用户名: 密码: 验证码:
严格反馈不确定非线性时滞系统的自适应模糊控制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着现代科学技术的发展,对严格反馈不确定非线性时滞系统控制问题的研究受到越来越多的关注。Backstepping方法和动态面控制方法是研究严格反馈不确定非线性时滞系统控制问题的有效途径。本论文以backstepping方法和动态面控制方法为基本工具,结合自适应模糊逼近理论、时滞泛函微分方程理论、Lyapunov稳定性理论以及关联大系统分散控制理论,重点研究了如何消除未知时滞和不确定因素对系统稳定性的影响,以及如何简化控制器的结构。主要工作概况如下:
     1.针对系统输出中含有完全未知时滞的情况,提出一种时滞代换方法。考虑到系统最终将跟踪给定的参考信号,而参考信号是事先指定的,即已知的,因此可以采用参考信号代换上述无法利用的时滞信号,然后采用自适应鲁棒技术处理代换误差,消除了时滞对闭环系统的影响。
     2.将自适应backstepping控制理论和自适应动态面控制理论延伸到了含完全未知时滞的不确定非线性系统。分别提出了一种自适应模糊backstepping控制方法和自适应模糊动态面控制方法,取消了对时滞的常用假设,克服了因完全未知时滞的存在而导致的控制器设计困难,去除了时滞对闭环系统稳定性的影响。跟踪误差可以收敛到原点附近任意小的邻域内。
     3.将自适应backstepping控制和自适应动态面控制理论延伸到了含完全未知时滞和未知关联项的非线性大系统。分别提出了一种自适应模糊分散backstepping控制方法和自适应模糊分散动态面控制方法,取消了对系统未知关联项和未知时滞常作的假设,去除了未知时滞对闭环系统和分散控制器构造的影响。这两种控制方法均可保证闭环大系统的稳定性。
     4.针对一类输出反馈的不确定非线性时滞系统,提出了一种基于单逼近器的自适应模糊动态面控制方法。控制器中仅需一个模糊逼近器,便使得系统的所有未知项得到补偿,进而仅带来一个未知参数和逼近误差,减少了需要在线调整的自适应参数的个数,简化了控制器的结构,避免了“计算膨胀”的问题。通过构造合适的Lyapunov-Krasovskii泛函,去除了未知时滞的影响。
     5.提出了一种基于单逼近器的自适应模糊分散动态面控制方法。对于含有未知时滞和未知关联项的输出反馈非线性时滞关联大系统,每个子系统中仅需一个模糊逼近器,来消除系统未知关联项的影响,减少了在线调整的自适应参数个数,简化了分散控制器的结构,避免了“计算膨胀”问题。所构造的Lyapunov-Krasovskii泛函同样可以消除未知时滞的影响。
     6.针对一类含未知时滞和未知增益函数的非线性时滞系统,提出了一种自适应模糊动态面控制方法。基于时滞代换的思想处理系统中完全未知的时滞,取消了对时滞的常用假设。通过综合系统中的未知非线性函数和未知虚拟控制系数,使得系统的每一阶仅需引入一个逼近器,简化了控制器的结构,同时避免了控制奇异性问题。基于构造类加权形式的Lyapunov-Krasovskii泛函,确保了闭环系统的稳定性。
As the development of science and technology, the control problem of uncertainnonlinear time-delay systems is paid more and more attention to. Backstepping tech-nique and dynamic surface control (DSC) technique are efficient tools to study thecontrol problem of strict-feedback uncertain nonlinear time-delay systems. This dis-sertation uses backstepping and dynamic surface control as basic tools, combines adap-tive fuzzy approximation theory, stability theory of time-delay functional differentialequations, Lyaponov stability theory and decentralized control theory of interconnectedlarge-scale systems. We preliminarily focus on the problems of how to eliminate thein?uence of unknown time-delays and uncertainties which may harm to the stability ofthe system, and how to simplify the structure of the controller. The main contributionsare outlined as follows:
     1. For the control problem of systems with completely unknown time-delays inthe outputs, a novel technique called delay replacement is proposed. Considering thesystems outputs will eventually track the reference signals, and the reference signals areused to be known as prior knowledge, so the delayed signals can be replaced with thereference signals. Adaptive robust technique is employed to deal with the replacementerror, and the in?uence of time-delays to the closed-loop systems is eliminated.
     2. The adaptive backstepping control theory and the adaptive DSC theory areextended to uncertain nonlinear systems with completely unknown time-delays. Anadaptive fuzzy backstepping control approach and an adaptive fuzzy DSC approach areproposed. The common assumptions on the delays are removed; the controller designdifficulty and the in?uence to stability of the closed loop system caused by the delaysare eliminated. It is proved that the tracking error can converge to an arbitrary smallneighborhood of the origin.
