferromanganese crusts:global distribution,composition,origin and research activities.Polymetallic massive sulphides and cobalt-rich ferromanganese crusts:status and prospects[ISA Technical study].2000,(2):43-44.
    [3]PeterA.Rona.Resources of the Sea Floor[J].SCIENCE 2003(299):673-674.
    [4]Commeau R F,et al.Ferromanganese Crust Resources in the Pacific and Atlantic Oceans[J].IEEE 1984 0197-7385/84:421-429.
    [5]Ohkubo,Satoru Yamazaki,Tetsuo.Summary of "environmental impact research on marine ecosystem for deep-sea mining" conducted by metal mining agency of Japan[J].Proceedings of the ISOPE Ocean Mining Symposium,2003:200-207.
    [6]Chung.Jin S.Deep-ocean mining:Technologies for manganese nodules and crusts[J].International Journal of Offshore and Polar Engineering.1996,Vol.6(4):244-254.
    [7]Chung.Jin S.,Tsurusaki.Katsuya,Advance in deep-ocean mining systems research.Proc.of the International Offshore and Polar Engineering Conference,1994,1:18-31.
    [8]Chung.J S.Deep-Ocean Cobalt-rich Crust Mining Systems Concepts.Proc of MTS 94[J],Washingto DC.Marine Tech Soc.1994:95-101.
    [9]Yamazaki,T.,Sharma,R.Morphological features of co-rich manganese deposits and their relation to seabed slopes[J].Marine Georesources & Geotech-nology.2000,Vol.18(1):43-76.
    [10]刘勇.深海钴结壳螺旋滚筒切削法采掘头设计理论与方法虚拟研究[博士论文].长沙:中南大学,2002.
    [11]简曲.中太平洋富钴结壳的研究[J],矿业研究与开发,1999,2:25-27.
    [12]沈裕军,钟祥,贺泽全,大洋钴结壳资源研究开发现状[J].矿冶工程,1999,6:11-13.
    [13]阳宁,夏建新.国际海底资源开发技术及其发展趋势[J].矿冶工程,2000,3:1-3.
    [14]张立生.现代海底的成矿作用与矿产资源[J].四川地质学报,1999,19(4):281-280.
    [15]钟祥,牛京考.日本大洋多金属结核开采试验的进展[J].国外金属矿山, 2000,3:33-38.
    [16]夏毅敏.钴结壳螺旋切削式采集过程仿真与采集头工作参数优化研究[博士论文].长沙:中南大学,2006.
    [17]陈建林,马维林等.中太平洋海山富钴结壳与基岩关系的研究[J].海洋学报,2004,26(4):71-79.
    [18]马维林,金翔龙等.中太平洋海山区富钴结壳地质特征[J].东海海洋,2002,20(3):11-23.
    [19]赵宏樵,姚龙奎.中太平洋富钴结壳Co元素地球化学特征[J].东海海洋,2003,21(4):34-40.
    [20]莫杰.关于我国大洋矿产事业发展的若干建议[J].国土资源,2001:26-29.
    [21]秦宣云.基于微地形重构的深海钴结壳最佳采集切削深度控制模型研究[博士论文].长沙:中南大学,2005.
    [22]John E.Halkyard.Technology For Mining Cobalt Rich Manganese Crust From Seamounts[J].John E.Halkyard & Company,1985:352-367.
    [23]秦宣云,卜英勇.基于遗传算法的大洋富钴结壳开采的切削深度优化控制[J]湖南科技大学学报,2005,20(1):17-20.
    [24]秦宣云 卜英勇.大洋富钴结壳实时开采切削深度的优化分级模型的研究[J].海洋工程,2005,23(3):99-104.
    [25]任凤跃.基于AVS/Express可视化技术的回转接触式微地形探测系统研究[硕士论文].长沙:中南大学,2005.
    [26]杨华勇,梁永辉.机载蓝绿激光水下目标探测技术的现状及前景[J].激光技术与应用,2003,12:6-10.
