用户名: 密码: 验证码:
利用分子育种技术构建并优化筛选抗恶性疟原虫多表位人工抗原DNA疫苗
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
疟疾是一种在全球范围内严重影响人类健康的传染性疾病。因疟原虫和虫媒对化学药物及杀虫剂的耐药性及抗药性不断增加,全球每年有3~5亿人感染,近250万人死亡。导致目前状况的主要病原体是恶性疟原虫。由于其生活周期复杂,抗原具有阶段特异性、虫株差异性和高度变异性等特点,长期以来形成研制抗疟原虫疫苗的技术瓶颈。因此,针对恶性疟原虫不同生活时期的免疫反应特点,选取诱导产生多种免疫反应类型的不同抗原构建多表位疫苗已经成为研究抗疟疫苗的热点。但是,目前对多抗原表位疫苗的研究仍然是以人工合成多表位肽疫苗或单一固定的串联多表位DNA疫苗为主,前者成本昂贵,后者免疫原性低,难以达到预期的免疫反应多样性和令人满意的保护效果。为了解决多表位DNA疫苗的不足之处,我们首次借鉴了分子育种技术(即DNA改组)的随机重组原理,将其应用到构建多表位DNA疫苗中,建立了一套优化多表位人工抗原DNA疫苗的新方法——表位改组(Epitope shuffling)技术。
     在本研究中,针对参与抗疟原虫红内期感染的免疫反应类型,我们选择了14个主要来自恶性疟原虫红细胞内期的B细胞和Th细胞表位作为研究对象。在摸索表位改组方法的过程中,先后提出并试用了聚合酶链式反应组装技术和同尾酶随机重组技术,最终以同尾酶随机重组技术构建了五个不同基因大小的多表位基因抗原库(依小到大命名为L1、L2、L3、L4和L5)。经聚合酶联式反应-单链构象多态性分析,表明了所构建的每个基因抗原库均具有较高的多表位基因随机组装多态性。通过抗原文库免疫方法,表明了不同多表位基因链长度大小的抗原文库产生了不同程度的免疫反应效果。其中以2.0kb分子量的L4和1.2kb分子量的L3多表位抗原库在免疫动物后获得了最好的免疫反应水平,并在随后用鼠疟动物模型进行感染攻击时显示出交叉保护效果。从而证实了不同多表位人工抗原基因链的长度对疫苗免疫原性具有重要的影响。同时,也证明了所构建的多表位抗原库免疫具有较理想的免疫反应效果,适合从中筛选最佳嵌合的多表位基因。
     以抗原库免疫抗血清的有限稀释抗体为检测探针,通过高通量免疫化学筛选方案,分别从L3和L4的原核表达文库中筛选到三个高免疫源性基因ES312、ES391和ES452。体内免疫实验结果表明了,在相同基因表达水平的情况下,三个多表位基因的抗体反应水平较基因大小相近的其他多表位基因高出100-200倍;而酶联免疫吸附和免疫共沉淀实验证实了其产生的特异抗体具有较高多样性。在诱发产生CD4细胞水平上,三个多表位基因亦均表现出较高的免疫诱导能力。在鼠疟动物模型实验中,其中多表位基因ES312免疫可获得100%的交叉保护效果;在对恶性疟原虫的体外生长抑制实验中,细胞流式方法检测基因ES312的抑制率可高达95.8%。基因序列分析结果进一步表明了,三个高免疫原性基因在表位间组装方式,及其编码蛋白的二级结构上均具有一定的共有保守结构。这充分说明了多表位基因间的组装方式和全蛋白空间结构决定了多表位基因疫苗的免疫原性。
     通过多表位人工抗原基因的体内免疫实验,我们证实其中一种人工抗原—ES312—的多表位基因串联形式能够在机体中诱导产生较强的特异性抗体反应,与此同时,在初次免疫后还诱导出以细胞因子IFN-γ为主的Th1细胞反应,在随后的加强免疫过程中又逐渐诱导出一定水平的Th2细胞反应。最终证实,只有产生这种免疫反应类型的小鼠才能有效地抵抗约氏疟原虫的攻击。通过短暂封闭ES312基因免疫小鼠的CD4或CD8淋巴细胞后再进行攻击实验,发现机体抵抗红内期疟原虫感染的能力显著增强。这些工作进一步证明,特异性CD4细胞免疫反应和体液免疫反应是抵抗红内期疟原虫感染的关键环节,而多表位人工抗原的特定表位基因串联结构对能否诱导此类免疫反应是至关重要的影响因素。
     此外,为了更加准确地评价一个红内期抗原疫苗的体内外免疫保护效果,本研究对细胞流式分选方法检测疟原虫虫血率的方案进行了优化,并提出了计算疫苗对疟原虫生长抑制率的修正公式。
     本研究的结果表明,我们创建的表位改组方法为构建和优化多表位人工抗原DNA疫苗提供了新的技术方向,通过大量实验数据验证了我们认为人工抗原空间构型决定疫苗免疫原性和免疫保护性的假设。这一新的多表位疫苗构建思路不仅有益于研制抗疟原虫疫苗,对其它病毒、细菌、原生动物等传染性疾病的疫苗设计均能提供有益的思路,在抗肿瘤、抗机体过敏反应和新生儿耐受等基因治疗领域也有广泛的应用潜力。
Malaria is one of the most infectious diseases to human health in the global crisis. It causes approximately 2.5 million deaths, and 300 to 500 million cases of infection per year, since the resistances and tolerances of its parasites and mosquitoes to chemical medicines or insecticides are increased. P. falciparum is the greatest one of pathogen species causes morbidity and mortality, and its complex life cycles, antigenic stage-specificity, diversity and variation, have been the unique obstacle to develop antimalarial vaccines for a long time. Thus, the development of a multiple antigens and epitopes vaccine against P. falciparum to elicit relative immune response at different stage has become a major hotspot in antimalarial vaccine study, according to the characteristic of immune response at each life stage of parasite. However, in the polyepitope vaccine aspect, it is still focused on the artificially synthesized polypeptides or polyepitope gene with single format. For the former is high-cost and the latter is low-immunogenicity, it is too difficult to reach the satisfactory protection results or to obtain immune response diversity after immunization. In order to deal with the shortcoming of polyepitope DNA vaccine, we have developed a method named "epitope shuffling technology" to optimize the polyepitope DNA vaccine by use of the random recombinant principle of molecular breeding technology or DNA shuffling.In this study, we chose 14 B-cell and Th-cell epitopes of antigens mainly from the blood stage of P. falciparum, based on the type of immune response against the blood-stage parasite infection. In the process of epitope shuffling established, we have brought forward and attempted to use the PCR-assemble technology (PAT) and isocaudamer random recombinant technique (IRRT) successively, and finally constructed five sub-libraries (named L1, L2, L3, L4 and L5 according to gene length from small to large) with different polyepitope gene length by the means of IRRT. Each polyepitope library was shown the higher diversity of polyepitope genes based on the PCR-SSCP analysis. With the polyepitope library immunization, we have proved that the length of polyepitope gene affects the immunogenicity of DNA vaccine; the sub-libraries L4 with about 2.0kb gene size and L3 with about 1.2kb size were achieved the best level of immune response, and cross protection in the rodent animal model after library immunization. It is fully demonstrated that the different gene length of polyepitope artificial antigen is significantly influenced on the immunogenicity of DNA vaccine, and that the polyepitope-library immunization can elicit good immune response, and it is feasible to screen the optimal chimeric polyepitope gene from the library.
     Three polyepitope genes ES312, ES391 and ES452 with high immunogenicity were screened from the duplicated express library of sub-libraries L3 and L4 in prokaryote, by use of the high throughput immunochemical selection with serial dilution of sera pool from polyepitope library immunization. The experimental results in vivo indicated that the immunogenic levels of three polyepitope gene vaccines were 100-200 times higher than that of other gene vaccine with the appropriate length, and the results detected by ELISA and immunoprecipitation assay showed higher diversity of specific antibodies were induced, under the same express level of each gene. And it is also presented that there are higher ability of the three-polyepitope genes to induce the CD4 cell in vivo. In the rodent animal model, polyepitope gene ES312 immunization has obtained 100%cross protection; and in the experiments of P. falciparum growth inhibition assay in vitro, the efficiency of ES312 against malaria growth detected by flow cytometry is up to 95.8%. The results of gene sequencing further indicated that the epitope assemble formats or the second structure of protein among the three-polyepitope genes was all possessed consensus and conservative structure. All these data is enough to present that the epitope assemble formats and the space structures of full protein determine the immunogenicity of polyepitope gene vaccine.