     3. The adaptive backstepping control theory and the adaptive DSC theory areextended to nonlinear large-scale systems with comeletely unknown time-delays andunknown interconnections. An adaptive fuzzy decentralized backstepping control ap-proach and an adaptive fuzzy decentralized DSC approach are proposed. The commonassumptions on the delays and the interconnections are removed; the controller designdifficulty and the in?uence to stability of the closed loop system caused by the delaysare eliminated. All of these two control approaches can garantee the stability of the closed loop large-scale systems.
     4. Based on a single approximator, an adaptive fuzzy DSC approach is proposedfor output-feedback uncertain nonlinear time-delay systems. Only one fuzzy logic sys-tem is employed in the controller design procedure, so that all the unknown items ofthe systems are compensated for. Thus, only one unknown parameter and one approxi-mation error are needed to be adjusted, so that the controller structure is simplified. Atthe same time, the“explosion of items”problem is avoided by using DSC technique.The proposed approached can ensure stability of the closed-loop systems and arbitrarysmall tracking errors are achieved.
     5. Based on a single approximator, an adaptive fuzzy decentralized dynamic sur-face controller is proposed. In each subsystem of output-feedback nonlinear time-delaylarge-scale systems with unknown interconnections and unknown delay signals, onlyone fuzzy approximator is needed to eliminate the in?uence of the unknown intercon-nections and time delays, so that the number of unknown parameters which are neededto be adjusted is reduced, and the controller structure is simplified. Based on LaSalle in-variance theory and the stability theory of time-delay functional differential equations,the closed loop system is proved to be bounded, and through adjusting parameters, thetracking errors can be arbitrary small.
     6. An adaptive fuzzy DSC approach is proposed for a class of systems with un-known time-delays and unknown virtual control coefficients. Based on delay replace-ment technique, the completely unknown delay signals are dealt with and the commonassumption about time-delays are not needed any more. Through integrating the non-linear functions and the unknown virtual control coefficients of the systems, one ap-proximator is used in each step of the controller design, so that the controller structureis simplified, and the control singularity problem is avoided. Based on constructingquasi-weighted Lyapunov-Krasoviskii functional, the stability of the closed-loop sys-tems can be ensured.
引文
[1]杨自厚.自动控制原理.东北大学出版社,沈阳, 1980.
    [2]谢绪凯.现代控制理论基础.辽宁人民出版社,沈阳, 1980.
    [3] Ogata K. Modern control engineering. Prentice-Hall, New Jersey, 1996.
    [4] Khalil H K. Nonlinear systems. Prentice-Hall, London, 2002.
    [5] Isidori A. Nonlinear control systems. Springer, London, 1995.
    [6]韩正之,刘建华,郑毅,张钟俊.非线性控制系统的特性(I).控制与决策, 9(4):315–320,1994.
    [7]韩正之,刘建华,郑毅,张钟俊.非线性控制系统的特性(II).控制与决策, 9(5):395–400,1994.
    [8]韩正之,刘建华,郑毅,张钟俊.非线性控制系统的特性(III).控制与决策, 9(6):472–478,1994.
    [9] Isidori A. Nonlinear control system design. Pergamon Press, Berlin, 1989.
    [10] Itkis Y. Control Systems of Variable Structure. Wiley, New York, 1976.
    [11] Utkin U A. Sliding Modes and Their Application in Variable Structure Systems. Mir,Moscow, 1978.
    [12] Krstic M, Kanellakopoulos I, Kokotovic P V. Nonlinear and adaptive control design. Wiley,New York, 1995.
    [13] Swaroop D, Hedrick J K, Yip P P, and Gerdes J C. Dynamic surface control for a class ofnonlinear systems. IEEE Transactions on Automatic Control, 45(10):1893–1899, 2000.
    [14] Zadeh L A. Fuzzy sets. Information and Control, 12(8):338–353, 1965.
    [15] Mamdani E H. Application of fuzzy algorithms for control of a simple dynamic plant. Pro-ceedings of the IEE, 121(12):1585–1588, 1974.
    [16] Marino R, Tomei P. Nonlinear control design: Geometric, adaptive and robust. Prentice-Hall,London, 1995.
    [17] Kokotovic P, Arcak M. Constructive nonlinear control: A historical perspective. Automatica,37(3):637–662, 2007.
    [18] Kanellakopoulos I, Kokotovic P V, Morse A S. Systematic design of adaptive controllers forfeedback linearizable systems. IEEE Transactions on Automatic Control, 36(11):1241–1253,1991.
    [19] Freeman R A, Kokotovic P V. Design of’softer’robust nonlinear control laws. Automatica,29(6):1425–1437, 1993.
    [20] Kokotovic P V. The joy of feedback: nonlinear and adaptive. IEEE Control System Maga-zine, 12(3):7–17, 1992.
    [21]夏小华,高为炳.非线性系统控制及解耦.科学出版社,北京, 1997.
    [22] Su R. On the linear equivalents of nonlinear systems. System and Control Letters, 2(1):48–52,1982.
    [23] Su R, Hunt L R. A cononical expansion for nonlinear systems. IEEE Transactions on Auto-matic Control, 31(7):670–673, 1986.
