用户名: 密码: 验证码:
特种六分力传感器设计原理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
六分力传感器能同时检测到三维空间的全力信息,是随着机器人技术的发展而出现的一种新传感器。本文主要围绕复杂环境下六分力传感器系统设计原理的若干关键技术和实验校准等问题进行深入研究,并研制出“气动力—惯性力复合离心试验”用六分力传感器系统,完成的主要工作如下:
     1、系统地总结分析了六分力传感器的概念原理、特点及工程应用,重点回顾了六分力传感器及其关键技术的国内外研究状况。并从测量系统理论的角度,分析了六分力传感器系统的数学理论基础。
     2、在对比分析六种可选用的测力敏感元件方案的基础上,对并联结构和盒式结构六分力传感器分别进行总体方案分析,并重点提出了一种新型八正交梁结构六分力传感器系统的总体设计方案,同时详尽阐述了其结构设计、工艺、布片组桥及测量原理等关键技术。
     3、针对维间耦合严重制约着传感器测量精度的问题,对多分力传感器解耦算法进行全面系统分析,分别针对静态解耦和动态解耦,提出几种有效的解耦方法及策略。
     4、以并联结构六分力传感器为研究对象,推导出其主要性能指标的解析解,分析了主要性能指标的性能椭球特性;引入性能影响因子,考察了无量纲化的关键结构参数与主要性能指标的量化关系,绘制出主要性能指标的二维性能图谱;并在此基础上提出了面向性能指标(DFP)的传感器设计策略。
     针对盒式结构六分力传感器的关键部件——力敏元件与弹性连杆进行优化设计,提出了一种基于正交试验和APDL的结构优化方法,并采用该方法实现了力敏元件的优化设计,同时推导出新型柔性铰链的柔度解析计算公式,并考察了关键结构参数对新型柔性铰链柔度性能的影响规律。
     利用有限元仿真软件,对新研制八正交梁结构六分力传感器进行静力学特性分析及模态分析;以维间耦合最小为目标函数建立了其结构优化数学模型,实现了结构尺寸优化;并考察了结构参数变化影响固有频率的规律。完成了新型六分力传感器的动态特性仿真研究,获取了其受到阶跃或冲击载荷后的动态响应,提取了其动态性能指标值。
     5、建立了六分力传感器性能的通用评价指标体系模型和AHP-FUZZY评价模型,为六分力传感器的性能综合评价提供了理论依据,并给出了新型六分力传感器系统的评价实例,评价结果良好;同时建立了并联结构六分力传感器评价指标体系。
     6、完成了新型八正交梁结构六分力传感器的静态校准和准动态实验,实验结果表明:传感器的精度、准度、线性度等比较理想,达到了复合离心试验的使用要求。
As a new-type sensor, six-component force sensor can measure the three components of force and the three components of torque, which arises by the development of robot technology. The whole paper aims to study profoundly some key technology of design principle of six- component force sensor system and calibration experiments. And the six-component force sensor system designed for the compound test on the aerodynamic force and inertia force is developed in this paper. The main work is as follows.
     Firstly, the concepts and principles, characteristics, and engineering applications of six-axis force sensor are summarized systematically. The state-of-art and key technologies about the six- component force sensor are also included. And the theoretical bases of six-component force sensor are studied with the measurement system theory.
     Secondly, the overall schemes of six- component force sensor in Stewart structure and six-component force sensor in cartridge structure are analyzed after selecting the optimal scheme from six optional schemes of force sensing element. The general design scheme of sensor system in a novel eight-orthogonal-beam structure is present chiefly, and structural design, process, bending the strain gauge, bridge design; measuring principles of the sensor are formulated in detail.
     Thirdly, decoupling algorithms of multi- component force sensor are investigated profoundly against the problem that the measuring precision of sensor can be confined by the couple interference. The decoupling could be divided into static decoupling and dynamic decoupling. Several effective decoupling strategies and methods are provided in this thesis.
     Fourthly, six-component force sensor in parallel structure is studied in detail. The analytic solutions of main performance index are derived. Performance ellipsoid characters of main performance index are analyzed.
     The quantum relations between dimensionless key structural parameters and main performance index are explored after introducing the performance impact influence factors. Two-dimensional performance atlases of main performance index are drawn. And the performance-oriented design strategy is advanced.
