用户名: 密码: 验证码:
复合LB膜修饰银电极的光谱研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
表面增强拉曼光谱(SERS)技术是是现在最灵敏的现场研究表面吸附和界面反应的现场谱学技术之一,SERS技术的灵敏度不断提高以及应用范围不断扩大,大大提高了从分子水平研究电化学体系的进程,把谱学方法与常规电化学方法相结合的谱学电化学(Spectroelectrochemistry)已成为在分子水平上现场表征和研究电化学体系的主要手段,它在研究电极表面吸附分子物种的取向、构型、键合以及分析电极材料的表面结构变化,鉴定参与电化学过程的分子物种等方面都有突出优势和引人注目的成果。
     电化学反应是在以无机离子和有机离子为支持电解质溶液中进行的,对于有机电解质溶液,由于在有机溶剂中可能会改变探测分子本身的性质,甚至与有机溶剂发生反应,而且有机溶剂本身的拉曼信号很强,可能影响甚至掩盖探测分子的拉曼信号,对探测分子的光谱产生大的影响,所以有机电解质很少被用来研究谱学电化学。在无机电解质中,最普遍使用和最重要的溶剂是水,水的拉曼散射很弱,在可见区并不吸收,因此,拉曼光谱特别适合于在水溶液中测试,能较准确地反映分子的特性。但是在现实中,我们研究的分子很多是不溶于水的,为了解决这个问题,人们想到了“滴涂法”,将有机分子滴到电极上,然后转移到电化学池中采谱。但是这种方法有很多不足,例如分子很难吸附到电极的表面上,形成的薄膜均匀度并不理想,而且随采谱的进行会有很多分子很容易脱落掉,对于分子层的厚度也难把握。为了克服以上不足,我们引入了一种较好的方法—LB膜法。将有机分子溶于成膜液中,通过LB膜技术将有机分子的单层膜或多层膜转移到基底上。
     在这篇文章中,我们利用LB技术制备了C60分子以及非溶水分子ATP的单层膜,并得到了其高质量的SERS光谱。通过所得的SERS光谱进行分析,可以知道C60分子会因为对称性下降而产生峰的分裂,从实验结果中我们很好的证明了这一结论。同时,我们还对C60LB复合膜在银电极上的SERS随电压的变化进行了分析和讨论,得出了较好的结论。同时,在对ATP LB膜的研究中发现随着电位的负移,ATP在银电极表面的相对峰强和峰位都发生了较大改变,表面吸附的ATP分子与银纳米颗粒发生了化学吸附,由谱峰的变化规律分析,ATP分子在银表面由垂直吸附不断倾斜直至平行吸附在表面。
Surface-enhanced Raman spectroscopy (SERS) technique is now the scene of the most sensitive study of surface adsorption and interfacial reactions at the scene of one of spectroscopy, SERS technology and continuously improve the sensitivity of expanding the scope of application has greatly increased the power from the study of the molecular level chemical process system, the spectral method with conventional electrochemical methods of combining electrochemical spectroscopy (Spectroelectrochemistry) has become the scene at the molecular level characterization and study of the main means of electrochemical system, which the electrode surface in the study of molecular species orientation, structure, bonding, as well as analysis of the surface of the electrode materials of structural changes in the electrochemical process involved in identification of molecular species have highlighted the advantages and eye-catching results.
     Electrochemical reaction is in the inorganic ions and organic ions in the electrolyte solution in support of the, for the organic electrolyte solution, as in organic solvents may change the nature of the detection elements, or even react with the organic solvents, and organic solvent itself a strong Raman signal, which may affect or even cover up the detection of molecular Raman signal, the spectrum of the probe molecules have a big impact, so the organic electrolytes are rarely used to study the electrochemical spectroscopy. In inorganic electrolytes, the most commonly used and most important is the solvent water, the Raman scattering is very weak absorption in the visible does not, therefore, Raman spectroscopy is particularly suitable for testing in aqueous solution, can more accurately reflect the molecular characteristics. But in reality, we have studied many of the molecules do not dissolve in water, in order to resolve this problem, people think of the "drop-coating" of organic molecules on the electrode dripping, and then transferred to the electrochemical spectrum mining pool. However, this approach is inadequate in many ways, for example, it is very difficult molecule adsorption to the electrode surface, the formation of the film uniformity is not ideal, but with the spectrum taken a lot of elements to be falling off very easily, the thickness of the molecular layer is difficult grasp. In order to overcome the above shortcomings, we have introduced a better way-LB membrane. Soluble in organic molecular film-forming solution through the LB film technology monolayer of organic molecules or multi-layer transferred to the substrate.