    [24] Krener A J, Isidori A. Linearization by output injection and ovservers. System and Controlletters, 3(1):47–52, 1983.
    [25] Dayawansa W P, Boothby W M, Elliott D. Global state and feedback equivalence of nonlinearsystems. System and Control Letters, 6(3):229–234, 1985.
    [26] Panda S K, Dash P K. Application of nonlinear control to switched reluctance motors: afeedback linearization approach. IEE Proceedings: Electric Power Applications, 143(5):371–379, 1996.
    [27] Marquez-Martinez L A, Moog C H. Input-output feedback linearization of time-delay sys-tems. IEEE Transactions on Automatic Control, 49(5):781–786, 2004.
    [28] Pereira D S, Paulo S. Some remarks on static-feedback linearization for time-varying systems.Automatica, 44(12):3219–3221, 2008.
    [29] Deng H, Li H X, Wu Y H. Feedback-linearization-based neural adaptive control for un-known nonaffine nonlinear discrete-time systems. IEEE Transactions on Neural Networks,19(9):1615–1625, 2008.
    [30] Kravaris C, Palanki S. A Lyapunov approach for robust nonlinear state feedback systhesis.IEEE Transactions on Automatic Control, 33(15):1188–1191, 1988.
    [31] Devasia S, Chen D, Paden B. Nonlinear inversion based output tracking. IEEE Transactionson Automatic Control, 41(2):930–942, 1996.
    [32] Gao Z W, Shi X Y. Robust stability and controller design for uncertain stochastic DAEsystems. Journal of Information and Computational Science, 5(2):895–902, 2008.
    [33] Wu Z J, Xie X J, Shi P. Robust adaptive output-feedback control for nonlinear systemswith output unmodeled dynamics. International Journal of Robust and Nonlinear Control,18(11):1162–1187, 2008.
    [34] Lozano R, Brogliato B, Landau I D. Passivity and global stabilization of cascaded nonlinearsystems. IEEE Transactions on Automatic Control, 37(12):1386–1388, 1992.
    [35] Freeman R A, Kokotovic P V. Robust nonlinear control design. Birkhauser, Boston, 1996.
    [36] Krstic M, Deng H. Stabilization of nonlinear uncertain system. Springer, London, 1998.
    [37] Won M C, Hedrick J K. Multiple surface sliding control of a class of uncertain nonlinearsystems. International Journal of Control, 64(4):693–706, 1996.
    [38] Swaroop D, Cerdes J C, Yip P P, Hedrick J K. Dynamic surface control of nonlinear systems.In Proceeding of the American Control Conference, pages 3028–3034, New Mexico, 1997.
    [39] Qu Z. Robust control of nonlinear uncertain systems under generalized matching conditions.Automatica, 29(4):985–998, 1993.
    [40] Marino R, Tomei P. Robust stabilization of feedback linearizable time-varying uncertainnonlinear systems. Automatica, 29(1):181–189, 1993.
    [41] Ikhouane F, Rabeh A, Giri F. Transient performance analysis in robust nonlinear adaptivecontrol. System and Control Letters, 31(1):21–31, 1997.
    [42] Yao B, Tomizuka M. Adaptive robust control of SISO nonlinear systems in a semi-strictfeedback form. Automatica, 33(5):893–900, 1997.
    [43] Jiang Z P. Combined backstepping and small-gain approach to adaptive output feedbackcontrol. Automatica, 35(6):1131–1139, 1999.
    [44] Yao B, Tomizuka M. Adaptive robust control of MIMO nonlinear systems in semi-strictfeedback forms. Automatica, 37(9):1305–1321, 2001.
    [45] Jiang Z P, Praly L. Design of robust adaptive controllers for nonlinear systems with dynamicuncertains. Automatica, 34(7):825–840, 1998.
    [46] Marino R, Tomei P. Adaptive output feedback tracking with almost disturbance decouplingfor a class of nonlinear systems. Automatica, 36(12):1871–1877, 2000.
    [47] Wang L X, Mendel J M. Fuzzy basis function, universal approximation, and orthogonal leastsquare learning. IEEE Transactions on Neural Networks, 3(9):807–814, 1992.
    [48] Wang L X, Mendel J M. Stable adaptive fuzzy control of nonlinear systems. IEEE Transac-tions on Fuzzy Systems, 1(2):146–155, 1993.
    [49] Wang L X. A supervisory controller for fuzzy control systems that guarantees stability. IEEETransactions on Automatic Control, 39(9):1845–1847, 1994.
    [50] Hsu F Y, Fu L C. A novel adaptive fuzzy variable structure control for a class of nonlinearuncertain systems via backstepping. Fuzzy Sets and Systems, 122(1):83–106, 2001.
    [51] Riccardo M, Patrizio T. Global adaptive output-feedback control of nonlinear system, Part I:Linear parameterization. IEEE Transactions on Automatic Control, 38(1):17–32, 1993.