     Force sensing elements and elastic link rods are the key parts of six-component force sensor in cartridge structure. A structural optimization method based on orthogonal test and APDL is introduced in order to optimum design the two parts, the optimum design for force sensing element is implemented adopting the method. And the compliance formulas of the novel flexure hinge are derived. The laws on key structural parameters influencing the compliance performance of novel flexure hinge are studied.
     Static analysis and modal analysis of novel six-component force sensor are preceded utilizing the finite element simulation software. Least couple is used as objective function to build the mathematics model for structural optimization, and structural sizes optimization are implemented. The laws on the change of structural parameters influencing the natural frequency are analyzed. Study on the dynamic behaviors of novel six-component force sensor is realized, in this way, dynamic responses of system suffered by step or impulse load could be obtained. The dynamic performance indexes are achieved at last.
     Fifthly, the universal evaluation index architecture model and AHP-FUZZY evaluation model are built, which supply theoretical basis for overall evaluation of six-component force sensor. And the evaluation example on novel sensor system is presented, which indicates the evaluation result is good. Besides, the evaluation index architecture of six-component force sensor in parallel structure is also established.
     Sixthly, static calibration experiments and quasi-dynamic experiments of novel six-component force sensor are completed in the end. Experiments results illustrate the precision, accuracy; linearity and other performance of sensor are relative perfect, which reach the operating requirements of compound centrifugal test.
引文
1陈滨.机器人手腕测力装置[J].机械工程学报.1988,24(2):79-86
    2 P.C.Watson,S.H.Drake.Pedestal and Wrist Force Sensors for Automatic Assembly[C].Proc.the 5~(th) Int.Symp.On Industrial Robots,1975,501-511
    3 J.Schott.Tactile Sensor with Decentralized Signal Condition[C].The 9~(th) IMEKO World Congress,Berlin,1982
    4 H.V.Brussel,et al.Force Sensing for Advanced Robot[C].Proc.of the 5~(th) Int.Conf.On Robot Vision and Sensory Control,1980,501-511
    5 E.Kroll,et al.Decoupling Load Components and Improving Robot Interfacing with an Easy-to-use 6-axis Wrist Force Sensor[C].Theory of Machines and Mechanisms.Proc.of the 7th World Congress,1986
    6 T.Yoshikawa,et al.,A Six-Axis Force Sensor with Three Dimensional Cross-Shape Structure[C].Proc.of IEEE Conf.On Robotics and Automation,Arixona,1989,249-255
    7 M.Uchiyama,E.Bayon,et al.Systematic Design Procedure to Minimize a Performance Index for Robot Force Sensors[J].Trans ASME,Journal of Dynamic Systems,Measurement,and Control.1991:139,388-394