    [27]K.O.Stelnvall,et al..Experimental Evaluation of an Airborne Depth-sounding Lidar[J].Optical Engineering,1993,32(6):1307-1321.
    [28]刘基余.机载激光测深系统[J].电子科技导报,1998,10:22-23.
    [29]刘基余,李松.机载激光测深系统测深误差源的研究[J].武汉测绘科技大学学报,2000,25(6):491-495.
    [30]刘建国,刘文清,王亚萍等.舰载浅水激光测深系统研究[J].海洋技术,2001,20(2):30-32.
    [31]王琪,刘雁春,暴景阳.关于多波束与侧扫声纳回波检测方法的探讨[J].海洋技术,2003,9:70-73.
    [32]罗深荣.侧扫声纳和多波束测深系统在海洋调查中的综合应用[J].海洋测绘,2003,23(1):22-24.
    [33]王纪婵.基于互相关理论的高精度水下超声波测距系统研究[硕士论文].长沙:中南大学,2006.
    [34]宋广平,伍青云.数字摄影测量系统及其应用[J].中国煤田地质,2005,6: 106-107.
    [35]靳祥升,王琴.地面立体摄影测量技术在水土流失监测中的应用[J].安徽农业科学,2006,34(10):2030-2031.
    [36]王永斌,陈卫东,杜义.海浪对水下电磁场幅值影响的分析[J].热带海洋学报,2005,24(1):37-40.
    [37]任志良,黄玉盈,陈泽茂.磁偶极子源的被动测距与跟踪[J].数据采集与处理,2001,16(3):380-383.
    [38]卢世魁,刑景富,邓小云.超声探测仪的研究[J].工矿自动化,2002,3:39-41.
    [39]李茂山.超声波测距原理及实践技术.实用测试技术[J],1994.3(1):12-20.
    [40]曹洪泽,朱琦,徐新盛.条带测深系统中使用多子阵的海底探测技术[J].交通运输工程学报,2002,2(4):116-120.
    [41]王志雄,高平,莫杰.海底地质勘查现代技术方法的应用现状及发展趋势[J].海洋地质与第四纪地质,2002,22(2):109-114.
    [42]朱维庆,朱敏等.海底微地貌测量系统[J].海洋测绘,2003,5:27-31.
    [43]申家双,潘时祥.沿岸水深测量技术方法的探讨[J].海洋测绘,2002,11:60-65.
    [44]赵军,雷廷武等.激光微地貌扫描仪的开发研制及在坡面侵蚀研究应用[J].山东农业大学学报,2001,32(2):201-206.
    [45]李家彪等著.多波束勘测原理技术与方法[M].北京:海洋出版社,1999.
    [46]乜国荃.负反馈电路中的自激振荡和正弦波振荡[J].青海师专学报,2002,5:37-38.
    [47]魏力,李克明.负反馈放大电路自激振荡产生原因及消除方法探讨[J].长春大学学报,2001,11(1):22-23.
    [48]徐柳娟,赵玉铃.放大器调测中干扰和噪声的抑制及自激振荡的消除[J].浙江水利水电专科学校学报,2001,13(2):57-58.
    [49]汤国安,刘学军,闾国年著.数字高程模型及地学分析的原理与方法[M].北京:科学出版社,2005.
    [50]吴少琴.多波束条带测深仪拼图技术的研究[硕士论文].哈尔滨:哈尔滨工程大学,2003.
    [51]王向红.多波束条带测深系统数据后置处理技术研究[博士论文].哈尔滨:哈尔滨工程大学,2005.
    [52]William J.Moseley.Case for enhancing survey data collection at the Naval Oceanographic Office through expert system technology[J].Oceans Conferece Record(IEEE),2000,Vol.2:1205-1209.
    [53]Laurent Hellequin,Xavier Lurton,Jean Marie Augustin.Postprocessing and signal corrections for multibeam echosounder images[J].Oceans Conference Record(IEEE),1997,Vol,1,:23-26.