    [52] Tong S C, Li Y M. Observer-based fuzzy adaptive control for strict-feedback nonlinear sys-tems. Fuzzy Sets and Systems, In Press, Available online, 2009.
    [53] Lin C, Wang Q G, Lee T H. H∞output tracking control for nonlinear systems via T-S fuzzymodel approach. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics,36(2):450–457, 2006.
    [54] Hong E, Ge S S, Lee T H. Robust adaptive fuzzy control of uncertain nonholonomic systems.In Proceedings of the 2004 IEEE International Symposium on Intelligent Control, pages 192–197, Taipei, Taiwan, 2004.
    [55] Chen B, Tong S C, Wang X Y. Adaptive fuzzy output tracking control of nonlinear sys-tems via backstepping. In Proceedings of the 6th World Congress on Intelligent Control andAutomation, pages 61–65, Dalian, China, 2006.
    [56] Zhang T P, Mei J D, Xia Y, Yu J J. Adaptive fuzzy control for strict-feedback nonlinearsystems. In Proceedings of the 5th World Congress on Intelligent Control and Automation,pages 15–19, Hangzhou,China, 2004.
    [57] Chen B, Liu X P, Tong S C. Adaptive fuzzy output tracking control of MIMO nonlinearuncertain systems. IEEE Transactions on Fuzzy Systems, 15(2):287–300, 2007.
    [58] Tang Y, Suarez R, Hernandez M. Robust decentralized fuzzy control for process control.In Proceedings of the 43rd IEEE Conference on Decision and Control, pages 1123–1128,Atlantis, Bahamas, 2004.
    [59]赵平,刘淑君.一类虚拟控制系数未知的随机非线性时滞大系统的适应镇定控制.自动化学报, 34(8):912–919, 2008.
    [60] Polycarpou M M. Stable adaptive neural control scheme for nonlinear systems. IEEE Trans-actions on Automatic Control, 41(3):447–451, 1996.
    [61] Polycarpou M M, Mears M J. Stable adaptive tracking of uncertain systems using nonlinearlyparameterized on-line approximators. International Journal of Control, 70(3):363–384, 1998.
    [62] Kwan C, Lewis F L. Robust backstepping control of nonlinear systems using neural networks.IEEE Transactions on Systems, Man, and Cybernetics-Part A, 30(6):753–766, 2000.
    [63] Zhang T, Ge S S, Hang C C. Adaptive neural network control for strict-feedback nonlinearsystems using backstepping design. Automatica, 36(12):1835–1846, 2000.
    [64] Ge S S, W C. Direct adaptive NN control of a class of nonlinear systems. IEEE Transactionson neural networks, 13(1):214–221, 2002.
    [65] Li Y H, Qiang S, Zhuang X Y, Kaynak O. Robust and adaptive backstepping control fornonlinear systems using RBF neural networks. IEEE Transactions on Neural Networks,15(3):693–701, 2004.
    [66] Ge S S, Wang C. Adaptive NN control of uncertain nonlinear pure-feedback systems. Auto-matica, 38(4):671–682, 2002.
    [67] Tian K K, Huang S N, Lee T H. Adaptive backstepping control for a class of nonlinearsystems using neural network approximations. International Journal of Robust and NonlinearControl, 14(7):643–664, 2004.
    [68] Wang C. An iss-modular approach for adaptive neural control of pure-feedback systems.Automatica, 42(5):723–731, 2006.
    [69] Ge S S, Wang J. Robust adaptive neural control for a class of perturbed strict feedbacknonlinear systems. IEEE Transactions on Neural Networks, 13(6):1409–1419, 2002.
    [70] Du H B, Shao H H, Yao P J. Adaptive neural network control for a class of low-triangular-structured nonlinear systems. IEEE Transactions on Neural Networks, 17(2):509–514, 2006.
    [71] Choi J Y, Farrell J A. Adaptive observer backstepping control using neural network. IEEETransactions on Neural Networks, 12(5):1103–1112, 2001.
    [72] Stoev J, Choi J Y, Farrell J A. Adaptive control for output feedback nonlinear systems in thepresence of modeling errors. Automatica, 38(10):1761–1767, 2002.
    [73] Zhou J, Er M J, Zurada J M. Adaptive neural network control of uncertain nonlinear systemswith nonsmooth actuator nonlinearities. Neurocomputing, 70(6):1062–1070, 2007.
    [74] Ge S S, Hong F, Lee T H. Adaptive neural network control of nonlinear systems with un-known time delays. IEEE Transactions on Automatic Control, 48(11):2004–2010, 2003.
    [75] Ge S S, Hong F, Lee T H. Robust adaptive control of nonlinear systems with unknown timedelays. Automatica, 41(7):1181–1190, 2005.
    [76] Hong F, Ge S S, Lee T H. Practical adaptive neural control of nonlinear systems with un-known time delays. IEEE Transactions on Systems, Man, and Cybernetics-Part B: Cybernet-ics, 35(4):849–854, 2005.