    8 E.Bayon,J.R Stubbe.Six-Axis Force Sensor Evaluation and a New Type of Optimal Frame Truss Design for Robotic Applications[J].Journal of Robotic Systems.1989:6(2),191-208
    9 B.Shimano,et al.On Force Sensing Information and Its Use in Controlling Manipulators[C].Proc.Of the 8th Int.Symp.on Robots.1979
    10 R.Little.Force/Torque Sensing in Robotic Manufacturing Sensors[J].The Journal of Machine Perception.1992,9
    11 Y.Hatamura,Ring.Shape 6-Axis Force Sensor and Its Application[C].Int.Conf.on Advanced Mechatronics,Tokyo,Japan.1989,647-652
    12 K.Ono,Y.Hatamura.A new design for 6-component force/torque sensors.Mechanical Problems in Measuring Force and Mass.1986,39-48
    13 M.Kaneko.Twin-Head Six-Axis Force Sensors[J].IEEE of Transaction Robotics and Automation.1996:12(1),146-154
    14 K.Ono.et al.Development of 6 Axis Force Sensor LSA[C].Proc.of the 3~(rd) Annual Conf.of Japan Robotics Society.1985
    15 S.Hirose,K.Yoneda.Robotic Sensors with Photo detecting Technology[C].Proc.of the 20~(th) ISIR.1989,271-278
    16 S.Hirose,K.Yoneda.Development of Optical 6-Axis Force Sensor and Its Signal Calibration Considering Non-Linear Interference[C].Proc.of IEEE Int.Conf.on Robotics and Automation.1989:(1),45-63
    17Kerr D.R.Analysis,Properties and Design of a Stewart-platform Transducer[J].Automation and Design,1989,111,25-28
    18C.C.Nguyen,S.S.Antrazi et al.Analysis and Experimentation of A Stewart-Based Force/Torque Sensor[J].International Journal of Robotics and Automation.1987:7(3),133-140
    19C.Ferraresi,et al.Static and Dynamic Behavior of A High Stiffness Stewart Platform-Based Force/Torque Sensor[J].Journal of Robotics Systems.1995:12(12),883-893
    20Sheng A.Liu.A novel six-component force sensor of good measurement isotropy and sensitivities [J].Sensors and Actuators.2002:A100,223-230
    21T.A.Dwarakanath,Bhaskar Dasgupta and T.S.Mruthyunjaya.Design and development of a Stewart platform based force-torque sensor[J].Mechatronics[J].2001,793-809
    22Joong-Jo Park.Development of the 6-axis force/moment sensor for a intelligent robot's gripper[J].Sensors and Actuators.2005:A118(1),127-134
    23李允明,C.S.George Lee.机器人腕力传感器的标定[J].东华大学学报(自然科学版),1986,2
    24胡建元,黄心汉.机器人力传感器研究概况[J].传感器技术,1993,(4)
    25黄心汉.一种非径向三量结构六维腕力传感器自弹性体及其优化设计[J].机器人,1992,14(5)
    26黄心汉等.机器人腕力传感器自动标定方法[J].自动化仪表,1992,14(5)
    27Hongrui Wang,F.Gao.Design of 6-Axis Force/Torque Sensor Based on Stewart Platform Related to Isotropy[J].Chinese Journal of Mechanical Engineering(English Edition).1997
    28姚裕.基于Stewart平台的并联风洞天平设计理论及应用研究[D].博士学位论文,南京:南京航空航天大学.2004
    29尹瑞多.Stewart广义六维力传感器的研究[D].硕士论文,浙江大学.2006
    30X.B.Chen,Z.J.Yuan,at el.A Study on Six Axis Wrist Force Sensor for Robotics[C].Proc.of the Seventh International Manufacturing Conf,China,Harbin.1995
    31贺德建,张鸿海,刘胜等.一种用于MEMS检测的无耦合六维力传感器的研制[J].微纳电子技术,2003:7/8,503-505
    32Karkehabadi,R.;Rhew,R.D.Linear and Nonlinear Analyses of a Wind-Tunnel Balance[R].NASA Langley Research Center.2004