     Through the genetic immunization experiment of polyepitope artificial antigen in vivo, we have demonstrated that one of three polyepitope genes—ES312, with a certain tandem format, could elicit higher specific antibody response. At the same time, we found that mainly cytokine IFN-γderived by Th1 cell was expressed after the gene prime immunization, and higher level of Th2 cell response was induced followed by the second boost. And it is the immune response of host that vaccinated mice can resistant the P. yoelii parasite infection at the blood stage. From the results of ES312-immunized mice challenged after CD4 or CD8 lymphocyte transient blocking, we also found that the ability of host to inhibit the malaria parasite growth was increased. All these seem to further demonstrate that to induce the specific CD4 cell and humoral immune response is critical to prevent the malaria blood-stage infection, and that specific structure of polyepitope gene assembled is vital factor to induce this immune response in host.
     In addition, in order to assess the protective effect of a blood-stage vaccine against malaria in vitro with more accurately, here we have optimized the method to detect the parasitemia of parasitized red blood cells by flow cytometry, and brought forward an improved formula to calculate the efficiency of malaria growth inhibition.
     The results in this study indicated that the epitope shuffling method developed by us exploits a new way for construction and optimization of DNA vaccine with polyepitope artificial antigen. And these data confirmed our assumption that space conformation of artificial antigen determines the immunogenicity and immune protection of vaccine. The novel strategy of polyepitope vaccine construction is contributed not only to antimalarial vaccine, but also to other vaccine against virus, bacterial, protozoan infectious disease, as well as the gene therapy against tumor, allergy and neonatal tolerance.
引文
1. Brown, G.V., and Reeder, J.C. (2002). Malaria vaccines. Med J Aust 177, 230-231.
    2. Hanke, T., Schneider, J., Gilbert, S.C., Hill, A.V., and McMichael, A. (1998). DNA multi-CTL epitope vaccines for HIV and Plasmodium falciparum: immunogenicity in mice. Vaccine 16, 426-435.
    3. Thomson, S.A., Burrows, S.R., Misko, I.S., Moss, D.J., Coupar, B.E., and Khanna, R. (1998). Targeting a polyepitope protein incorporating multiple class II-restricted viral epitopes to the secretory/endocytic pathway facilitates immune recognition by CD4+ cytotoxic T lymphocytes: a novel approach to vaccine design. J Virol 72, 2246-2252.
    4. Velders, M.P., Weijzen, S., Eiben, G.L., Elmishad, A.G., Kloetzel, P.M., Higgins, T., Ciccarelli, R.B., Evans, M., Man, S., Smith, L., and Kast, W.M. (2001). Defined flanking spacers and enhanced proteolysis is essential for eradication of established tumors by an epitope string DNA vaccine. J Immunol 166, 5366-5373.
    5. Kalinna, B.H. (1997). DNA vaccines for parasitic infections. Immunol Cell Biol 75, 370-375.
    6. Khusmith, S., Charoenvit, Y., Kumar, S., Sedegah, M., Beaudoin, R.L., and Hoffman, S.L. (1991 ). Protection against malaria by vaccination with sporozoite surface protein 2 plus CS protein. Science 252, 715-718.
    7. Ulmer, J.B., Donnelly, J.J., Parker, S.E., Rhodes, G.H., Feigner, P.L., Dwarki, V.J., Gromkowski, S.H., Deck, R.R., DeWitt, C.M., Friedman, A., and et al. (1993). Heterologous protection against influenza by injection of DNA encoding a viral protein. Science 259, 1745-1749.
    8. Michel, M.L., Davis, H.L., Schleef, M., Mancini, M., Tiollais, P., and Whalen, R.G. (1995). DNA-mediated immunization to the hepatitis B surface antigen in mice: aspects of the humoral response mimic hepatitis B viral infection in humans. Proc Natl Acad Sci U S A 92, 5307-5311.
    9. Parker, S.E., Borellini, F., Wenk, M.L., Hobart, P., Hoffman, S.L., Hedstrom, R., Le, T., and Norman, J.A. (1999). Plasmid DNA malaria vaccine: tissue distribution and safety studies in mice and rabbits. Hum Gene Ther 10, 741-758.
    10. Leitner, W.W., Ying, H., and Restifo, N.P. (1999). DNA and RNA-based vaccines: principles, progress and prospects. Vaccine 18, 765-777.
    11. Patarroyo, M.E., Amador, R., Clavijo, P., Moreno, A., Guzman, F., Romero, P., Tascon, R., Franco, A., Murillo, L.A., Ponton, G., and et al. (1988). A synthetic vaccine protects humans against challenge with asexual blood stages of Plasmodium falciparum malaria. Nature 332, 158-161.
    12. Tine, J.A., Lanar, D.E., Smith, D.M., Wellde, B.T., Schultheiss, P., Ware, L.A., Kauffman, E.B., Wirtz, R.A., De Taisne, C., Hui, G.S., Chang, S.P., Church, P., Hollingdale, M.R., Kaslow, D.C., Hoffman, S., Guito, K.P., Ballou, W.R., Sadoff, J.C., and Paoletti, E. (1996). NYVAC-Pf7: a poxvirus-vectored, multiantigen, multistage vaccine candidate for Plasmodium falciparum malaria. Infect Immun 64, 3833-3844.
    13. Ockenhouse, C.F., Sun, P.F., Lanar, D.E., Wellde, B.T., Hall, B.T., Kester, K., Stoute, J.A., Magill, A., Krzych, U., Farley, L., Wirtz, R.A., Sadoff, J.C., Kaslow, D.C., Kumar, S., Church, L.W., Crutcher, J.M., Wizel, B., Hoffman, S., Lalvani, A., Hill, A.V., Tine, J.A., Guito, K.P., de Taisne, C., Anders, R., Ballou, W.R., and et al. (1998). Phase I/IIa safety, immunogenicity, and efficacy trial of NYVAC-Pf7, a pox-vectored, multiantigen, multistage vaccine candidate for Plasmodium falciparum malaria. J Infect Dis 177, 1664-1673.
    14. Shi, Y.P., Hasnain, S.E., Sacci, J.B., Holloway, B.P., Fujioka, H., Kumar, N., Wohlhueter, R., Hoffman, S.L., Collins, W.E., and Lal, A.A. (1999). Immunogenicity and in vitro protective efficacy of a recombinant multistage Plasmodium falciparum candidate vaccine. Proc Natl Acad Sci U S A 96, 1615-1620.
    15. Knapp, B., Hundt, E., Enders, B., and Kupper, H.A. (1992). Protection of Aotus monkeys from malaria infection by immunization with recombinant hybrid proteins. Infect Immun 60, 2397-2401.
    16. Nosten, F., Luxemburger, C., Kyle, D.E., Ballou, W.R., Wittes, J., Wah, E., Chongsuphajaisiddhi, T., Gordon, D.M., White, N.J., Sadoff, J.C., and Heppner, D.G. (1996). Randomised double-blind placebo-controlled trial of SPf66 malaria vaccine in children in northwestern Thailand. Shoklo SPf66 Malaria Vaccine Trial Group. Lancet 348, 701-707.
    17. Marshall, S. H. (2002). DNA shuffling: induced molecular breeding to produce new generation long-lasting vaccines. Biotechnol Adv 20, 229-238.
    18. Staudt, L. M., and Brown, P.O. (2000). Genomic views of the immune system*. Annu Rev Immunol 18, 829-859.
    19. Gupta, S., and Maiden, M. C. (2001). Exploring the evolution of diversity in pathogen populations. Trends Microbiol 9, 181-185.
    20. Suerbaum, S. (2000). Genetic variability within Helicobacter pylori. Int J Med Microbiol 290, 175-181.
    21. Doolan, D.L., and Hoffman, S.L. (2001). DNA-based vaccines against malaria: status and promise of the Multi-Stage Malaria DNA Vaccine Operation. Int J Parasitol 31, 753-762.
    22. Chengtao., L., Yanfang., J., Bin., Y., Min., D., Xiaoyun., H., and Heng, W. (1999). construction of malaria multivalent recombinant DNA vaccine with isocaudamer technique. Chinese Journal of Biochemistry and Molecular Biology 15, 974-977.