     In this article, we use C60 was prepared by LB as well as non-soluble molecules of water molecules of the monolayer ATP, and its high-quality SERS spectra. SERS spectra obtained through the analysis, we can see that because of the symmetry of C60 molecules decreased peak splitting arising from the experimental results, we prove that good this conclusion. At the same time, we also C60LB silver composite film electrode with the voltage changes in SERS analysis and discussion, to draw a better conclusion. At the same time, ATP LB films found a negative shift with the potential, ATP silver electrode surface in the relative peak intensity and peak changes have taken place in the larger, surface adsorption of ATP molecules and silver nanoparticles occurred in the chemical adsorption, by the spectral analysis of peak change, ATP molecules adsorbed on silver surface by the constant vertical tilt up to parallel adsorption on the surface
引文
[1] G. Roberts, Ed. , "Langmiur Blodgett Films", Plenum Press, New York, 1990.
    [2] B. Franklin, Philos. Trans. R. Soc. London, 64 (1774) 445.
    [3] L. Rayleigh, Proc. R. Soc. London, 47 (1890) 364.
    [4] A. Pockels, Nature (London), 48 (1892) 418.
    [5] I. Lan~rnuir, Trans. Faraday Soc., 15 (1980) 62.
    [6] I. Langmuir, J. Am. Chem. Soc. , 39 (1917) 1848.
    [7] K, B, Blodgett, J. Am. Chem. Soc. ,57 (1935) 1007.
    [8] I. Langmuir, V. J. Schaefer, Chem. Rev. , 24 (1939) 181.
    [9] G. L. Gaines Jr., "Insoluble Monolayers at Liquid Gas Interfaces", Wiley, New York, 1966.
    [10] H. Kuhn, Thin Solid Films, 99 (1983) 1.
    [11] G. G. Roberts, M. McGinnity, W. A. Barlow, P. S. Vincett, Thin Solid Films, 68 (1980) 223.
    [12] P. Christie, C. A. Jone, M. C. Petty, G. G. Roberts,. Phys. D, 19 L (1986)167.
    [13] F. L. Carter, Ed. , "Molecular Electronic Devices", New York, 1983.
    [14] G. L. Gaines, Jr. , J. Colloid. Sci. , 15 (1960) 321.
    [15] Ouyang J. M , Zhang Z. M , Huang C. X, et al. Colloid. Surface A , 175 (2000) 99.
    [16] Richasdson T , Smith V C, et al. Thin Solid Films,3272329 (1998) 315.
    [17]欧阳健明. LB膜原理与应用.广州:暨南大学出版社, 1999.
    [18] Lecomte C, Baudin C, Belear F. Thin Solid Films,133 (1985) 103.
    [19] Archer P B M , Chadwick A V , Miasik J J , et al. Sens. Actuators,16 (1989) 379.
    [20] G. Chumanov, K. Sokolov, B. W. Gregory, T. M. Cotton, J. Phys. Chem. 99 (1995) 9466.
    [21] R. F. Aroca, R. E. Clavijo, M. D. Halls, H. B. Schlegel, J. Phys. Chem. A, 104 (2000) 9500.
    [22] X. L. Li. W. Q. Xu, J. H. Zhang, H. Y. Jia, B. Yang, B. Zhao, B. F. Li, O. Yukihiro, Langmuir 20 (2004) 1298.
    [23] K. C. Grabar, R. G. Freeman, M. B. Hommer, M. J. Natan, Anal. Chem. 67 (1995) 735.
    [24] R. G. Freeman, K. C. Grabar, K. J. Allison et al., Science, 267 (1995) 1629.
    [25] R. M. Bright, D. G. Walter, M. D. Musick, M. A. Jackson, K, J. Alison, M. J. Nantan.Langmuir, 12 (1996) 810.
    [26] H. Chen et al., Spectrochimica Acta Part A, 64 (2006) 343.