    [54]吴英姿.多波束测深系统地形跟踪与数据处理技术研究[博士论文].哈尔滨:哈尔滨工程大学,2001.
    [55]李明叁,刘雁春,暴景阳,吕志平,肖付民.海洋测深数据的抗差Kalman滤波[J].测绘科学,2006,31(5):27-29.
    [56]申家双.海岸地形航空摄影测量技术及其实施[J].海洋测绘,2001,4:29-32.
    [57]C.Mack,S.E.Marsh,C.E Hulchinson.航空摄影和GIS技术在城乡接合区环境变化研究中的应用[J].黑龙江测绘,1996,3:44-47.
    [58]郭达志,盛业华,金学林等.矿区岩溶陷落柱探测中遥感与地理信息系统技术的应用研究[J].测绘学报,1994,5:113-119.
    [59]李德仁.论21世纪遥感与GIS的发展[J].武汉大学学报,2003,4:127-130.
    [60]张巍,金亚秋,沈一帆.用合成孔径雷达图像反演浅海水下地形的一种方法[J].海洋学报,2000,11:40-46.
    [61]李夕海,武红霞,刘代志.基于GPS的GIS数据维护方案设计[J].计算机应用研究,2001:136-138.
    [62]周淑芳,李增元,范文义等.基于机载激光雷达数据的DEM获取与应用[J].遥感技术与应用,2007,6:356-360.
    [63]张东明.GPS数据处理中的粗差探测及剔除[J].昆明冶金高等专科学校学报,2001,17(4):35-37.
    [64]万凤鸣.基于GPS的水域地形测深系统的研究与应用[硕士论文].武汉:湖北工业大学,2006.
    [65]季建华,杨军生.大比例尺DEM生产过程中的粗差检测与质量控制的研究[J].现代测绘,2004,27(3):31-33.
    [66]刘学军.基于规则格网数字高程模型解译算法误差分析与评价[博士论文].武汉:武汉大学,2002.
    [67]王叶飞.DEM地形曲率的误差分析[硕士论文].长沙:长沙理工大学,2005.
    [68]吴今培,孙德山编著.现代数据分析[M].北京:机械工业出版社,2006.
    [69]Hannah MJ.Error detection and correction in digital terrain models[J].Photogrammetric Engineering and Remote Sensing,1981,47:63-69.
    [70]李志林,朱庆.数字高程模型[M].武汉:武汉测绘科技大学出版社,2003.
    [71](O|¨)stman A.Quality control of photogrammetrically sampled digital elevation models[J].Photogrammetric Record,1987,12:333-341.
    [72]Felicisimo A.Parametric statistical method for error detection in digital elevation models[J].ISPRS Journal of Photogrammetry and Remote Sensing,1994,49:29-33.
    [73]L(?)pez C.Locating some types of random errors in digital terrain models[J].International Journal of Geographic Information Science,1997,11:677-698.
    [74]L(?)pez C.On the improving of elevation accuracy of digital elevation models:a comparison of some error detecting procedures[J].Transactions in GIS,2000,4:43-64.
    [75]L(?)pez C.An experiment on elevation accuracy improvement of photogrammetrically derived DEM[J].International Journal of Geographic Information Science,2002,4:361-375.
    [76]杨晓云,梁鑫,岑敏仪.适用于不规则DEM数据的粗差探测算法[J].自然科学进展,2007,17(4):556-560.
    [77]李国重,归庆明,宫轶松,王银海.基于岭估计的粗差探测[J].测绘科学技术学报,2006,23(5):335-337.
    [78]潘传姣,马玉晓GPS网外部尺度基准观测数据的粗差剔除[J].山东科技大学学报,2004,23(4):19-21.
    [79]夏庆成,裴亮.线性规划在摄影测量粗差检测中的应用[J].测绘与空间地理信息,2005,28(5):112-117.
    [80]朱庆,李德仁.多波束测深数据的误差分析与处理[J].武汉测绘科技大学学报,1998,23(1):1-4.