    23. Yu, Z., Karem, K.L., Kanangat, S., Manickan, E., and Rouse, B.T. (1998). Protection by minigenes: a novel approach of DNA vaccines. Vaccine 16, 1660-1667.
    24. Kumar, S., Epstein, J.E., Richie, T.L., Nkrumah, F.K., Soisson, L., Carucci, D.J., and Hoffman, S.L. (2002). A multilateral effort to develop DNA vaccines against falciparum malaria. Trends Parasitol 18, 129-135.
    25. Hoffman, S.L., and Doolan, D.L. (2000). Can malaria DNA vaccines on their own be as immunogenic and protective as prime-boost approaches to immunization? Dev Biol (Basel) 104, 121-132.
    26. Li, M., Bi, H., Dong, W., Xu, W., Li, Q., and Li, Y. (1999). A recombinant multi-epitope, multi-stage malaria vaccine candidate expressed in Escherichia coli. Chin Med J (Engl) 112, 691-697.
    27. Jiang, Y., Lin, C., Yin, B., He, X., Mao, Y., Dong, M., Xu, P., Zhang, L., Liu, B., and Wang, H. (1999). Effects of the configuration of a multi-epitope chimeric malaria DNA vaccine on its antigenicity to mice. Chin Med J (Engl) 112, 686-690.
    28. Liu, M.A. (2003). DNA vaccines: a review. J Intern Med 253, 402-410.
    1. Nussenzweig, R.S., and Nussenzweig, V. (1989). Antisporozoite vaccine for malaria: experimental basis and current status. Rev Infect Dis 11 Suppl 3, S579-585.
    2. Good, M. F., Kaslow, D.C., and Miller, L.H. (1998). Pathways and strategies for developing a malaria blood-stage vaccine. Annu Rev Immunol 16, 57-87.
    3. Roberts, D.J., Craig, A.G., Berendt, A.R., Pinches, R., Nash, G., Marsh, K., and Newbold, C.I. (1992). Rapid switching to multiple antigenic and adhesive phenotypes in malaria. Nature 357, 689-692.
    4. McLean, S.A., Pearson, C.D., and Phillips, R.S. (1986). Antigenic variation in Plasmodium chabaudi: analysis of parent and variant populations by cloning. Parasite Immunol 8, 415-424.
    5. Chanhan, V.S., Chatterjee, S., and Johar, P.K. (1993). Synthetic peptides based on conserved Plasmodium falciparum antigens are immunogenic and protective against Plasmodium yoelii malaria. Parasite Immunol 15, 239-242.
    6. van Rijk, A.A., de Jong, W.W., and Bloemendal, H. (1999). Exon shuffling mimicked in cell culture. Proc Natl Acad Sci U S A 96, 8074-8079.
    7. Long, M., de Souza, S.J., gosenberg, C., and Gilbert, W. (1996). Exon shuffling and the origin of the mitochondrial targeting function in plant cytochrome cl precursor. Proc Natl Acad Sci USA 93, 7727-7731.
    8. Abecassis, V., Pompon, D., and Truan, G. (2000). High efficiency family shuffling based on multi-step PCR and in vivo DNA recombination in yeast: statistical and functional analysis of a combinatorial library between human cytochrome P450 1A1 and 1A2. Nucleic Acids Res 28, E88.
    9. Kikuchi, M., Ohnishi, K., and Harayama, S. (1999). Novel family shuffling methods for the in vitro evolution of enzymes. Gene 236, 159-167.
    10. Chang, C.C., Chen, T.T., Cox, B.W., Dawes, G.N., Stemmer, W.P., Punnonen, J., and Patten, P.A. (1999). Evolution of a cytokine using DNA family shuffling. Nat Biotechnol 17, 793-797.
    11. Christians, F.C., Scapozza, L., Crameri, A., Folkers, G., and Stemmer, W. P.(1999). Directed evolution of thymidine kinase for AZT phosphorylation using DNA family shuffling. Nat Biotechnol 17, 259-264.
    12. Hopfner, K.P., Kopetzki, E., Kresse, G.B., Bode, W., Huber, R., and Engh, R.A. (1998). New enzyme lineages by subdomain shuffling. Proc Natl Acad Sci USA95, 9813-9818.
    13. Riechmann, L., and Winter, G. (2000). Novel folded protein domains generated by combinatorial shuffling of polypeptide segments. Proc Natl Acad Sci USA 97, 10068-10073.
    14. Kaessmann, H., Zollner, S., Nekrutenko, A., and Li, W.H. (2002). Signatures of domain shuffling in the human genome. Genome Res 12, 1642-1650.
    15. Patnaik, R., Louie, S., Gavrilovic, V., Perry, K., Stemmer, W.P., Ryan, C.M., and del Cardayre, S. (2002). Genome shuffling of Lactobacillus for improved acid tolerance. Nat Biotechnol 20, 707-712.
    16. Stephanopoulos, G. (2002). Metabolic engineering by genome shuffling. Nat Biotechnol 20, 666-668.
    17. Zhang, Y.X., Perry, K., Vinci, V.A., Powell, K., Stemmer, W.P., and del Cardayre, S.B. (2002). Genome shuffling leads to rapid phenotypic improvement in bacteria. Nature 415, 644-646.
    18. Goiding, G.B., Tsao, N., and Peariman, R.E. (1994). Evidence for intron capture: an unusual path for the evolution of proteins. Proc Natl Acad Sci USA91, 7506-7509.
    19. Polz, M.F., and Cavanaugh, C.M. (1998). Bias in template-to-product ratios in multitemplate PCR. Appl Environ Microbiol 64, 3724-3730.
    20. Pertmer, T. M., Eisenbraun, M.D., McCabe, D., Prayaga, S.K., Fuller, D.H., and Haynes, J.R. (1995). Gene gun-based nucleic acid immunization: elicitation of humoral and cytotoxic T lymphocyte responses following epidermal delivery of nanogram quantities of DNA. Vaccine 13, 1427-1430.
    21. Krieg, A.M., Yi, A.K., Matson, S., Waldsehmidt, T.J., Bishop, G.A., Teasdale, R., Koretzky, G.A., and Klinman, D.M. (1995). CpG motifs in bacterial DNA trigger direct B-cell activation. Nature 374, 546-549.
    22. Sato, Y., Roman, M., Tighe, H., Lee, D., Corr, M., Nguyen, M.D., Silverman, G.J., Lotz, M., Carson, D.A., and Raz, E. (1996). Immunostimulatory DNA sequences necessary for effective intradermal gene immunization. Science 273, 352-354.
    23. Barry, M. A., Lai, W. C., and Johnston, S. A. (1995). Protection against mycoplasma infection using expression-library immunization. Nature 377, 632-635.
    24. Johnston, S.A., and Barry, M.A. (1997). Genetic to genomic vaccination. Vaccine 15, 808-809.
    25. Smooker, P. M., Setiady, Y. Y., Rainczuk, A., and Spithill, T. W. (2000). Expression library immunization protects mice against a challenge with virulent rodent malaria. Vaccine 18, 2533-2540.
    26. Shibui, A., Ohmori, Y., Suzuki, Y., Sasaki, M., Nogami, S., Sugano, S., and Watanabe, J. (2001). Effects of DNA vaccine in murine malaria using a full-length cDNA library. Res Commun Mol Pathol Pharmacol 109, 147-157.
    27. Taylor-Robinson, A.W., and Smith, E.C. (1999). A role for cytokines in potentiation of malaria vaccines through immunological modulation of blood stage infection. Immunol Rev 171, 105-123.
    28. Bouharoun-Tayoun, H., and Druilhe, P. (1992). Plasmodium falciparum malaria: evidence for an isotype imbalance which may be responsible for delayed acquisition of protective immunity. Infect Immun 60, 1473-1481.
    29. Garraud, O., Mahanty, S., and Perraut, R. (2003). Malaria-specific antibody subclasses in immune individuals: a key source of information for vaccine design. Trends Immunol 24, 30-35.
    30. Alexander, J., Oseroff, C., Dahlberg, C., Qin, M., Ishioka, G., Beebe, M., Fikes, J., Newman, M., Chesnut, R.W., Morton, P.A., Fok, K., Appella, E., and Sette, A. (2002). A decaepitope polypeptide primes for multiple CD8+ IFN-gamma and Th lymphocyte responses: evaluation of multiepitope polypeptides as a mode for vaccine delivery. J Immunol 168, 6189-6198.