    [1]田昭武,电化学研究方法,科学出版社,1984
    [2] A.J.Bard著,谷林瑛等译,电化学方法原理及应用,化学工业出版社,1988
    [3]查全性,电极过程动力学,科学出版社,1987
    [4]R.Greef著,柳厚田等译,电化学中的仪器方法,复旦大学出版社, 1992
    [5]林仲华,物理化学学报, 8(1992)712
    [6]R.Parsons, D.M.Kolb and D.W.Lynch edit, Electronic and Molecular Structure of Electrode-Electrolyte Interfaces, ElseVier, 1983
    [7]田昭武,电化学实验方法进展,厦门大学出版社,1988
    [8]林仲华,叶思宇等,电化学中的光学方法,科学出版社,1990
    [9]C.Gutierrez and C.Melendress edit, Spectroscopic and Diffraction Techniques in Interfacial Electrochemistry, Kluwer Academic Publishers, 1990
    [10]H.D.Abruna edit, Electrochemical Interfaces: Modern Technique for In situ Interface Characterization, VCH. New York, 1991
    [11] K.Kneipp, Y.Wang et al, Phys.ReV.Lett. 78 (1997) 1667
    [12] S.Bell, J.A.Crayston et al, J.Phys.Chem. 100 (1996) 5252
    [13] J.Chowdhury, M.Ghosh et al, Spectrochim.Acta Part A. 56(2000) 2107
    [14]R.Adzic, E.Yeager et al, J.Electrochemistry.Soc. 121(1974)474
    [15]K.B.Eisenthal , Annul.ReV.Phys.Chem. 43(1992)627
    [16]S.Nie, L.A.Lipscomb et al, Appl.Spectrosc.ReV. 26(1991)203
    [17] A.E.Russell, A.S.Lin et al, J.Chem.Soc. Faraday. 89(1993)195
    [18]M.F.Toney, J.N.Howard et al, Nature. 368(1994)444
    [19]李五湖,田中群,光散射学报, 5(1993)50
    [1] C. V. Raman, Nature. 121 (1928) 619.
    [2]席时全、王玮、李微、薛奇、吉敏,红外光谱与Raman光谱,山东,山东科学技术出版社,1999.
    [3] Sloane, J. Appl. Spectrosc., 25 (1971) 430.
    [4] M. Fleischmann, et al, Chem. Phys. Lett., 26 (1974) 163.
    [5] D. L. Jeanmaire, Richard P.Vanduyne,Electronal. Chem., 84 (1977) 1.
    [6] D. S. Wang, H.Chew, et al, Applied Optics. 19 (1980) 2256.
    [7] M. Kerker, D. S. Wang, et al, Applied Optics. 19 (1980) 3373.
    [8] Errata, Applied Optics. 19 (1980) 4159.
    [9] I. G. G. Thanos, J. Electroanal. Chem. 200 (1986) 231.
    [10] E. C. Le Ru, P. G. Etchegoin, Chemical Physics Letters 396 (2004) 393.
    [11] O Balmes, J O Bovin, J O Malm, H X Xu. Homogeneous surface-enhanced Raman scattering observed from self-assembled gold nanoparticle films deposited from the liquid-liquid interface. Vibrational Spectroscopy 37 (2005) 189.
    [12] B. B. Petthger, M. R. Phipott et al, Surf. Sci. 105 (1981) 469.
    [13] P. Gao, D. Gosztola, et al, J.Electroanal.Chem. 233 (1987) 211.
    [14] M. Moskovits, Rev. Mod. Phys., 57 (1985) 783.
    [15] M. Moskovits, J. S. Suh, J. Phys. Chem., 92 (1988) 6327.
    [16] Y. J. Kwon, S. B. Lee, K. Kim, M. S. Kim, J. Mol. Stru., 318 (1994) 25.
    [17] Y. S. Li, Y. Wang, J. Cheng, Vib. Spectrosc., 27 (2001) 65.
    [18] S. Sánchez-Cortés, J. V. García-Ramos, J. Colloid and Interface Science, 231 (2000) 98.
    [19] H. Park, S. B. Lee, K. Kim, M. S. Kim, J. Phys. Chem., 94 (1990) 7576.
    [20] Di Wu, Yan Fang, J. Colloid and Interfce Science, 265 (2003) 234.