    [81]陈玉祥,张汉亚著.预测技术与应用[M].北京:机械工业出版社,1984.
    [82]Chao Zhang,Pu Han,Guiji Tang,Guori Ji.Simulation of Time Series Prediction Based on Smooth Support Vector Regression[J].ISNN 2007,Part Ⅲ,LNCS 4493,2007:545-552.
    [83]Hua Duan,Weizhen Hou,Guoping He,and Qingtian Zeng.Predicting Time Series Using Incremental Langrangian Support Vector Regression[J].ISNN 2007,Part Ⅲ,LNCS 4493,2007:812-820.
    [84]Wu Wang,Xueyao Li,Rubo Zhang.Boundary Processing of HHT Using Support Vector Regression Machines[J].ICCS 2007,Part Ⅲ,LNCS 4489,2007:174-177.
    [85]Fei Xing,Ping Guo.Support Vector Regression for Software Reliability Growth Modeling and Prediction[J].ISNN 2005,LNCS 3496,2005:925-930.
    [86]Hecht-Nielsen R.Theory of the Back Propagation Neural Network[A].IJCNN International Joint Conference on Neural Network[C].1989,593-605.
    [87]ZHAO Ying,NAN Jun,CUI Fu-yi,GUO Liang.Water quality forecast through application of BP neural network at Yuqiao reservoir[J].Journal of Zhejiang University SCIENCE A.2007 8(9):1482-1487.
    [88]Zhen-Yu Wang,Yong-Wei Li,Peng Guo,Xiao-Fang Yu.Temperature-Variation Fault Diagnosis of the High-Voltage Electric Equipment Based on the BP Neural Network[J].ISNN 2007,Part Ⅲ,LNCS 4493,2007:633-640.
    [89]Lee Jun,Qin Datong.Application of the BP Neural Network in the Checking and Controlling Emission of Vehicle Engines[J].Fuzzy Information and Engineering(ICFIE),ASC 40,2007:448-454.
    [90]王惠文,孟浩.多元线性回归的预测建模方法[J].航空航天大学学报,2007,33(4):500-504.
    [91]刘严.多元线性回归的数学模型[J].沈阳工程学院学报,2005,6:128-129.
    [92]Zhao L C,Rao C R,Chen X R.A note on the consistency of M-estimates in linear modes[J].In:Cambanis S.eds.Stochastic Process,a Festchrift in Honour of Gopinath Kallianpur.New York:Springer-Verlag,New York Inc,1993,359-367.
    [93]Chen X R,Wu Y H,Zhao L C.A necessary condition for the consistency of least absolute deviation estimates in linear models[J].Sankhya,Ser A,1995,57(3):384-392.
    [94]C.Cortes,V.N.Vapnik.Support vector networks[J].Machine Learning,2000,20:273-297.
    [95]B.Sch(o|¨)lkopf,J.Smola,K.M(u|¨)ller.Kernel principal component analysis[J].In B.Sch(o|¨)lkopf,C.J.C.Burges,and A.J.Smola,editors,Advances in Kernel Methods-Suppor Vector Learning,1999:327-352.
    [96]Shun-ichi Amari,Si Wu.Improving Support Vector Machine Classifiers by Modifying Kernel Functions[J].Neural Networks,1999,12:783-789.
    [97]Osuna E,Freund R,Girosi F.Training Support Vector Machine:An Application to Face Detection[A].In:Proceedings of the IEEE international Conference on Computer Vision and Pattern Recognition[C].New York:IEEE,1997:130-136.
    [98]J.Platt.Fast Training of support machines using sequential minimal optimization[J].In:B.Sch(O|¨)lkopf,C.J.C.Burges,A.J.Smola,editors, Advances in Kernel Methods Support Vector Learning,Cambridge:MIT Press,1999:185-208.
    [99]A.Smola,B.Sch(O|¨)lkopf.On a kernel-based method for pattern recognition,regression,approximation and operator inversion[J].Algorithmical,1998,22:211-231.