    31. Xirodimas, D.P., and Lane, D.P. (1999). Molecular evolution of the thermosensitive PAb 1620 epitope of human p53 by DNA shuffling. J Biol Chem 274, 28042-28049.
    32. Houghton, R.L., Lodes, M.J., Dillon, D.C., Reynolds, L.D., Day, C.H., McNeill, P.D., Hendrickson, R.C., Skeiky, Y.A., Sampaio, D.P., Badaro, R., Lyashchenko, K.P., and Reed, S.G.(2002). Use of multiepitope polyproteins in serodiagnosis of active tuberculosis. Clin Diagn Lab Immunol 9, 883-891.
    33. Kordai Sowa, M.P., Sharling, L., Humphreys, G., Cavanagh, D.R., Gregory, W.F., Fenn, K., Creasey, A.M., and Amot, D.E. (2004). High throughput immuno-screening of cDNA expression libraries produced by in vitro recombination; exploring the Piasmodium falciparum proteome. Mol Biochem Parasitol 133, 267-274.
    34. Grifantini, R., Finco, O., Bartolini, E., Draghi, M., Del Giudice, G., Kocken, C., Thomas, A., Abrignani, S., and Grandi, G. (1998). Multi-plasmid DNA vaccination avoids antigenic competition and enhances immunogenicity of a poorly immunogenic plasmid. Eur J Immunol 28, 1225-1232.
    35. Theisen, D.M., Bouche, F.B., El Kasmi, K.C., von der Ahe, I., Ammerlaan, W., Demotz, S., and Muller, C.P. (2000). Differential antigenicity of recombinant polyepitope-antigens based on loop- and helix-forming B and T cell epitopes. J Immunol Methods 242, 145-157.
    36. Celada, E, and Sercarz, E.E. (1988). Preferential pairing of T-B specificities in the same antigen: the concept of directional help. Vaccine 6, 94-98.
    37. Cox, J.H., Ivanyi, J., Young, D.B., Lamb, J.R., Syred, A.D., and Francis, M.J. (1988). Orientation of epitopes influences the immunogenicity of synthetic peptide dimers. Eur J Immunol 18, 2015-2019.
    38. Levely, M.E., Mitchell, M.A., and Nicholas, J.A. (1990). Synthetic immunogens constructed from T-cell and B-cell stimulating peptides (T:B chimeras): preferential stimulation of unique T-and B-cell specificities is influenced by immunogen configuration. Cell Immunol 125, 65-78.
    39. Kironde, F.A., Rao, K.V., Shah, S., Kumar, A., and Sahoo, N. (1991). Towards the design of heterovalent anti-malaria vaccines: a hybrid immunogen capable of eliciting immune responses to epitopes of circumsporozoite antigens from two different species of the malaria parasite, Plasmodium. Immunology 74, 323-328.
    40. Jiang, Y., Lin, C., Yin, B., He, X., Mao, Y., Dong, M., Xu, P., Zhang, L., Liu, B., and Wang, H. (1999). Effects of the configuration of a multi-epitope chimeric malaria DNA vaccine on its antigenicity to mice. Chin Med J (Engl) 112, 686-690.
    41. Leclerc, C., Przewlocki, G., Schutze, M.P., and Chedid, L. (1987). A synthetic vaccine constructed by copolymerization of B and T cell determinants. Eur J Immunol 17, 269-273.
    42. van der Heyde, H.C., Manning, D.D., and Weidanz, W.P. (1993). Role of CD4+ T cells in the expansion of the CD4-, CDS- gamma delta T cell subset in the spleens of mice during blood-stage malaria. J Immunol 151, 6311-6317.
    43. Suss, G, Eichmann, K., Kury, E., Linke, A., and Langhorne, J. (1988). Roles of CD4-and CD8-bearing T lymphocytes in the immune response to the erythrocytic stages of Plasmodium chabaudi. Infect Immun 56, 3081-3088.
    44. Kumar, S., Good, M.F., Dontfraid, F., Vinetz, J.M., and Miller, L.H. (1989). Interdependence of CD4+ T cells and malarial spleen in immunity to Plasmodium vinckei vinckei. Relevance to vaccine development. J Immunol 143, 2017-2023.
    45. Hermsen, C., van de Wiel, T., Mommers, E., Sauerwein, R., and Eling, W. (1997). Depletion of CD4+ or CD8+ T-cells prevents Plasmodium berghei induced cerebral malaria in end-stage disease. Parasitology 114 (Pt 1), 7-12.
    46. Maekawa, Y., Tsukuno, S., Chiba, S., Hirai, H., Hayashi, Y., Okada, H., Kishihara, K., and Yasutomo, K. (2003). Deltal-Notch3 interactions bias the functional differentiation of activated CD4+ T cells. Immunity 19, 549-559.
    47. Langhorne, J., Simon-Haarhaus, B., and Meding, S.J. (1990). The role ofCD4+ T cells in the protective immune response to Plasmodium chabaudi in vivo. Immunol Lett 25, 101-107.
    48. Good, M.F. (1990). Summary of the meeting on cellular mechanisms in malaria immunity. Immunol Lett 25, 1-10.
    49. Carvalho, L.H., Sano, G., Hafalla, J. C., Morrot, A., Curotto de Lafaille, M. A., and Zavala, F. (2002). IL-4-secreting CD4+ T cells are crucial to the development of CD8+ T-cell responses against malaria liver stages. Nat Med 8, 166-170.
    50. Winkler, S., Willheim, M., Baier, K., Graninger, W., and Kremsner, P. G. (1999). Frequency of cytokine-producing CD4-CD8- peripheral blood mononuclear cells in patients with Plasmodium falciparum malaria. Eur Cytokine Netw 10, 155-160.
    51. Cobbold, S. P., Jayasuriya, A., Nash, A., Prospero, T.D., and Waldmann, H. (1984). Therapy with monoclonal antibodies by elimination of T-cell subsets in vivo. Nature 312, 548-551.
    52. Goronzy, J., Weyand, C. M., and Fathman, C. G.(1986). Long-term humoral unresponsiveness in vivo, induced by treatment with monoclonal antibody against L3T4. J Exp Med 164, 911-925.
    53. Leist, T.P., Cobbold, S.P., Waldmann, H., Aguet, M., and Zinkemagel, R.M. (1987). Functional analysis of T lymphocyte subsets in antiviral host defense. J Immunol 138, 2278-2281.
    54. Yasutomo, K. (2002). The cellular and molecular mechanism of CD4/CD8 lineage commitment. J Med Invest 49, 1-6.
    55. Hansen, D. S., Siomos, M.A., De Koning-Ward, T., Buckingham, L., Crabb, B.S., and Schofield, L. (2003). CDld-restricted NKT cells contribute to malarial splenomegaly and enhance parasite-specific antibody responses. Eur J Immunol 33, 2588-2598.
    56. Hisaeda, H., Maekawa, Y., Iwakawa, D., Okada, H., Himeno, K., Kishihara, K., Tsukumo, S., and Yasutomo, K. (2004). Escape of malaria parasites from host immunity requires CD4(+)CD25(+) regulatory T cells. Nat Med 10, 29-30.
    [1] Joyce G F. Directed molecular evolution biochemists have harnessed Darwinian evolution on a molecular scale. Through cycles of selection, amplication and mutation, populations of macromolecules can be pushed to evolve toward any functional goal. Scientific American, 1992; 287: 48—55.
    [2] Juha P. Molecular breeding of allergy vaccines and antiallergic cytokines. Int Arch Allergy Appl Immunology, 2000; 121: 173—182.
    [3] Stemmer W P C. Rapid evolution of a protein in vitro by DNA shuffling. Nature, 1994; 370: 389—391.
    [4] Ryu D D, Narn D H. Recent progress in hiomoleculsr engineering. Biotechnol Prog, 2000; 16(1): 2—16.
    [5] Stemmer W P C. DNA shuffing by random fragmentation and reassembly: In vitro recombination for molecular evolution. Proc Natl Acad Sci USA, 1994; 91: 10747—10751.
    [6] Hermes J D, Blacklow S C, Knowles J R. Searching sequence space by definably random mutagenesis: improving the catalytic potency of an enzyme. Proc Natl Acad Sci USA, 1990; 87: 696—700.
    [7] Caldwell R C, Joyce G F. Randomization of genes by PCR mutagenesis. PGR Methods Application, 1992; 2: 28—33.