    33D.Diddens,D.Reynaerts,et al.Design of A Ring-shaped Three-axis Micro Force/Torque Sensor [J].Sensors and Actuators.1995:A 46,225-232
    34Bicchi.A Criterion for Optimal Design of Multi-axis micro-Force/torque Sensor[J].Sensors and Actuators.1995:46-47,225-232
    35Lu-Ping Chao,et al.Shape optimal design and force sensitivity evaluation of six-axis force sensors [J].Sensors and Actuators.1997:A63,105-112
    36陈雄标.机器人腕力传感器设计及其动态性能仿真的研究[D].博士学位论文,哈尔滨:哈尔滨工业大学.1996
    37刘正士,陆益民等.一种机器人多轴力传感器弹性体有限元分析[J].机械设计,1998:12,12-14
    38陆永华,赵东标等.Stewart六维力/力矩传感器弹性体的设计分析[J].南京航空航天大学学报,2005:Vol 37(3).376-380
    39金振林,赵现朝,高峰.新型灵巧手指六维力传感器参数设计方法研究[J].仪器仪表学报,2003:24(4).371-374
    40刘正士,陆益民等.一种高性能六轴力传感器弹性体结构设计[J].应用科学学报,2001.3:19(1),57-61
    41Ming meng et al.Design and Characterization of a six-axis accelerometer[C].International Conference on Robotics and Automation.Barcelona,Spain.Apr.2005
    42J.H.Kim et al.Design and analysis of a column type multi-component force/moment sensor[J].Measurement.2003:33,213-219
    43孙怡宁,易秀芳.六维力传感器结构及应力分析[C].全国第二届机器人学术会议论文集(863项目专辑),1989,327-333
    44薛正洪等.腕力传感器结构优化设计[C].第二届全国传感器学术年会(武汉)论文集,1988,562-567
    45M.Uchiyama,K.Hakomori.A Few Considerations on Structural Design of Force Sensors[C].Proc.of the 3rd Annual Conf.On Japanese Robotics Society.1985,17-18
    46熊有伦.机器人力传感器的各项同性研究[J].自动化学报,1996.1:22(1),10-18
    47张晓辉,高峰.Stewart结构六维力传感器力矩各项同性研究[J].计量学报,2005:26(1),88-92
    48张晓辉.Stewart结构六维力传感器力矩各项同性研究[J].机械设计与研究,2004:20(2),20-22
    49张晓辉,高峰,贺永生.Stewart结构六维力传感器力各项同性研究[J].机械设计,2004.7:21(7),9-11
    50王洪瑞,陈贵林,高峰等.基于Stewart平台的六维力传感器各向同性的进一步分析[J].机械工程学报,2000:36(4),49-52
    51赵克定,杨灏泉,吴盛林等.基于Stewart平台的六维力/力矩传感器各向同性的解析研究[J].航空学报,2002.5:23(3),241-244
    52陈雄标,袁哲俊,姚英学.多维力传感器设计的评价准则与优化设计研究[J].哈尔滨工业大学学报,1997.8:29(4),88-92
    53金振林,高峰.新型机器人6维力/力矩传感器结构的刚度性能指标分析[J].中国机械工程,2001:10,1092-1094
    54姚裕,吴洪涛,张召明等.基于并联机构的六分量并联天平及其雅可比矩阵研究[J].机械科学与技术,2004:23(7),768-770
    55徐科军.传感器动态特性的实用研究方法[M].中国科学技术大大学出版社,1999
    56徐科军,李成.多维腕力传感器静态解耦的研究[J].合肥工业大学学报(自然科学版),1999:22(2),1-6
    57王国泰,易秀芳,王理丽.六维力传感器发展中的几个问题[J].机器人,1997:19(6),474-478
    58宋国民,翟羽健,周晓晶.基于模糊推理的多维传感器解耦算法研究[J].工业仪表与自动化装置,2001:1
    59宋国民,翟羽健.基于查询表的多维传感器解耦算法研究[J].自动化仪表,2002.2:22(2),7-9
    60姜力,刘宏,蔡鹤皋.多维力/力矩传感器静态解耦的研究[J].仪器仪表学报.2004,25(3):284-287
    61姜力,刘宏,蔡鹤皋等.基于神经网络的多维力传感器静态解耦的研究[J].中国机械工程,2002:13(24),2100-2103
    62王永初.解耦控制系统[M].四川科学技术出版社,1985
    63张为公.一种六维力传感器的新型布片和解耦方法[J].南京航空航天大学学报,1999:31(2),219-222
    64徐科军,殷明等.腕力传感器的一种动态解耦方法[J].应用科学学报.1999,17(1):39-44
    65徐科军,李成.多维力传感器迭代动态解耦方法[J].应用科学学报.1999,10(1):46-48
    66徐科军,李成.多维力传感器静动态联合解耦补偿方法[J].应用科学学报.2000,18(3):189-191
    67宋国民,张为公,翟羽健.基于对角优势补偿的传感器动态解耦研究[J].仪器仪表学报.2001,22(4S):165-167
    68王建波,吕震中等.基于INA的机器人六维腕力传感器的解耦研究[J].测控技术,2002:21(9),5-7
    69Xianzhong Dai,Jun L iu,et al.Neural Network α th 2-order Inverse System Method for the Control of Nonlinear Continuous Systems[C].IEEE Proceedings 2 Control Theory and Applications,1998,145(6):519-522