    [100]B.Sch(o|¨)lkopf,P.Bartlett,A.Smola,and R.Williamson.Shrinking the tube:a new support vector regression algorithm[J].In M.S.Kearns,S.A.Solla,and D.A.Cohn,editors,Advances in Neural Information Processing Systems,11.MIT Press,1998.
    [101]B.Sch(o|¨)lkopf,P.Bartlett,A.Smola,and R.Williamson.Support vector regression with automatic accuracy control[J].In L.Niklasson,M.Bod(?)n,and T.Ziemke,editors,Perspectives in Neural Computing,1998:147-152.
    [102]Smits G F,Jordaan E M.Improved SVM Regression using Mixtures of Kernels[J].In IJCNN,2002:2785-2790.
    [103]Chun-Fu Lin,Sheng-De Wang.Fuzzy Support Vector Machines[J].IEEE TRANSACTIONS ON NEURAL NETWORK,2002,13(2):464-471.
    [104]Han-Pang Huang,Yi-Hung Liu.Fuzzy Support Vector Machines for Patern Recognition Data Mining[J].International Journal of Fuzzy Systems,2002,4:826-835.
    [105]Qing He,Xi-Zhao Wang,Hong-Jie Xing.A Fuzzy Classification Method Based On Support Vector Machine[R].Proceedings of the Second International Conference on Machine Learning and Cybernetics.New York:IEEE Press,2003:1237-1240.
    [106]Yukun Bao,Rui Zhang,Sven F.Crone.Fuzzy Support Vector Machines Regression for Business Forecasting:An Application[J].FSKD 2006,LNAI 4223,2006:1313-1317.
    [107]Yuancheng Li,Tingjian Fang.Application of Fuzzy Support Vector Machines in Short-Term Load Forecasting[J].RSFDGrC 2003,LNAI 2639,2003:363-367.
    [108]Hong Xia,Bao Qing Hu.Feature selection using fuzzy support vector machines[J].Fuzzy Optim Decis Making,2006,5:187-192.
    [109]Jin-Hua Yu,Yuan-Yuan Wang,Ping Chen,Yue-Hua Song.Ultrasound Estimation of Fetal Weight with Fuzzy Support Vector Regression[J].ISNN 2007,Part Ⅲ,LNCS 4493,2007:426-433.
    [110]殷春根,骆仲泱,倪明江等.煤的工业分析至元素分析的BP神经网络预测模型[J].燃料化学学报,1999,10:408-413.
    [111]雷玉成,刘伟,程晓农.铝合金穿孔型等离子弧立焊的BP神经网络预测模型[J].焊接学报,2002,12:41-43.
    [112]王钰,郭其一等.基于改进BP神经网络的预测模型及其应用[J].计算机测量与控制,2005,13(1):39-42.
    [113]Srinivasan B,Prasad U R,Rao N J.Back propagation through adjoints for the identification of nonlinear dynamic systems using recurrent neural models[J].IEEE Transactions on Neural Networks,1994,5(2):213-228.
    [114]归庆明,张建军,易维勇.平差参数的抗差特征根估计[J].解放军测绘学院学报,1998,3:5-8.
    [115]Evelyne V,Mostafa Q.A new algorithm for latent root regression analysis[J].Computational statistics & data analysis,2002,41:231-242.
    [116]蔡新民,方兴,黄养新.多元广义Stein估计及其优良性[J].武汉理工大学学报,2001,23(9):87-89.
    [117]张建军,吴晓平,刘敏林.线性回归模型系数Stein估计的改进研究[J].海军工程大学学报,2004,8:22-25.
    [118]Ohtani K.Inadmissibility of the Stein-rule estimator under the balanced loss function[J].Journal of Econometrics,1999,88:193-201.
    [119]胡桂开.多元线性模型参数的部分压缩估计[J].数学理论与应用,2006,26(4):123-125.
    [120]戴俭华,王石青.岭估计优于最小二乘估计的条件[J].数理统计与应用概率,1994,9(2):53-58.