    [8] Crameri A, Raillard S A, Bermudez E, et al. DNA shuffling of a family of genes from diverse species accelerates directed evolution. Nature, 1998; 391(15): 288—291.
    [9] Zhang J H, Dawes G, Stemmer W P C. Directed evolution of a fucosidase from a galactosidase by DNA shuffling and screening. Proc Notl Acad Sci USA, 1997; 94: 4504—4509.
    [10] Crameri A, Dawes G, Rodriguez E Jr., et al. Molecular evolution of an arsenate detoxification pathaway by DNA shuffling. Nat Biotech, 1997; 15: 436—438.
    [11] Ness J E, Welch M, Giver L, et al. DNA shuffling of subgenomic sequences of subtilisin. Nat Biotech, 1999; 17: 893—896.
    [12] Soong N W, Nomura L, Pekrun K, et al. Molecular breeding of viruses. Nat Genet, 2000; 25: 436—439.
    [13] Kikuchi M, Ohnishi K, Harayama S. Novel family shuffling methods for the in vitro evolution of enzymes. Gene, 1999; 238: 159—167.
    [14] Zhao H M, Arnold F H. Optimization of DNA shuffling for high fidelity recombination. Nucleic Acids Research, 1997; 25(6): 1307—1308.
    [15] Kolkman J A, Stemmer W P C. Directed evolution of proteins by exon shuffling. Nat Biotech, 2001; 19: 423—428.
    [16] Zhao H M, Giver L, Shao Z, Molecular evolution by staggered extension process{StEP) in vitro recombination. Nat Biotech, 1998; 16: 258—261.
    [17] Ostermeier M, Shim J H, Benkovic S J. A combinatorial approach to hybrid enzymes independent of DNA homology. Nat Biotech, 1999; 17: 1205—1209.
    [18] Coco W M, Levinson W E, Crist M J, at al. DNA shuffling method for generating highly recombined genes and evolved enzymes. Nat Biotech, 2001; 19: 354—359.
    [19] Thompson J E, Vaughan T J, Williams A J, et al. A fully human antibody neutralising biologically active human TGFβ2 for use in therapy. J Immunolol Meth, 1999; 227: 17—29.
    [20] Gram H, Marconi Lori-Anne, Barbas C F Ⅲ, In vitro selection and affinity maturation of antibodies from a naive combinatorial immunogiobulin library. Proc Nail Acad Sci USA, 1992; 89: 3576—3580.
    [21] Harayama S. Artificial evolution by DNA shuffling.Tibteck, 1998; 16: 76—82.
    [22] Whalen R G, Kaiwar R, Soong N W,et al. DNA shuffling and wccines. Curr Opin Mol Ther, 2001; 3(1): 31—36.
    [23] Shibata H, Kato H, Oda J. Random mutagenesis on the pseudomonas lipase activator protein, LipB: Exploring amino acid residues required for function. Protein Engineer, 1998; 11: 467—472.
    [24] Craneru A, Whitehorn E A, Tate E, et al. Improved green fluorescent protein by molecular evolution using DNA shuffling. Nat Biotech, 1996; 14: 315—319.
    [25] Patten P A, Howard R J, Stemmer W P C. Applications of DNA shuffling to pharmaceuticals and vaccines. Curr Opi Biotech, 1997; 8: 724—733.
    [26] Moore J C, Arnold F H. Directed evolution of a paxanitrobenzylesterase for aqueous-organic solvents. Nat Biotech, 1996; 14: 458—467.
    [27] Liu D R, Magliery T J, Pastrnak M, Schultz P G. Engineering a tRNA and amioacyl-tRNA synthetase for the site-specific incorporation of unnatural amino adds into proteins in vivo. Proc Nail Acad Sci USA, 1997; 94: 1092—1097.
    [28] Christians F C, Scapozza L, Crameri A, et al. Directed evolution of thymidine kinase for AZT phosphorylation using DNA family shufRing. Nat Biotech, 1999; 17: 259—264.
    [29] Crameri A, Cwirla S, Stemmer W P C. Construction and evolution of antibody-phage libraries by DNA shuffling. Nat Med, 1996; 2: 100—102.
    [30] Chang C C, Chen T T, Cox B W, et al. Evolution of a cytokine using DNA family shuffling. Nat Biotech, 1999; 17: 793—797.
    [31] Stemmer W P C. Searching sequence space usiny recombination to search more efficiently and thoroughly instead of making bigger combinatorial libraries. Bio/technology, 1995; 18: 549—553.
    [32] Winter G, Griffiths A D, Hawkins R E, et al. Making antibodies by phage display technoloy. Ann Rev Immunol, 1994; 13: 433—435.
    [33] Kallen K J, Grotzinger J, Rose-John S. New perspective on the design of cytokines and growth factors. TriTech, 2000; 18: 445—461.
    [34] Powell S K, Kaloss M A, Pinkstaff A, et al. Breeding of retroviruses by DNA shuffling for improved stability and processing yields. Nat Biotech, 2000; 18: 1279—1282.
    [35] Howard R. Breeding antigens for new vaccines. Science, 2001; 293: 236—238.
    [36] Ryu D D Y, Nam D H. Recent progress in biomolecular engineering. Biotech Prog, 2000; 16(1): 2—16.
    1. Snhrbier, A. (1997). Multi-epitope DNA vaccines. Immunol Cell Biol 75, 402-408.
    2. An, L.L., and Whitton, J.L. (1999). Multivalent minigene vaccines against infectious disease. Curr Opin Mol Ther 1, 16-21.
    3. Smith, S.G. (1999). The polyepitope approach to DNA vaccination. Curr Opin Mol Ther 1, 10-15.
    4. Meyer, D., and Torres, J.V. (1999). Hypervariable epitope construct: a synthetic immunogen that overcomes MHC restriction of antigen presentation. Mol Immunol 36, 631-637.
    5. Alexander-Miller, M.A., Leggatt, G.R., and Berzofsky, J.A. (1996). Selective expansion of high-or low-avidity cytotoxic T lymphocytes and efficacy for adoptive immunotherapy. Proc Natl Acad Sci U S A 93, 4102-4107.
    6. Gupta, R.K., and Siber, G.R. (1995). Adjuvants for human vaccines—current status, problems and future prospects. Vaccine 13, 1263-1276.
    7. Thomson, S.A., Khanna, R., Gardner, J., Burrows, S.R., Coupar, B., Moss, D.J., and Suhrbier, A. (1995). Minimal epitopes expressed in a recombinant polyepitope protein are processed and presented to CDS+ cytotoxic T cells: implications for vaccine design. Proc Natl Acad Sci U S A 92, 5845-5849.
    8. Smooker, P.M., Setiady, Y.Y., Rainczuk, A., and Spithill, T.W. (2000). Expression library immunization protects mice against a challenge with virulent rodent malaria. Vaccine 18, 2533-2540.
    9. Livingston, B.D., Newman, M., Crimi, C., McKinney, D., Chesnut, R., and Sette, A. (2001). Optimization of epitope processing enhances immunogenicity of multiepitope DNA vaccines. Vaccine 19, 4652-4660.
    10. Velders, M.P., Weijzen, S., Eiben, G.L., Elmishad, A.G., Kloetzel, P.M., Higgins, T., Ciccarelli, R.B., Evans, M., Man, S., Smith, L., and Kast, W.M. (2001). Defined flanking spacers and enhanced proteolysis is essential for eradication of established tumors by an epitope string DNA vaccine. J Immunol 166, 5366-5373.
    11. Firat, H., Tourdot, S., Ureta-Vidal, A., Scardino, A., Suhrbier, A., Buseyne, F., Riviere, Y., Danos, O., Michel, M.L., Kosmatopoulos, K., and Lemonnier, F.A. (2001). Design of a polyepitope construct for the induction of HLA-A0201-restricted HIV 1-specific CTL responses using HLA-A*0201 transgenic, H-2 class I KO mice. Eur J Immunol 31, 3064-3074.
    12. Yellen-Shaw, A.J., and Eisenlohr, L.C. (1997). Regulation of class I-restricted epitope processing by local or distal flanking sequence. J Immunol 158, 1727-1733.
    13. Niedermann, G., Butz, S., Ihlenfeldt, H.G, Grimm, R., Lucchiari, M., Hoschutzky, H., Jung, G., Maier, B., and Eichmann, K. (1995). Contribution of proteasome-mediated proteolysis to the hierarchy of epitopes presented by major histocompatibility complex class I molecules. Immunity 2, 289-299.