    [21] E. Roth et al. Appl. Spectrosc., 47 (1993) 1794.
    [22] E. S. Brandt. Appl. Spectrosc., 47 (1993) 85.
    [23] Tian Z. Q., Lian Y. Z., Fleischmann M., Electrochim, Acta, 35 (1990) 879.
    [1]Hasegawa, S.; et al. J. Electron Spectrosc. Relat. Phenom. 1998,88:891
    [2]Ganeev, R. A.; et al. Opt. Commun. 2000, 185:473.
    [3]Yuxue Li et al, Chemical Physics Letters, 2001,335:524-532
    [4]Yuan-sheng Jiang et al
    [5]J.Fagerstrom et al, Physics Review B, 1993, 48:11367-11374
    [6]Nakamoto, K.; et al. J. Chem. Educ. 2000, 77 (6):775.
    [7]Al-Mohamad, A.; et al. Synth. Met. 1999, 104, 39.Progress in Physics, 1995,15:307-317
    [8]P.M.Rafailov et al, Solid State Communications ,1999,112:517- 520
    [9]D.L. S. Velasquez et al, Phys. Rev. B, 49(1994)11433;
    [10]V. Capozzi et al, Synth. Met. , 77(1996)3;
    [11]V. Capozzi et al, Carbon, 35(1997)763
    [12]X.-C. Yang, Y. Fang, J. Phys. Chem. B 107 2003, 37:10100–10103.
    [13]Y. Fang, Q.-J. Huang, P. Wang, X.-Y. Li, N.-T. Yu, Chem. Phys. Lett. 2003,381:255–261.
    [14]Ouyang JM , Zhang ZM , Huang CX, et al. Colloid. Surface A , 2000, 175: 99.
    [15]Yan Fang , Qun-Jian Huang , Peijie Wang ,and etc, Chemical Physics Letters 381 (2003) 255–261
    [16]Akers K L C - sins L M, Mascovits M. Chew. Phys . Iztt, 1992, 190:6 1 4
    [17] Journal of Molecular Structure 436-437 (1997) 19-23
    [18] Carbon 44 (2006) 894–899
    [19] Electrochemistry Communications 2_2000.547–551
    [20] L. 0. S. Bulhdes, Y. S. Obeng and A. J. Bard, Chem. Mater., 5(1993) 110.
    [21] Journal of Electroanalytical Chemistry 397 (1995) 191-203
    [1] R.Parsons, D.M.Kolb and D.W.Lynch edit, Electronic and Molecular Structure of Electrode-Electrolyte Interfaces, ElseVier, 1983
    [2]田昭武,电化学实验方法进展,厦门大学出版社,1988
    [3]林仲华,叶思宇等,电化学中的光学方法,科学出版社,1990
    [4] C.Gutierrez and C.Melendress edit, Spectroscopic and Diffraction Techniques in Interfacial Electrochemistry, Kluwer Academic Publishers, 1990
    [5] Walanabe T et al. Surf.Sci. 158(1985)341
    [6] Kim S K et al. J.Raman Spectrosc. 17(1986)381
    [7] Z.Deng and D.E. Irish, Langmuir. 10(1994)586
    [8] Moskovits, M., 1985. Rev. Mod. Phys. 57, 783–826.
    [9] I.G.G.Thanos, J.Electroanal.Chem. 200(1986)231
    [10]Errata, Applied Optics. 19(1980) 4159
    [11]Michota, A., Bukowska.J, J. Raman. Spectrosc.34,(2003)21–25.
    [12] Zou, X., Dong, S., J. Phys. Chem. B 110, (2006) 21545–21550.
    [13] WILLIAM P. GRIFFITHt and TSE YUEN KoIa. Spectrochimica Acta, Vol. 51A, No. 2, pp.( 1995)253-267,
    [14] K. Pro?azi et al.rElectrochemistry Communications 2 2000 547–551
    [15] V o l . 2 6 , N o . 1 1 , p p 2 0 3 0 - 2 0 3 4 No v e mb e r , 2 0 0 6
    [16] Hino T.,Akazawa H.,J.Phys. Chem 1982. 80. 33
    [17] Shizaka H. ,J. Phys. Chem.,1982.86.129730

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700