    [121]杨婷,杨虎,张洪阳.基于岭估计的最优预测与经典预测的最优性判别[J].重庆大学学报,2002,25(6):56-58.
    [122]刘德地,陈晓宏.基于偏最小二乘回归与支持向量机耦合的咸潮预报模型[J].中山大学学报,2007,46(4):89-92.
    [123]陈南祥,曹连海,李梅等.偏最小二乘回归神经网络的矿坑涌水量预测[J].吉林大学学报,2005,35(6):766-770.
    [124]吴思源.三维IFS分形插值算法研究及其在DEM生成中的应用[博士论文].上海:上海交通大学,2005.
    [125]Sayles R.S,Thomas T.R.Surface Topography as a Nonstationary Random Process[J].Nature,1978,Vol.271:431-434.
    [126]Berry,M.V,Hannay,T.R,Topography of Random Surface[J].Nature,1978,Vol.273:230-233.
    [127]Mandelbrot B.The Fractal Geometry of Nature[M].Freeman,San Francisco, 1982.
    [128]Yokoya N,Yamamoto K,Funakubo N.Fractal-based Analysis and Interpolation of 3D Natural Surfaces and Their Applications to Terrain Modeling Comput[J].Vision Graphics Image Process,1989,Vol.46:284-302.
    [129]Szeliski R.Bayesian Modeling of Uncertainty in Low-Level Vision,Dordrecht/Norwell,MA:Kluwer Academic,1989.
    [130]Hutchinson J.E.fractals and self-similarity[J].Indiana University Math.J.1981,30:713-747.
    [131]M.F.Barnsley.Fractal Functions and Interpolation[J].Constructive Approximation,1986,2:303-329.
    [132]Heping Xie,Hongquan Sun.The Study on Bivariate Fractal Interpolation Functions and Creation of Fractal Interpolated Surfaces[J].Fractals,1997,5(4):625-634.
    [133]谢和平,孙洪泉.分形插值曲面理论及其应用[J].应用数学与力学,1998,19(4):297-306.
    [134]Zhigang Feng,Heping Xie.On Stability of Fractal Interpolation[J].Fractals,1998,6(3):269-273.
    [135]李红达,叶正麟,王小平.分形插值曲面[J].计算机辅助设计与图形学学报,2002,(4):675-681.
    [136]Li HongDa,Ye Zhenglin,Gao Hangshan.ON the Continuity and Differentiability of a kind of fractal interpolation function[J].Applied Mathematics and Mechanics,2002,23(4):471-478.
    [137]朱庆,李志林,龚健雅等.论我国“1∶1万数字高程模型的更新与建库”[J].武汉测绘科技大学学报,1999,24(2):129-133.
    [138]Gold,Christopher M.Surface interpolation,spatial adjacency and GIS[J].In:Raper,J(ed.),Three Dimensional Applications in GIS,Taylor and Francis,London,1989:21-36.
    [139]Ute Christina Herzfeld,Christoph Overbeck.Analysis and Simulation of Scale-Dependent Fractal Surfaces with application to seafloor morphology[J].Computers&Geosciences 1999,Vol25:979-1007.
    [140]Bindlish R,Barros,A.P.Sub-Pixel Variability of Remotely Sensed Soil Moisture:An Intercomparison Study of SAR and ESTAR[J].IEEE Transactions in Geosciences and Remote Sensing,2002 Vol.40:326-337.
    [141]E.M.Douglas,A.P.Barros.Probable maximum precipitation estimation using nmltifractals:Application in the eastern United States[J].J.Hydrometeorol,2003,4(6):1012-1024.
    [142]Barnsley M F.Fractal functions and interpolation[J].Constructive Approximation,1986,2:303-329.
    [143]孙洪泉.分形几何及其分形插值研究[J].河北工业大学学报,2002,31(1):56-60.
    [144]孙洪泉.分形插值曲面的MATLAB程序[J].苏州科技学院学报(工程技术版),2006,19(4):18-21.