    14. Ben-Yedidia, T., and Arnon, R. (1997). Design of peptide and polypeptide vaccines. Curr Opin Biotechnol 8, 442-448.
    15. Fayolle, C., Osickova, A., Osicka, R., Henry, T., Rojas, M.J., Saron, M.F., Sebo, P., and Leelerc, C. (2001). Delivery of multiple epitopes by recombinant detoxified adenylate cyclase of Bordetella pertussis induces protective antiviral immunity. J Virol 75, 7330-7338.
    16. Gras-Masse, H. (2001). Chemoselective ligation and antigen vectorization. Biologicals 29, 183-188.
    17. Tu, H.L., Li, S.Q., Dong, Z.Z., and Zhang, Z.S. (1998). [A chromosomal integration system for development of polyvalent vaccine strains]. Yi Chuan Xue Bao 25, 551-558.
    18. Yu, Z., Karem, K.L., Kanangat, S., Manickan, E., and Rouse, B.T. (1998). Protection by minigenes: a novel approach of DNA vaccines. Vaccine 16, 1660-1667.
    19. Bevan, M.J. (1995). Antigen presentation to cytotoxic T lymphocytes in vivo. J Exp Med 182, 639-641.
    20. Sidney, J., Grey, H.M., Kubo, R.T., and Sette, A. (1996). Practical, biochemical and evolutionary implications of the discovery of HLA class I supermotifs. Immunol Today 17, 261-266.
    21. Jianguo, S., Rongxia, L., and Zhengtang, C. (2003). Progress on multiple CTL epitope DNA vaccine. Chong Qin Yi Xue 32, 784-786.
    22. Whitton, J.L., Sheng, N., Oldstone, M.B., and McKee, T.A. (1993). A "string-of-beads" vaccine, comprising linked minigenes, confers protection from lethal-dose virus challenge. J Virol 67, 348-352.
    23. Oldstone, M.B., Tishon, A., Eddleston, M., de la Torre, J.C., McKee, T., and Whitton, J.L. (1993). Vaccination to prevent persistent viral infection. J Virol 67, 4372-4378.
    24. McCabe, B.J., Irvine, K.R., Nishimura, M.I., Yang, J.C., Spiess, P.J., Shulman, E.P., Rosenberg, S.A., and Restifo, N.P. (1995). Minimal determinant expressed by a recombinant vaccinia virus elicits therapeutic antitumor cytolytic T lymphocyte responses. Cancer Res 55, 1741-1747.
    25. Thomson, S.A., Sherritt, M.A., Medveczky, J., Elliott, S.L., Moss, D.J., Fernando, C.J., Brown, L.E., and Suhrbier, A. (1998). Delivery of multiple CD8 cytotoxic T cell epitopes by DNA vaccination. J Immunol 160, 1717-1723.
    26. Layton, G.T., Harris, S.J., Myhan, J., West, D., Gotch, F., Hill-Perkins, M., Cole, J.S., Meyers, N., Woodrow, S., French, T.J., Adams, S.E., and Kingsman, A.J. (1996). Induction of single and dual cytotoxic T-lymphocyte responses to viral proteins in mice using recombinant hybrid Ty-virus-like particles. Immunology 87, 171-178.
    27. Haynes, B.F., Moody, M.A., Heinley, C.S., Korber, B., Millard, W.A., and Scearce, R.M. (1995). HIV type 1 V3 region primer-induced antibody suppression is overcome by administration of C4-V3 peptides as a polyvalent immunogen. AIDS Res Hum Retroviruses 11,211-221.
    28. Smith, S.G., Patel, P.M., Porte, J., Selby, P.J., and Jackson, A.M. (2001). Human dendritic cells genetically engineered to express a melanoma polyepitope DNA vaccine induce multiple cytotoxic T-cell responses. Clin Cancer Res 7, 4253-4261.
    29. Khanna, R., Burrows, S.R., Kurilla, M.G., Jacob, C.A., Misko, I.S., Sculley, T.B., Kieff, E., and Moss, D.J. (1992). Localization of Epstein-Barr virus cytotoxic T cell epitopes using recombinant vaccinia: implications for vaccine development. J Exp Med 176, 169-176.
    30. Doolan, D.L., Sedegah, M., Hedstrom, R.C., Hobart, P., Charoenvit, Y., and Hoffman, S.L. (1996). Circumventing genetic restriction of protection against malaria with multigene DNA immunization: CD8+cell-, interferon gamma-, and nitric oxide-dependent immunity. J Exp Med 183, 1739-1746.
    31. Hoyne, G.F., Askonas, B.A., Hetzel, C., Thomas, W.R., and Lamb, J.R. (1996). Regulation of house dust mite responses by intranasally administered peptide: transient activation of CD4+ T cells precedes the development of tolerance in vivo. Int Immunol 8, 335-342.
    32. Toda, M., Kasai, M., Hosokawa, H., Nakano, N., Taniguchi, Y., Inouye, S., Kaminogawa, S., Takemori, T., and Sakaguchi, M. (2002). DNA vaccine using invariant chain gene for delivery of CD4+ T cell epitope peptide derived from Japanese cedar pollen allergen inhibits allergen-specific IgE response. Eur J Immunol 32, 1631-1639.
    33. Bhardwaj, V., Kumar, V., Geysen, H.M., and Sercarz, E.E. (1992). Subjugation of dominant immunogenic determinants within a chimeric peptide. Eur J Immunol 22, 2009-2016.
    34. Tam, J.P. (1996). Recent advances in multiple antigen peptides. J Immunol Methods 196, 17-32.
    35. Laver, W.G, Air, GM., Webster, R.G, and Smith-Gill, S.J. (1990). Epitopes on protein antigens: misconceptions and realities. Cell 61, 553-556.
    36. An, L.L., and Whitton, J.L. (1997). A multivalent minigene vaccine, containing B-cell, cytotoxic T-lymphocyte, and Th epitopes from several microbes, induces appropriate responses in vivo and confers protection against more than one pathogen. J Virol 71, 2292-2302.
    37. Brandt, E.R., Hayman, W.A., Currie, B., Carapetis, J., Wood, Y., Jackson, D.C., Cooper, J., Melrose, W.D., Saul, A.J., and Good, M.F. (1996). Opsonic human antibodies from an endemic population specific for a conserved epitope on the M protein of group A streptococci. Immunology 89, 331-337.
    38. Kumar, A., Kumar, V., Shukla, GC., and Rao, K.V. (1994). Immunological characteristics of a recombinant hepatitis B virus-derived multiple-epitope polypeptide: a study in polyvalent vaccine design. Vaccine 12, 259-266.
    39. Tbeisen, D.M., Bouche, F.B., El Kasmi, K.C., yon der Abe, I., Ammerlaan, W., Demotz, S., and Muller, C.P. (2000). Differential antigenicity of recombinant polyepitope-antigens based on loop- and helix-forming B and T cell epitopes. J Immunol Methods 242, 145-157.
    40. Bouche, F.B., Marquet-Blouin, E., Yanagi, Y., Steinmetz, A., and Muller, C.P. (2003). Neutralising immunogenicity ofa polyepitope antigen expressed in a transgenic food plant: a novel antigen to protect against measles. Vaccine 21, 2065-2072.
    41. Zhang, H.Y., Sun, S.H., Guo, Y.J., Zhou, F.J., Chen, Z.H., Lin, Y., and Shi, K. (2003). Immune response in mice inoculated with plasmid DNAs containing multiple-epitopes of foot-and-mouth disease virus. Vaccine 21, 4704-4707.
    42. Fomsgaard, A., Nielsen, H.V., Kirkby, N., Bryder, K., Corbet, S., Nielsen, C., Hinkula, J., and Buns, S. (1999). Induction of cytotoxic T-cell responses by gene gun DNA vaccination with minigenes encoding influenza A virus HA and NP CTL-epitopes. Vaccine 18, 681-691.
    43. Hanke, T., Blanchard, T.J., Schneider, J., Ogg, G.S., Tan, R., Becket, M., Gilbert, S.C., Hill, A.V., Smith, G.L., and McMichael, A. (1998). Immunogenicities of intravenous and intramuscular administrations of modified vaccinia virus Ankara-based multi-CTL epitope vaccine for human immunodeficiency virus type 1 in mice. J Gen Virol 79 (Pt 1), 83-90.