    [77] Ho D W C, Li J, Niu Y. Adaptive neural control for a class of nonlinearly parametric time-delay systems. IEEE Transactions on Neural Networks, 16(3):625–635, 2005.
    [78] Hua C C, Guan X P, Shi P. Robust backstepping control for a class of time delay systems.IEEE Transactions on Automatic Control, 50(6):894–899, 2005.
    [79] Hua C C, Guan X P, Shi P. Robust output feedback tracking control for time-delay nonlinearsystems using neural network. IEEE Transactions on Neural Networks, 18(2):495–505, 2007.
    [80] Ge S S, Li G Y, Lee T H. Adaptive NN control for a class of strict-feedback discrete-timenonlinear systems. Automatica, 39(5):807–819, 2003.
    [81] Zhang J, Ge S S, Lee T H. Output feedback control of a class of discrete MIMO nonlinearsystems with triangular form inputs. IEEE Transactions on Neural Networks, 16(6):1491–1503, 2005.
    [82] Alanis A Y, Sanchez E N, Loukianov A G. Discrete-time adaptive backstepping nonlinearcontrol via high-order neural networks. IEEE Transactions on Neural Networks, 18(4):1185–1195, 2007.
    [83] Yip P P, Hedrick J K. Adaptive dynamic surface control: a simplified algorithm for adaptivebackstepping control of nonlinear systems. International Journal of Control, 71(5):959–979,1998.
    [84] Zhu Y H, Jiang C S, Fei S M. Robust adaptive dynamic surface control for nonlinear uncertainsystems. Journal of Southeast University, 19(2):126–131, 2003.
    [85]王中华,程林,张勇.不确定非线性系统的鲁棒自适应跟踪简化算法.系统工程与电子技术, 29(3):412–415, 2007.
    [86] Song B, Hedrick J K. Constrained stabilization for a class of nonlinear systems using dynamicsurface control. In Proceedings of the American Control Conference, pages 1228–1233,Anchorage, 2002.
    [87] Song B, Hedrick J K. Simultaneous quadratic stabilization for a class of non-linear sys-tems with input saturation using dynamic surface control. International Journal of Control,77(1):19–26, 2004.
    [88] Song B, Adam H, Hedrick J K. Dyanmic surface control design for a class of nonlinearsystems. In Proceedings of the 40th IEEE conference on design and control, pages 2797–2802, Orlando, Florida USA, 2001.
    [89] Song B, Hedrick J K, Howell A. Robust stabilization and ultimate boundedness of dy-namic surface control systems via convex optimization. International Journal of Control,75(12):870–881, 2002.
    [90] Gerdes J C, Hedrick J K.“Loop-at-a-time”design of dynamic surface controllers for nonlin-ear systems. ASME Journal of Dynamic Systems, Measurement, and Control, 124(1):104–110, 2002.
    [91] Chen G. Adaptive dynamic surface fuzzy control for a class of uncertain nonlinear systems.In The 3th International Conference on Fuzzy Systems and Knowledge Discovery, pages199–207, xi’an, 2006.
    [92] Wang D, Huang J. Neural network based adaptive dynamic surface control for nonlinearsystems in strict-feedback form. In Proceedings of the 40th IEEE Conference on Decisionand Control, pages 3524–3529, Orlando, Florida USA, 2001.
    [93] Wang D, Huang J. Neural network-based adaptive dynamic surface control for a class ofuncertain nonlinear systems in strict-feedback form. IEEE Transactions on Neural Networks,16(1):195–202, 2005.
    [94] Yoo S J, Park J B, Choi Y H. Adaptive neural dynamic surface control of nonlinear time-delaysystems with model uncertainties. In Proceedings of the 2006 American Control Conference,pages 3140–3145, Minneapolis, Minnesota, USA, 2006.
    [95] Richard J P. Time-delay systems: an overview of some recent advances and open problems.Automatica, 39(10):1667–1694, 2003.
    [96] Kolmanovskii V B, Myshkis A. Introduction to the theory and applications of functionaldifferential equations. Kluwer Academy, Dordrecht, 1999.
    [97] Bushnell L. Networks and control. IEEE Control System Magazine, 21(1):22–99, 2001.
    [98] Nilsson J, Bernhardsson B, Wittenmark B. Stochastic analysis and control of real-time sys-tems with random delays. Automatica, 34(1):57–64, 1998.
    [99] Merigot A, Mounier H. Quality of service and MPEG-4 video transmission. In 14th sympo-sium on mathematical theory of networks and systems, Perpignan, France, 2000.
    [100] Mascolo S. Congestion control in high speed communication networks using the smith prin-ciple. Automatica, 35(12):1921–1935, 1999.
    [101] Quet P, Ramakrishnan S, Ozbay H, Kalyanaraman S. On the H∞controller design for con-gestion control in communication networks with a capacity predictor. In The 40th IEEECDC’01 (Conference on decision and control), pages 598–603, Orlando, FL, 2001.