    [145]Wilson W D.Extrapolation of the equation for the speed of sound in sea water[J].J.Acoust.Soc.Amer.,1962,34(6):866.
    [146]邢志刚,封金星,刘伯胜.水声测距数学模型研究[J].哈尔滨工程大学学报,2000,21(3):24-28.
    [147]Clay C S,Medwin H W.Acoustical Oceanography.John Wiley &Sons,1977.
    [148]Urick R J.Principles of Underwater Sound,3~(rd) Ed McGraw-Hill,1983.
    [149]H.Moravec,A.Elfes.High resolution maps for wide angles sonar[J].Proc.IEEE Int.Conf.Robotics and Automation,1985,116-121.
    [150]A.Elfes.Sonar-based real-world mapping and navigation[J].Robotics and Automation,IEEE Journal of[legacy,pre-1988],1987,3(3):249-265.
    [151]张汉奇,黄战华,蔡敬忠.高性能自动增益控制(AGC)电路的设计与实现[J].电测与仪表,1998,35(391):25-26.
    [152]陈希武,章祺.两种自动增益控制电路[J].计量技术,1996,11:22-24.
    [153]余向东,张在宣等.具有自动增益控制的零盲距半导体激光测距仪[J].激光与红外,2001,35(5):298-303.
    [154]于峰,侯永海,王建国.基于PCI-1714的高速数据采集系统方案设计[J].微型计算机信息,2005,21(81):59-62.
    [155]ADVANTECH.Inc.PC_LabCard/PCI-1714 User's Manual.TA1WAN:2003.
    [156]ADVANTECH.Inc.Advantech DLL Drivers User's Manual and Programmer's Reference.TAIWAN:2003.
    [157]CA I K-Y.Rubstness of Fuzzy Reasoning and -δ Equations of Fuzzy Sets[A].IEEE Trans.on Fuzzy Systems[C].2001:738-750.
    [158]田盛丰,黄厚宽,李洪波.基于支持向量机的手写体相似字识别[J].中文信息学报,2000,14(3):37-41.
    [159]Dumais S,Platt J,Heckerman D,Sahami M.Inductive Learning Algorithms and Representations for Test Categorization[A].In:Proceedings of the 7th International Conference on Information and Knowledge Management[C].1998.
    [160]马云潜,张学工.支持向量机函数拟合在分形插值中的应用[J].清华大学学报(自然科学版),2000,40(3):76-78.
    [161]赵洪波,冯夏庭.支持向量机函数拟合在边坡稳定性估计中的应用[J].岩石力学与工程学报,2003,22(2):241-245.
    [162]赵明渊,周明天等.基于支持向量机的脑.机接口模式分类和模型参数研究[J].计算机应用,2007,27(2):337-339.
    [163]关心平,赵立兴,唐英干.图像去噪混合滤波方法[J].中国图象图形学报,2005,10(3):332-337.
    [164]黄晶,阙沛文.小波分析在管道缺陷超声检测中的应用[J].传感技术学报,2003,16(3):263266
    [165]Walker J S,Krantz S G.A Primer on Wavelets for Their Scientific Applications[J].Boca Raton,FL:CRC Press,1999
    [166]王广成,刘海明,杨根栾.中值滤波方法在遥测数据处理中的应用[J].遥测遥控,2002,1:26-31.
    [167]MOHAMED H,SCHWARZ K P.Adaptive Kalman filtering for INS/GPS[J].Journal of Geodesy,1999,73(4):193-203.
    [168]马攀,文鸿雁.离散卡尔曼滤波用于GPS动态变形数据处理[J].桂林工学院学报,2002,3:324-328.
    [169]梅连友.卡尔曼滤波在滑坡监测中的应用[J].测绘工程,2004,3:13-15.
    [170]刘丽梅,孙玉荣,李莉.中值滤波技术发展研究[J].云南师范大学学报,2004,24(1):23-27.
    [171]Yong Hoon Lee,Adly t.Fam.An Edge Gradient Enhancing A daptive Order Statistic filter[J].IEEE transactions on acoustics,speech,and signal processing,Vol.Assp-35,No.5,May 1987:680-695.