    70戴先中,孟正大,沈建强等.神经网络α阶逆系统控制方法在机器人解耦控制中的应用[J].机器人.2001,23(4):363-367
    71何丹,戴先中,王勤.神经网络广义逆系统控制[J].控制理论与应用.2002,19(1):34-40
    72戴先中,殷铭,王勤阎.传感器动态补偿的神经网络逆系统方法[J].仪器仪表学报.2004,25(5):593-596
    73丁明理,梁宏,王祁等.基于小生境遗传算法的多维力传感器动态解耦方法[J].传感技术学报.2006,19(3):667-671
    74姚智慧,张付祥.机器人六维传感器研究概况及发展预测[J].广东自动化与信息工程.2002,3:7-9
    75尹瑞多,王宣银,程佳等.广义六维力传感器的特点及研究和应用状况[J].液压与气动.2005, 10:48-50
    76朱明武.动态测量原理[M].南京:高等教育出版社.1988:1-46
    77于连栋.动态测量系统现代建模理论研究[D].博士学位论文,合肥:合肥工业大学.2003
    78谢少锋,陈晓怀,张勇斌.测量系统不确定度分析及其动态性研究[J].计量学报.2002,23(3):237-240
    79林玉池.测量控制与仪器仪表前沿技术及发展趋势[M].天津:天津大学出版社.2005.7:10-11
    80Karl H.Ruhm.Sensor fusion and data fusion-Mapping and reconstruction.Measurement[J].2006,7:1-13
    81刘桂雄,李夏妮.传感器黑箱数学建模理论研究现状及应用[J].机电产品开发与创新.2004,17(5):11-14
    82陈振林,许晔.基于多元线性回归分析的高精度温度测量[J].电子测量与仪器学报.2000,3:9-13
    83孔德仁,朱蕴璞.工程测试技术[M].南京:南京理工大学.2000.9:41-54
    84叶湘滨,熊飞丽,张文娜等.传感器与测试技术[M].北京:国防工业出版社.2007.4:76-90
    85洪建忠.“气动力-惯性力复合离心试验”用边界力测试系统研究[D].硕士论文,南京:南京理工大学,2003
    86贺德馨.近代空气动力学丛书-风洞天平[M].北京:国防工业出版社,2001
    87B.S.Morgan.The Synthesis of Linear Multivariable system by state feedback[J].J.A.C.C.,1964:Vol.64,468-472
    88王东,周东华,金以慧.解耦问题的发展[J].自动化博览.2001,4:6-10
    89王启志.工程解耦控制系统的研究[D].博士学位论文,厦门:华侨大学,2002
    90许德章,吴仲城,葛运建等.机器人六维腕力传感器耦合矩阵的确定与摄动分析[J].仪器仪表学报.2005,26(1):7-11
    91Lei Jianhe,Qiu Liankui,Liu Ming,Song Quanjun and Ge Yunjian.Application of Neural Network to Nonlinear Static Decoupling of Robot Wrist Force Sensor[C].Proceedings of the 6th World Congress on intelligent control and automation.June 21-23,2006,Dalian,China
    92俞阿龙.基于仿生算法的机器人腕力传感器动态特性及相关技术研究[D].博士学位论文,南京:东南大学,2005
    93俞阿龙.径向基函数神经网络在多维力传感器标定中的应用[J].计量学报.2006,27(1):46-49
    94The Math Works Inc.Neural Network Toolbox user's Guide.2002,Version 4
    95闻新,周露等.MATLAB神经网络仿真与应用[M].北京:科学出版社,2003
    96刘桂雄,李夏妮,周德光.基于多尺度数值计算的传感信息解耦新方法[J].光学 精密工程.2005,13(S):164-167
    97WEN CH L.Multiscale data fusion for multi sensors single mode dynamic system[J].Acta Electronica Sinica.2001,29(3):341-345
    98GONIDEC L,CONIL F,GIBERT D.The wavelet response as a multiscale NDT method[J].Ultrasonics.2003,41(6):487-497
    99Vapnik V.The Nature of statistical learning theory[M].New York Springer-Verlag,1999,Second Edition.
    100Suykens,J.A.K.Support vector machines:a nonlinear modeling and control perspective[J].European Journal of Control(S0947-3580),2001,7(2-3):311-327.
    101Suykens,J.A.K,Gestel,T.,de Brabanter,et al.Least squares support vector machines[M].World Scientific,2002,Singapore.
    102Wen Xiangjun,Meng Zhengda,et al.Nonlinear decoupling control design based on least squares support vector regression[J].Zhejiang University Science A,2006,7(2),275-284.
    103吴德会,王晓红.基于SVM的传感器动态模型辨识方法[J].传感技术学报,2006,19(3):716-719.
    104Yan Weiwu,Zhu Hongdong,et al.Soft sensor modeling based on Support Vector Machines[J].Journal of System Simulation,2003,15(10):1494-1496.