    [102] Quet P F, Ataslar B, Iftar A, et al. Rate-based ?ow controllers for communication networksin the presence of uncertain time-varying multiple time-delays. Automatica, 38(6):917–928,2002.
    [103] Nguang S K. Robust stabilization of a class of time-delay nonlinear systems. IEEE Transac-tions on Automatic Control, 45(4):756–762, 2000.
    [104] Roh Y H, Oh J H. Robust stabilization of uncertain input-delay systems by sliding modecontrol with delay compensation. Automatica, 35(11):1861–1865, 1999.
    [105] Fu Y S, Tian Z H, Shi S J. State feedback stabilization for a class of stochastic time-delaynonlinear systems. IEEE Transactions on Automatic Control, 48(2):282–286, 2003.
    [106] Nguang S K. Comments on“Robust stabilization of uncertain input-delay systems by slidingmode control with delay compensation”. Automatica, 37(10):1677–1679, 2001.
    [107] Zhou S S, Feng G, Nguang S K. Comments on“Robust stabilization of a class of time-delaynonlinear systems”. IEEE Trans Automatic Control, 47(9):1586–1586, 2002.
    [108] Guan X P, Hua C C, Duan G R. Comments on“Robust stabilization of a class of time-delaynonlinear systems”. IEEE Transactions on Automatic Control, 48(5):907–908, 2003.
    [109] Li G W, Zang C Z, Liu X P. Comments on“Robust stabilization of a class of time-delaynonlinear systems”. IEEE Transactions on Automatic Control, 48(5):908–908, 2003.
    [110] Hua C C, Guan X P. Comments on“State feedback stabilization for a class of stochastictime-delay nonlinear systems”. IEEE Transactions on Automatic Control, 49(7):1216–1216,2004.
    [111] Zhang X F, Cheng Z L. State feedback stabilization for a class of time-delay nonlinearsystems. ACTA Automatica Sinica, 31(2):287–290, 2005.
    [112]伏玉笋,田作华,施颂椒.非线性时滞系统输出反馈镇定.自动化学报, 28(5):802–805,2002.
    [113] Fu Y S, Tian Z H, Shi S J. Output feedback stabilization for a class of stochastic time-delaynonlinear systems. IEEE Transactions on Automatica Control, 50(6):847–851, 2005.
    [114] Jiao X H, Shen T L. Adaptive feedback control of nonlinear time-delay systems: the LaSalle-Razumikhin-Based approach. IEEE Transactions on Automatic Control, 50(11):1909–1913,2005.
    [115] Song B, Hedrick J K. Observer-based dynamic surface control for lipschitz nonlinear systems.In Proceedings of the 42nd IEEE Conference on Decision and control, pages 874–879, Maui,Huwaii USA, 2003.
    [116] Song B, Hedrick J K. Observer-based dynamic surface control for a class of nonlinear sys-tems: An LMI approach. IEEE Transactions on Automatic Control, 49(11):1995–2001, 2004.
    [117] Yoo S J, Park J B, Choi Y H. Adaptive dynamic surface control for stabilization of para-metric strict-feedback nonlinear systems with unknown time delays. IEEE Transactions onAutomatic Control, 52(12):2360–2365, 2007.
    [118] Yoo S J, Park S J, Choi Y H. Robust stabilization of parametric strict-feedback nonlinearsystems with unknown time delays: Dynamic surface design approach. In Proceedings ofthe 45th IEEE Conference on Decision & Control, pages 3777–3782, San Diego, CA, USA,2006.
    [119]李红春,张天平,孙妍.基于动态面控制的间接自适应神经网络块控制.电机与控制学报, 11(3):275–281, 2007.
    [120]周丽,姜长生.超机动飞行的鲁棒自适应神经网络动态面控制.应用科学学报,25(6):632–638, 2007.
    [121]周丽,姜长生.改进的非线性鲁棒自适应动态面控制.控制与决策, 23(8):938–943, 2008.
    [122]周丽,姜长生,都延丽.简化的鲁棒自适应模糊动态面控制及其应用.航空学报,29(5):1274–1280, 2008.
    [123] Chen W S, Li J M. Adaptive nerual tracking control for unknown output feedback nonlineartime-delay systems. Acta Autamatica Sinica, 31(5):799–803, 2005.
    [124] Liu S J, Jiang Z P, Zhang J F. Decentralized adaptive output-feedback stabilization for large-scale stochastic nonlinear systems. Automatica, 43(2):238–251, 2007.
    [125] Chen W S, Li J M. Adaptive output-feedback regulation for nonlinear delayed systems usingneural network. International Journal of Automation and Computing, 5(1):103–108, 2008.
    [126] Siljak D D. Decentralized Control of Complex Systems. Academic, New York, 1991.
    [127] Wen C Y. Decentralized adaptive regulation. IEEE Transactions on Automatic Control,39(10):2163–2166, 1994.
    [128] Jain S, Khorrami F. Decentralized adaptive control of a class of large-scale interconnectednonlinear systems. IEEE Transactions on Automatic Control, 42(2):136–154, 1997.