    44. Hanke, T., and McMichael, A. (1999). Pre-clinical development of a multi-CTL epitope-based DNA prime MVA boost vaccine for AIDS. Immunol Lett 66, 177-181.
    45. Ishioka, G.Y., Fikes, J., Hermanson, G., Livingston, B., Crimi, C., Qin, M., del Guercio, M.F., Oseroff, C., Dahlberg, C., Alexander, J., Chesnut, R.W., and SeRe, A. (1999). Utilization of MHC class I transgenic mice for development of minigene DNA vaccines encoding multiple HLA-restricted CTL epitopes. J Immunol 162, 3915-3925.
    46. Munesinghe, D.Y., Clavijo, E, Calle, M.C., Nussenzweig, R.S., and Nardin, E. (1991). Immunogenicity of multiple antigen peptides (MAP) containing T and B cell epitopes of the repeat region of the E falciparum circumsporozoite protein. Eur J Immunoi 21, 3015-3020.
    47. Xiong, S., Gerloni, M., and Zanetti, M. (1997). Engineering vaccines with heterologous B and T cell epitopes using immunoglobulin genes. Nat Biotechnol 15, 882-886.
    48. Marussig, M., Renia, L., Motard, A., Miltgen, F., Petour, P., Chauhan, V., Corradin, G., and Mazier, D. (1997). Linear and multiple antigen peptides containing defined T and B epitopes of the Plasmodium yoelii circumsporozoite protein: antibody-mediated protection and boosting by sporozoite infection. Int Immunol 9, 1817-1824.
    49. Rogers, W.O., Baird, J.K., Kumar, A., Tine, J.A., Weiss, W., Aguiar, J.C., Gowda, K., Gwadz, R., Kumar, S., Gold, M., and Hoffman, S.L. (2001). Multistage multiantigen heterologous prime boost vaccine for Plasmodium knowlesi malaria provides partial protection in rhesus macaques. Infect Immun 69, 5565-5572.
    50. Shi, Y.P., Hasnain, S.E., Sacci, J.B., Holloway, B.P., Fujioka, H., Kumar, N., Wohlhueter, R., Hoffman, S.L., Collins, W.E., and Lal, A.A. (1999). Immunogenicity and in vitro protective efficacy of a recombinant multistage Plasmodium falciparum candidate vaccine. Proc Natl Acad Sci U S A 96, 1615-1620.
    51. Hanke, T., Schneider, J., Gilbert, S.C., Hill, A.V., and McMichael, A. (1998). DNA multi-CTL epitope vaccines for HIV and Plasmodium falciparum: immunogenicity in mice. Vaccine 16, 426-435.
    52. Wang, R., Doolan, D.L., Le, T.P., Hedstrom, R.C., Coonan, K.M., Charoenvit, Y., Jones, T.R., Hobart, P., Margalith, M., Ng, J., Weiss, W.R., Sedegah, M., de Taisne, C., Norman, J.A., and Hoffman, S.L. (1998). Induction of antigen-specific cytotoxic T lymphocytes in humans by a malaria DNA vaccine. Science 282, 476-480.
    53. Dakappagari, N.K., Pyles, J., Parihar, R., Carson, W.E., Young, D.C., and Kaumaya, P.T. (2003). A chimeric multi-human epidermal growth factor receptor-2 B cell epitope peptide vaccine mediates superior antitumor responses. J Immunol 170, 4242-4253.
    54. Toes, R.E., Hoeben, R.C., van der Voort, E.I., Ressing, M.E., van tier Eb, A.J., Melief, C.J., and Offringa, R. (1997). Protective anti-tumor immunity induced by vaccination with recombinant adenoviruses encoding multiple tumor-associated cytotoxic T lymphocyte epitopes in a string-of-beads fashion. Proc Natl Acad Sci U S A 94, 14660-14665.
    55. Houghton, R.L., Lodes, M.J., Dillon, D.C., Reynolds, L.D., Day, C.H., McNeill, ED., Hendrickson, R.C., Skeiky, Y.A., Sampaio, D.P., Badaro, R., Lyashchenko, K.P., and Reed, S.G. (2002). Use of multiepitope polyproteins in serodiagnosis of active tuberculosis. Clin Diagn Lab Immunol 9, 883-891.
    56. Liu, M.A. (2003). DNA vaccines: a review. J Intern Med 253, 402-410.
    57. Le, T.P., Coonan, K.M., Hedstrom, R.C., Charoenvit, Y., Sedegah, M., Epstein, J.E., Kumar, S., Wang, R., Doolan, D.L., Maguire, J.D., Parker, S.E., Hobart, P., Norman, J., and Hoffman, S.L. (2000). Safety, tolerability and humoral immune responses after intramuscular administration of a malaria DNA vaccine to healthy adult volunteers. Vaccine 18, 1893-1901.
    58. Grarnzinski, R.A., Maris, D.C., Doolan, D., Charoenvit, Y., Obaldia, N., Rossan, R., Sedegah, M., Wang, R., Hobart, P., Margalith, M., and Hoffman, S. (1997). Malaria DNA vaccines in Aotus monkeys. Vaccine 15, 913-915.
    59. Wang, R., Epstein, J., Baraceros, F.M., Gorak, E.J., Charoenvit, Y., Carucci, D.J., Hedstrom, R.C., Rahardjo, N., Gay, T., Hobart, P., Stout, R., Jones, T.R., Richie, T.L., Parker, S.E., Doolan, D.L., Norman, J., and Hoffman, S.L. (2001). Induction of CD4(+) T cell-dependent CD8(+) type 1 responses in humans by a malaria DNA vaccine. Proc Natl Acad Sci U S A 98, 10817-10822.
    60. Fynan, E.F., Webster, R.G., Fuller, D.H., Haynes, J.R., Santoro, J.C., and Robinson, H.L. (1993). DNA vaccines: protective immunizations by parenteral, mucosal, and gene-gun inoculations, proc Natl Acad Sci U S A 90, 11478-11482.
    61. Lemieux, P., Guerin, N., Paradis, G., Proulx, R., Chistyakova, L., Kabanov, A., and Alakhov, V. (2000). A combination of poloxamers increases gene expression of plasmid DNA in skeletal muscle. Gene Ther 7, 986-991.
    62. Denis-Mize, K.S., Dupuis, M., MacKichan, M.L., Singh, M., Doe, B., O'Hagan, D., Ulmer, J.B., Donnelly, J.J., McDonald, D.M., and Ott, G. (2000). Plasmid DNA adsorbed onto cationic microparticles mediates target gene expression and antigen presentation by dendritic cells. Gene Ther 7, 2105-2112.
    63. Shiver, J.W., Fu, T.M., Chen, L., Casimiro, D.R., Davies, M.E., Evans, R.K., Zhang, Z.Q., Simon, A.J., Trigona, W.L., Dubey, S.A., Huang, L., Harris, V.A., Long, R.S., Liang, X., Handt, L., Schleif, W.A., Zhu, L., Freed, D.C., Persaud, N.V., Guan, L., Punt, K.S., Tang, A., Chen, M., Wilson, K.A., Collins, K.B., Heidecker, G.J., Fernandez, V.R., Perry, H.C., Joyce, J.G., Grimm, K.M., Cook, J.C., Keller, P.M., Kresock, D.S., Mach, H., Troutman, R.D., Isopi, L.A., Williams, D.M., Xu, Z., Bohannon, K.E., Volkin, D.B., Montefiori, D.C., Miura, A., Krivulka, G.R., Lifton, M.A., Kuroda, M.J., Schmitz, J.E., Letvin, N.L., Caulfield, M.J., Bett, A.J., Youil, R., Kaslow, D.C., and Emini, E.A. (2002). Replication-incompetent adenoviral vaccine vector elicits effective anti-immunodeficiency-virus immunity. Nature 415, 331-335.
    64. Sedegah, M., Hedstrom, R., Hobart, P., and Hoffman, S.L. (1994). Protection against malaria by immunization with plasmid DNA encoding circumsporozoite protein. Proc Natl Acad Sci U S A 91, 9866-9870.
    65. Davis, H.L., Whalen, R.G., and Demeneix, B.A. (1993). Direct gene transfer into skeletal muscle in vivo: factors affecting efficiency of transfer and stability of expression. Hum Gene Ther 4, 151-159.
    66. Gerdts, V., Snider, M., Brownlie, R., Babiuk, L.A,, and Griebel, P.J. (2002). Oral DNA vaccination in utero induces mucosal immunity and immune memory in the neonate. J Immunol 168, 1877-1885.