    105Dai Xianzhong,He Dan,et al.Novel Method for Decoupling Nonlinear MIMO System with Linearization(Ⅰ)-Continuous Time System[J].Control and Decision.Vol 14,No.5,1999,403-406
    106吴德会.LS-SVM构造FLANN逆系统的传感器动态补偿方法[J].数据采集与处理.2007,22(3):378-383
    107吴德会.基于最小二乘支持向量机的传感器非线性动态补偿[J].仪器仪表学报.2007,28(6):1018-1023
    108汤晓君,刘君华.交叉敏感情况下多传感器系统的动态特性研究[J].中国科学E辑工程科学材料科学.2005,35(1):85-105
    109宋夫华,李平.支持向量机α阶逆系统解耦控制方法[J].浙江大学学报(工学版).2007,41(2):226-229
    110靳其兵,曾东宁,王云华,顾树生.多变量系统的神经网络解耦新方法[J].东北大学(自然科学版).1999,20(3):250-253
    111Wu Jianbing,Sun Yukun,Liu Xianfei,et al.Decoupling control of radial force in bearingles switched reluctance motors based on inverse system[C].Proceedings of the 6th World Congress on intelligent control and automation.June 21-23,2006,Dalian,China
    112Zhang Ming-guang,Wang Xing-gui and Li Wen-hui.The Self-tuning PID Decoupling Control based on the Diagonal Recurrent Neural Network[C].Proceedings of the Fifth International Conference on Machine Learning and Cybernetics.Dalian,13-16 August 2006
    113Quan Yong and Yang Jie.Identical Matrix Design of the Optimal Decoupling Control System with Kernel Methods[C].Proceedings of the First International Conference on Machine Learning and Cybernetics.Beijing,4-5 November 2002
    114Xu Ke-jun and Li Cheng.Dynamic Decoupling and Compensating Methods of Multi-Axis Force Sensors[J].IEEE Transactions on Instrumentation and Measurement.Vo149,No.5,2000,935-941
    115Luc Baron and Jorge Angeles.The Kinematic Decoupling of Parallel Manipulators Using Joint-Sensor Data[J].IEEE Transactions on Robotics and Automation.Vol 16,No.6,2000,644-651
    116金振林,岳义.Stewart六维力传感器的静态解耦实验[J].仪器仪表学报.2006,27(12):1715-1717
    117姚智慧,张付祥.新型力解耦机器人六维力传感器研究[J].传感技术学报.2002,4:387-391
    118Stewart D.A platform with six degree of freedom[C].Proc.of the Institute of Mechanical Engineering.1965,180,371-386
    119张景柱,徐诚,郭凯.基于Stewart构型的六维力/力矩传感器刚柔度性能研究[J].机械设计.2007,24(7):6-8
    120吴仲城.多维力传感器设计及信号分析方法研究[D].博士学位论文,合肥:中国科学院等离子体物理研究所,2001
    121黄真,孔令富,方跃法.并联机器人机构学理论及控制[M].北京:机械工业出版社,1997
    122金振林.新型六自由度正交并联机器人设计理论与应用技术研究[D].博士学位论文,秦皇岛:燕山大学,2001
    123金振林,高峰.一种新型6自由度正交并联机器人机构的柔度分析[J].机械设计与研究.2001,17(2):38-40
    124徐仲,张凯院.矩阵论简明教程[M].北京:科学出版社.2001:P33
    125熊有伦.机器人技术基础[M].武汉:华中理工大学出版社,1996
    126金振林.6-PSS并联机器人和并联结构控制器的分析与设计[R].博士后出站报告,北京:北京航空航天大学.2003
    127Merlet J P.Parallel robot[M].Kluwer Academic Publishers,First Edition,2000
    128Merlet J P.Workspace-oriented methodology for designing a parallel manipulator.Proe.of the 1996 IEEE Int.Conf.on Robotics and Automation[C].Minneapolis,Minnesota-April 1996,3726-3731
    129武卫,王占林.气动Stewart平台结构参数的多目标优化[J].机械科学与技术,2005,24(4):451-453
    130杨晓钧,王知行,钟诗胜.基于工作空间和灵活性的并联机床结构参数优化设计[J].机械与电子,2004(2):14-17
    131Kim,Chan Soo.Optimal design of a fully parallel robot manipulator[D].The Louisiana State University and Agricultural and Mechanical College,1993
    132张家骥等.盒式应变天平研制概况[R].气动力中心一所.1982,10
    133吴浩扬,常炳国,朱长纯.遗传算法的一种特例--正交试验设计法[J].软件学报,2001,12(1), 148-153
    134博弈创作室编.APDL参数化有限元分析技术及其应用实例[M].北京:中国水利水电出版社.2004
    135李芳,凌道盛.工程结构优化设计发展综述[J].工程设计学报,2002,9(5),229-235
    136侯化国,王玉民.正交试验设计[M].长春:吉林人民出版社.1985
    137Paros J M,Weisbord L.How to design flexure hinges[J].Machine Design,1965,151-156
    138Wu Y F,Zhou Z Y.Design calculations for flexure hinges[J].Rev.Sci.Instrum.2002,73(8),3101-3106.