    [172]Xin Wang.Adaptive Multistage Median Filter[J].IEEE Transactions on signal processing,Vol.40,No.4,April 1992:1015-1017.
    [173]Xiahua Yang,Peng Seng Toh.Adaptive Fuzzy Multilevel Median Filter[J].IEEE Transactionson imageprocessing,Vol.4,No.5,May 1995:680-682.
    [174]H.Hwang,R.A.Haddad.A daptive Median Filters:New Algorithms and Results[J].IEEE Transactions on image processing,Vol.4,No.4,April 1995:499-502.
    [175]G.Antoniol,M.Ceccarelli,A.Maratea etc.Classification of Digital Terrain Models Through Fuzzy Clustering:An Application[J].WILF 2003,LNAI 2955,2003:174-182.
    [176]Amr R.Abdel-Dayem,Mahmoud R.El-Sakka.Fuzzy C-Means Clustering for Segmenting Carotid Artery Ultrasound Images[J].ICIAR 2007,LNCS 4633,2007:935-948.
    [177]Hizir Sofyan,Muzailin A.an,Khaled Bawahidi.The Application of Fuzzy Clustering to Satellite Images Data[J].Statistical Methods for Biostatistics and Related Fields.2006:357-366.
    [178]Sung-Hwan Min,Ingoo Han.Dynamic Fuzzy Clustering for Recommender Systems[J].PAKDD 2005,LNAI 3518,2005:480-485.
    [179]Abe S,Lan M S.A method for Fuzzy rules extraction directly from numerical data and its application to pattern classification[J].IEEE Trans Fuzzy Systems,1995,3(1):18-28.
    [180]H.Roubos,M.Setnes.Compact and transparent fuzzy models and classifiers through iterative complexity reduction[J].IEEE Trans Fuzzy Systems,2001,9(4):516-524.
    [181]Shinn-Ying Ho,Chia-Cheng Liu,Soundy Liu.Design of an optimal nearest neighbor classifier using an intelligent genetic algorithm[J],pattern recognition letters,2002,23(13):1495-1503.
    [182]Pal N R.Bezdk JC.On Cluster Validity for the Fuzzy C-mean Model[J].IEEE Trans Fuzzy Systems,1995,3(3):370-379.
    [183]陈守煜,韩晓军,王建明,伏广涛.模糊聚类、识别、优选统一理论与循环迭代模型[J].大连理工大学学报,2004,44(6):883-886.
    [184]翟宇梅,赵瑞星.概率天气预报的K近邻非参数估计仿真模型[J].系统仿真学报,2005,17(4):786-788.
    [185]朱凯汉,胡耀元.关于谱峰起始值及求积的研讨[J].浙江师范大学学报,2003,26(3):265-269.
    [186]FLEMING M D,HOFFER R M.Machine Processing of Landsat MSS Data and LARS Technical Report 062879[R].Indiana:PurdueUniversity,1979.
    [187]SHARPNACK D A,AKIN G.An algorithm for computing slope and aspect from elevations[J].Photogrammetric Survey,1969(35):247-248.
    [188]WOOD J D.The Geomorphological Characterisation of Digital Elevation Model[D].Leicester:University of Leicester,1996.
    [189]刘学军,龚健雅,周启鸣等.DEM结构特征对坡度坡向的影响分析[J].地 理与地理信息科学,2004,20(6):1-5.
    [190]汤国安,陈楠,柳咏梅等.黄土丘陵沟壑区1∶1万及1∶5万比例尺DEM地形信息容量对比[J].水土保持通报,2001,21(2):34-36.
    [191]汤国安,赵牡丹,李天问等.提取黄土高原地面坡度的不确定性[J].地理学报,2003,58(6):824-830.
    [192]罗柏文.四轮驱动履带式海底钴结壳采矿车及其采集过程可视化研究[硕士论文].长沙:中南大学,2003.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700