    [129] Jain S, Khorrami F. Decentralized adaptive output feedback design for large-scale nonlinearsystems. IEEE Transactions on Automatic Control, 42(5):729–735, 1997.
    [130] Ye X, Huang J. Decentralized adaptive output regulation for a class of large-scale nonlinearsystems. IEEE Transactions on Automatic Control, 48(2):276–281, 2003.
    [131] Jiang Z P. Decentralized and adaptive nonlinear tracking of large-scale systems via outputfeedback. IEEE Transactions on Automatic Control, 45(11):2122–2128, 2000.
    [132] Jiang Z P. Decentralized nonlinear output-feedback stabilization with disturbance attenua-tion. IEEE Transactions on Automatic Control, 46(10):1623–1629, 2001.
    [133] Jiang Z P. Decentralized disturbance attenuating output-feedback trackers for large-scalenonlinear systems. Automatica, 38(9):1407–1415, 2002.
    [134] Liu X, Huang G. Global decentralized robust stabilization for interconnected uncertain non-linear systems with multiple inputs. Automatica, 37(9):1435–1442, 2001.
    [135] Liu Y S, Li X Y. Decentralized robust adaptive control of nonlinear systems with unmodeleddynamics. IEEE Transactions on Automatic Control, 47(5):848–856, 2001.
    [136]谢立,何星,熊刚,张卫东,许晓鸣.随机非线性时滞大系统的输出反馈分散镇定.控制理论与应用, 20(6):825–830, 2003.
    [137] Song B. Decentralized dynamic surface control for a class of interconnected nonlinear sys-tems. In Proceedings of the 2006 American Control Conference, pages 130–135, Minneapo-lis, Minnesota, USA, 2006.
    [138] Song B. Robust stabilization of decentralized dynamic surface control for a class of inter-connected nonlinear systems. International Journal of Control, Automation, and Systems,5(2):138–146, 2007.
    [139]李红春,张天平.基于动态面控制的MIMO自适应神经网络控制.扬州大学学报,9(4):17–22, 2006.
    [140] Zhang T P, Li H C, Wang Q. Indirect adaptive neural network control using dynamic surfacecontrol. In Proceedings of the 26th Chinese Control Conference, pages 756–760, Zhangjiajie,2007.
    [141] Kaloust J, Qu Z. Continuous robust control design for nonlinear uncertain systems without apriori knowledge of control direction. IEEE Transactions on Automatic Control, 40(2):276–282, 1995.
    [142] Ding Z. Adaptive control of non-linear systems with unknown virtual control coefficients.International Journal of Adaptive Control and Signal Processing, 14(5):505–517, 2000.
    [143] Ye X, Jiang J. Adaptive nonlinear design without a priori knowledge of control directions.IEEE Transactions on Automatic Control, 43(11):1617–1621, 1998.
    [144] Ye X. Asymptotic regulation of time-varying uncertain nonlinear systems with unknowncontrol directions. Automatica, 35(5):929–935, 1999.
    [145] Zhang Y, Wen C, Soh Y C. Adaptive backstepping control design for systems with unknownhigh-frequency gain. IEEE Transactions on Automatic Control, 45(12):2350–2354, 2000.
    [146] Ye X. Adaptive nonlinear output-feedback control with unknown high-frequency gain sign.IEEE Transactions on Automatic Control, 46(1):112–115, 2001.
    [147] Zheng Y, Yang Y. Adaptive output feedback control for a class of nonlinear systems withunknown virtual control coefficients signs. International Journal of Adaptive Control andSignal Processing, 21(1):77–89, 2007.
    [148] Ye X. Decentralized adaptive regulation with unknown high-frequency-gain signs. IEEETransactions on Automatic Control, 44(11):2072–2076, 1999.
    [149] Ye X. Decentralized adaptive control for large-scale non-linear systems with unknown high-frequency-gain signs. IEEE Proceedings-Control Theory and Applications, 152(4):387–391,2005.
    [150] Ge S S, Hong F, Lee T H. Adaptive neural control of nonlinear time-delay systems withunknown virtual control coefficients. IEEE Transactions on System, Man, and Cybernetics-Part B: Cybernetics, 34(1):499–516, 2004.
    [151] Wang C, Hill D J, Ge S S. Adaptive neural control of nonaffine pure-feedback systems. InProceedings of the 2005 IEEE International Symposium on Intelligent Control, pages 298–303, Limassol, Cyprus, 2005.
    [152] Zhang T P, Ge S S. Direct adaptive NN control of nonlinear systems in strict-feedback formusing dynamic surface control. In 22nd IEEE International Symposium on Intelligent ControlPart of IEEE Multi-conference on Systems and Control, pages 315–320, Singapore, 2007.
    [153]李铁山,邹早建,罗伟林.基于DSC后推法的非线性系统的鲁棒自适应NN控制.自动化学报, 34(11):1424–1430, 2008.