    139Wu Y F,Zhou Z Y.Design of flexure hinges[J].Engineering Mechanics.2002,19(6),136-140
    140Lobontiu N.Stiffness characterization of comer-filleted flexure hinges[J].Rev.Sci.Instrum:2004,75(11),4896-4904
    141Lobontiu N,Paine JSN,et al.Comer-filled flexure hinges[J].ASME J Mech Des.2001,123,346-352.
    142Lobontiu N,Paine J N,et al.Parabolic and hyperbolic flexure hinges:flexibility,motion precision and stress characterization based on compliance closed-form equations[J].Precision Engineering.2002,26,183-192
    143Lobontiu N,Paine JSN,et al.Design of symmetric conic-section flexure hinges based on closedform compliance equations[J].Mechanism and Machine Theory.2002,37(5),477-498
    144Smith T S,Badami VG,et al.Elliptical flexure hinges[J].Rev.Sci.Instrum.1997,68(3):1473-1483
    145Chen G M,Liu X Y,Jia J Y.Compliance calculation of elliptical flexure hinge[J].Chinese Journal of Mechanical Engineering,2006,42(S),111-115
    146Chen G M,Jia J Y.Study on a hybrid flexure hinge[J].Chinese Journal of Scientific Instrument,2004,25(S),110-112
    147Lobontiu N,Garcia E.Two-axis flexure hinges with axially-collocated and symmetric notches[J].Computers and Structures,2003,81,1329-1341
    148S.R.Park and S.H.Yang.A mathematical approach for analyzing ultra precision positioning system with compliant mechanism[J].Journal of Materials Processing Technology,Volumes 164-165,2005,Pages 1584-1589
    149Feng-Zone Hsiao and Tai-Wu Lin.Analysis of a novel flexure hinge with three degrees of freedom [J].Review of Scientific Instruments,Volume 72,Issue 2,2001,Pages 1565-1573
    150Xue Shifu,Li Qingxiang.Design of Precision Instruments[M].Beijing:Tsinghua University Press,1991
    151Wu Yingfei,Li Yong,Zhou Zhaoying,Liu Qingyan.Design and Development of an inchworm type X-Y-θ micro stage[J].Chinese Journal of Mechanical Engineering,2001,12(3):263-265
    152Zuo Xingyong,Liu Xiaoming.Calculation and analysis of rotational stiffness for three types of flexure hinges[J].Chinese Journai of Scientific Instrument,2006,Vol.27,No.112,1725-1728
    153Wang Ji-wu,Chen Ken,Li Jia.Study of geometrical parameters of typical flexible hinges'influence on its rigidity[J].Robot,2001,Vol.23,No.l,51-57
    154Ye Zishen,Li Cuihong,Meng Yonggang.Study on the turning rigidity calculations of symmetrical flexure hinge for clamping mechanism and its design parameter choice[J].Journal of Mechanical Strength,2005,Vol.27,No.6,844-846
    155Li Yuhe,Li Qingxiang,et al.Study on design method of one-axis flexure hinge[J].Journal of Tsinghua University(Sci.& Tech.),2002,Vol.42,No.2,172-174
    156Yi B-J,Chung G,Na H,KimW,Suh I.Design and experiment ofa three-DOF parallel micromechanism utilizing flexure hinges[J].IEEE Trans Robot Auto.2003,19(4):604-612
    157Tseytlin Y.Notch flexure hinges:an effective theory[J].Rev Sci Instrum,2002,73(9):3363-3368
    158Lobontiu N.Compliant mechanisms:design of flexure hinges[M].CRC Press,2003
    159Smith S,Chetwynd D,Bowen D.Design and assessment of monolithic high precision translation Mechanisms[J].J Phys E 1987,20:977-983