    [154] Yang Z J, Nagai T, Kanae S, Wada K. Dynamic surface control approach to adaptive robustcontrol of nonlinear systems in semi-strict feedback form. International Journal of SystemsScience, 38(9):709–724, 2007.
    [155] Li C, Liao X F, Wang H J. Stability analysis of fuzzy large-scale systems with time delays ininterconnections. International Journal of General Systems, 33(6):621–633, 2004.
    [156] Wang R J. Nonlinear decentralized state feedback controller for uncertain fuzzy time-delayinterconnected systems. Fuzzy Sets and Systems, 151(1):191–204, 2005.
    [157] Yousef H, El-Madbouly E, Eteim D, Hamdy M. Adaptive fuzzy decentralized control fora class of large-scale nonlinear systems with MIMO subsystems. In the 2006 InternationalConference on Computer Engineering and Systems, pages 25–32, Cairo, Egypt, 2006.
    [158] Hsiao F H, Hwang J D, Chen C W, Tsai Z R. Robust stabilization of nonlinear multipletime-delay large-scale systems via decentralized fuzzy control. IEEE Transactions on FuzzySystems, 13(1):152–163, 2005.
    [159] Ge S S. Adaptive control of uncertain lorenz system using decoupled backstepping. Interna-tional Journal of Bifurcation and Chaos, 14(4):1439–1445, 2003.
    [160] Sung J Y, Jin B P, Yoon H C. Adaptive dynamic surface control for stabilization of para-metric strict-feedback nonlinear systems with unknown time delays. IEEE Transactions onAutomatic Control, 52(12):2360–2365, 2007.
    [161] Chen W S, Li J M. Decentralized output-feedback neural control for systems with unknowninterconnections. IEEE Transactions on Systems, Man, and Cybernetics-Part B: Cybernetics,38(1):258–266, 2008.
    [162] Spooner J, Maggiore H. Stabilization of nonlinear uncertain systems. Springer, London,1998.
    [163] Hale J K, Verduyn Lunel S M. Introduction to functional differential equations. Springer,London, 1993.
    [164]匡继昌.常用不等式.山东科学技术出版社,济南, 2004.
    [165]程云鹏.矩阵论.西北工业大学出版社,西安, 2000.
    [166] Wang L X. Adaptive Fuzzy Systems and Control Design and Stability Analysis. Prentice-Hall, New Jersey, 1994.
    [167] Wang L X. Design and analysis of fuzzy identifiers of nonlinear dynamic systems. IEEETransactions on Automatic Control, 40(1):11–23, 1995.
    [168] Wu H N. Delay-dependent stability analysis and stabilization for discrete-time fuzzy systemswith state delay: A fuzzy Lyapunov-Krasovskii functional approach. IEEE Transactions onSystems, Man, and Cybernetics, Part B: Cybernetics, 36(4):954–962, 2006.
    [169] Zhu S Q, Zhang C H, Cheng Z L, Feng J. Delay-dependent robust stability criteria for twoclasses of uncertain singular time-delay systems. IEEE Transactions on Automatic Control,52(5):880–885, 2007.
    [170] Zhu X L, Yang G H. Delay-dependent stability criteria for systems with differentiable timedelays. Acta Automatica Sinica, 34(7):765–771, 2008.
    [171] Daniel F, Carlos E. Delay-dependent robust stability and L2-gain analysis of a class of non-linear time-delay systems. Automatica, 44(8):2006–2018, 2008.
    [172] Zevin A A, Pinsky M A. Delay-independent stability conditions for time-varying nonlinearuncertain systems. IEEE Transactions on Automatic Control, 51(9):1482–1485, 2006.
    [173] Xu S Y, Lam J. A survey of linear matrix inequality techniques in stability analysis of delaysystems. International Journal of Systems Science, 39(12):1095–1113, 2008.
    [174] Kuljaca O, Swamy N, Lewis F L, Kwan C. Design and implementation of industrial neu-ral network controller using backstepping. IEEE Transactions on Industrial Electronics,1(2003):193–201, 50.
    [175] Wang X P, Gu W J, Zhang Y A, Cheng Z L. Decentralized output feedback semiglobal robuststabilization of large-scale nonlinear systems. Acta Automatica Sinca, 33(4):428–431, 2007.
    [176] Ruan X Q, Ding M X, Gong D X, Qiao J F. On-line adaptive control for inverted pendulumbalancing based on feedback-error-learning. Neurocomputing, 70(4-6):770–776, 2007.
    [177]陈为胜,李俊民.非线性时滞大系统自适应神经网络分散控制.控制与决策, 21(8):873–878, 2006.
    [178] Deng H, Krstic M. Output-feedback stochastic nonlinear stabilization. IEEE Transactions onAutomatic Control, 44(2):328–333, 1999.
    [179] Chen W S, Li J M. Adaptive output feedback control for nonlinear time-delay systems usingneural network. Journal of Control Theory and Applications, 4(4):313–320, 2006.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700