    160R.Ranganath,P.S.Nair,T.S.Mruthyunjaya and A.Ghosal.A force-torque sensor based on a Stewart Platform in a near-singular configuration[J].Mechanism and Machine Theory,Volume 39,Issue 9,2004,Pages 971-998
    161Yuen Kuan Yong,Tien-Fu Lu and Daniel C.Handley.Review of circular flexure hinge design equations and derivation of empirical formulations[J].Precision Engineering,Volume 32,Issue 2,April 2008,Pages 63-70
    162Wouter O.Schotborgh,Frans G.M.Kokkeler,et al.Dimensionless design graphs for flexure elements and a comparison between three flexure elements[J].Precision Engineering,Volume 29,Issue 1,January 2005,Pages 41-47
    163冯培恩,邱清盈等.机械广义优化设计的理论框架[J].中国机械工程.2000,11(1-2):126-129
    164王勖成,邵敏.有限单元法基本原理和数值方法[M].北京:清华大学出版社,1997
    165曹树谦,张文德,萧龙翔.振动结构模态分析--理论、实验与应用[M].天津:天津大学出版社.2001
    166倪栋,段进,徐久成等编.通用有限元分析ANSYS7.0实例精解[M].北京:电子工业出版社.2003
    167胡仁喜,王庆五,阎石等编.ANSYS8.2机械设计高级应用实例[M].北京:机械工业出版社.2005
    168龚曙光,谢桂兰编.ANSYS操纵命令与参数化编程[M].北京:机械工业出版社.2004
    169张洁.多种结构六维腕力传感器动态特性的比较[D].硕士论文,南京:东南大学,2003
    170季梅.六维腕力传感器动态特性的研究[D].硕士论文,南京:东南大学,2003
    171美国ANSYS公司北京办事处.ANSYS动力学分析指南.培训教材,1998
    172王昌明,孔德仁,何云峰等.传感器与测试技术[M].北京:北京航空航天大学出版社.2005.6
    173李俊芳,吴小萍.基于AHP-FUZZY多层次评判的城市轨道交通线网规划方案综合评价[J].武汉理工大学学报(交通科学与工程版).2007,31(2):205-208
    174杨敏,严骏,欧阳艳华,张健.基于AHP-FUZZY算法的大型桥梁生存能力评估模型[J].兵工学报.2007,28(9):1075-1081
    175G.S.Kim.,H.J.Shin and H.M.Kim.Development of multi-axis force/moment sensor calibration system and its uncertainty evaluation[C].The Korean Society of Mechanical Engineers Proceedings,2006,1025-I 030
    176陆士安,何仁,陆森林.汽车平顺性评价体系[J].江苏大学学报(自然科学版).2006,27(3):229-233
    177杨茂盛,王乐.混凝土结构工程综合性能评价的技术方法分析[J].西安建筑科技大学学报(自然科学版).2007,39(2):263-266
    178黄海,孙国正,胡文斌.港口机械结构安全性评价指标体系中权重自学习方法的研究[J].武汉理工大学学报(交通科学与工程版).2005,29(2):205-207
    179Chandrashekhar A.Deodhar.Vehicle dynamic tire force measurement using a bolt-on wheel force transducer[Ph.D Thesis].The Pennsylvania State University,2002
    180Weiblen W and Hofmann T.Evaluation of different designs of wheel force transducers.SAE Paper 980262
    181柳青,黄道.基于AHP-BP算法的供应链合作伙伴选择建模及其应用[J].华东理工大学学报(自然科学版).2007,33(1):108-114
    182李培玉,谭大鹏,刘端阳等.六分量力传感器及其校准系统[J].中国机械工程.2005,16(17):1523-1526
    183张为公.基于多维轮力测量的汽车道路试验系统研究与开发[D].博士学位论文,南京:东南大学.2001
    184陈雄标,袁哲俊,姚英学.机器人用六维腕力传感器标定研究[J].机器人.1997,19(1):43-45
    185张晓辉.机器人六维力传感器静态标定研究[J].创意与实践.2004.3:86-88
    186吴涓,曹效英,宋爱国等.Matlab在六维腕力传感器系统标定中的应用[J].传感技术学报.2001.9:181-185
    187葛运建,王国泰等.SAFMS-T六维力测试平台的设计与实现[J].机器人.1998,20(4),521-526
    188赵现朝.Stewart结构六维力传感器设计理论与应用研究[D].博士学位论文,秦皇岛:燕山大学,2003
    189干方建.基于多维力传感器的机器人动态特性若干问题的研究[D].博士学位论文,合肥:合肥工业大学,2003
    190钱朋安.六轴加速度传感器静、动态特性若干问题的研究[D].博士学位论文,合肥:中国科学技术大学,2005
    191崔勇.Stewart平台六维力传感器及其标定系统的设计[D].硕士论文,燕山大学,2006
    192Aiguo Song,Juan WU,et al.A novel four degree-of-freedom wrist force/torque sensor with low coupled interference[C].Proceedings of the 2006 IEEE/RSJ.International Conf.on Intelligent Robots and Systems.October 9-15,Beijing,China,4423-4428

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700