    67. Cochlovius, B., Stassar, M.J., Schreurs, M.W., Benner, A., and Adema, G.J. (2002). Oral DNA vaccination: antigen uptake and presentation by dendritic cells elicits protective immunity. Immunol Lett 80, 89-96.
    68. Yoshida, S., Kashiwamura, S.I., Hosoya, Y., Luo, E., Matsuoka, H., Ishii, A., Fujimura, A., and Kobayashi, E. (2000). Direct immunization of malaria DNA vaccine into the liver by gene gun protects against lethal challenge of Plasmodium berghei sporozoite. Biochem Biophys Res Commun 271, 107-115.
    69. Tsuji, T., Hamajima, K., Fukushima, J., Xin, K.Q., Ishii, N., Aoki, I., Ishigatsubo, Y., Tani, K., Kawamoto, S., Nitta, Y., Miyazaki, J., Koff, W.C., Okubo, T., and Okuda, K. (1997). Enhancement of cell-mediated immunity against HIV-1 induced by coinnoculation of plasmid-encoded HIV-1 antigen with plasmid expressing IL-12. J Immunol 158, 4008-4013.
    70. Xin, K.Q., Hamajima, K., Sasaki, S., Tsuji, T., Watabe, S., Okada, E., and Okuda, K. (1999).
    ? ?IL-15 expression plasmid enhances cell-mediated immunity induced by an HIV-1 DNA vaccine. Vaccine 17, 858-866.
    71. Operschall, E., Schuh, T., Heinzerling, L., Pavlovic, J., and Moelling, K. (1999). Enhanced protection against viral infection by co-administration of plasmid DNA coding for viral antigen and cytokines in mice. J Clin Virol 13, 17-27.
    72. Larsen, D.L., Karasin, A., and Olsen, C.W. (2001). Immunization of pigs against influenza virus infection by DNA vaccine priming followed by killed-virus vaccine boosting. Vaccine 19, 2842-2853.
    73. Eo, S.K., Lee, S., Kumaraguru, U., and Rouse, B.T. (2001). Immunopotentiation of DNA vaccine against herpes simplex virus via co-delivery of plasmid DNA expressing CCR7 ligands. Vaccine 19, 4685-4693.
    74. Iwasaki, A., Stiernholm, B.J., Chan, A.K., Berinstein, N.L., and Barber, B.H. (1997). Enhanced CTL responses mediated by plasmid DNA immunogens encoding costimulatory molecules and cytokines. J Immunol 158, 4591-4601.
    75. Kim, J.J., Bagarazzi, M.L., Trivedi, N., Hu, Y., Kazahaya, K., Wilson, D.M., Ciccarelli, R., Chattergoon, M.A., Dang, K., Mahalingam, S., Chalian, A.A., Agadjanyan, M.G, Boyer, J.D., Wang, B., and Weiner, D.B. (1997). Engineering of in vivo immune responses to DNA immunization via codelivery of costimulatory molecule genes. Nat Biotechnol 15, 641-646.
    76. Dempsey, P.W., Allison, M.E., Akkaraju, S., Goodnow, C.C., and Fearon, D.T. (1996). C3d of complement as a molecular adjuvant: bridging innate and acquired immunity. Science 271, 348-350.
    77. Carayanniotis, G., and Barber, B.H. (1987). Adjuvant-free IgG responses induced with antigen coupled to antibodies against class II MHC. Nature 327, 59-61.
    78. Xiang, R., Primus, F.J., Ruehlmann, J.M., Niethammer, A.G., Silletti, S., Lode, H.N., Dolman, C.S., Gillies, S.D., and Reisfeld, R.A. (2001). A dual-function DNA vaccine encoding carcinoembryonic antigen and CD40 ligand trimer induces T cell-mediated protective immunity against colon cancer in carcinoembryonic antigen-transgenic mice. J Immunol 167, 4560-4565.
    79. Biswas, S., Reddy, G.S., Srinivasan, V.A., and Rangarajan, P.N. (2001). Preexposure efficacy of a novel combination DNA and inactivated rabies virus vaccine. Hum Gene Ther 12, 1917-1922.
    80. Leifert, J.A., Lindencrona, J.A., Charo, J., and Whitton, J.L. (2001). Enhancing T cell activation and antiviral protection by introducing the HIV-1 protein transduction domain into a DNA vaccine. Hum Gene Ther 12, 1881-1892.
    81. Ara, Y., Saito, T., Takagi, T., Hagiwara, E., Miyagi, Y., Sugiyama, M., Kawamoto, S., Ishii, N., Yoshida, T., Hanashi, D., Koshino, T., Okada, H., and Okuda, K. (2001). Zymosan enhances the immune response to DNA vaccine for human immunodeficiency virus type-1 through the activation of complement system. Immunology 103, 98-105.
    82. Hsu, K.F., Hung, C.F., Cheng, W.F., He, L., Slater, L.A., Ling, M., and Wu, T.C. (2001). Enhancement of suicidal DNA vaccine potency by linking Mycobacterium tuberculosis heat shock protein 70 to an antigen. Gene Ther 8, 376-383.
    83. Davis, H.L.(2000). CpG motifs for optimization of DNA vaccines. Dev Biol(Basel)104, 165-169.
    84. Leitner, W.W., Hammed, P., and Thalhamer, J.(2001). Nucleic acid for the treatment of cancer: genetic vaccines and DNA adjuvants. Curr Pharm Des 7, 1641-1667.
    85. Stan, A.C., Casares, S., Brumeanu, T.D., Klinman, D.M., and Bona, C.A. (2001). CpG motifs of DNA vaccines induce the expression of chemokines and MHC class II molecules on myocytes. Eur J Immunol 31,301-310.
    86. Krieg, A.M. (2002). CpG motifs in bacterial DNA and their immune effects. Annu Rev Immunol 20, 709-760.
    87. Rovero, S., Boggio, K., Carlo, E.D., Amici, A., Quaglino, E., Porcedda, P., Musiani, P., and Forni, G.(2001). Insertion of the DNA for the 163-171 peptide of IL1beta enables a DNA vaccine encoding p185(neu) to inhibit mammary carcinogenesis in Her-2/neu transgenic BALB/c mice. Gene Ther 8, 447-452.
    88. Rosenberg, S.A., Yang, J.C., Schwartzentruber, D.J., Hwu, P., Marincola, F.M., Topalian, S.L., Restifo, N.P., Dudley, M.E., Schwarz, S.L., Spiess, P.J., Wunderlich, J.R., Parkhurst, M.R., Kawakami, Y., Seipp, C.A., Einhorn, J.H., and White, D.E.(1998). Immunologic and therapeutic evaluation of a synthetic peptide vaccine for the treatment of patients with metastatic melanoma. Nat Med 4, 321-327.
    89. Kawamura, H., Rosenberg, S.A., and Berzofsky, J.A. (1985). Immunization with antigen and interleukin 2 in vivo overcomes Ir gene low responsiveness. J Exp Med 162, 381-386.
    90. Ahlers, J.D., Dunlop, N., Alling, D.W., Nara, P.L., and Berzofsky, J.A. (1997). Cytokine-in-adjuvant steering of the immune response phenotype to HIV-1 vaccine constructs: granulocyte-macrophage colony-stimulating factor and TNF-alpha synergize with IL-12 to enhance induction of cytotoxic T lymphocytes. J Immunol 158, 3947-3958.
    91. Belyakov, I.M., Ahlers, J.D., Clements, J.D., Strober, W., and Berzofsky, J.A. (2000). Interplay of cytokines and adjuvants in the regulation of mucosal and systemic HIV-specific CTL. J Immunol 165, 6454-6462.
    92. Rao, J.B., Chamberlain, R.S., Bronte, V., Carroll, M.W., Irvine, K.R., Moss, B., Rosenberg, S.A., and Restifo, N.P. (1996). IL-12 is an effective adjuvant to recombinant vaccinia virus-based tumor vaccines: enhancement by simultaneous B7-1 expression. J Immunol 156, 3357-3365.
    93. Disis, M.L, Bernhard, H., Shiota, F.M., Hand, S.L., Gralow, J.R., Huseby, E.S., Gillis, S., and Cheever, M.A. (1996). Granulocyte-macrophage colony-stimulating factor: an effective adjuvant for protein and peptide-based vaccines. Blood 88, 202-210.
    94. Xiang, Z., and Ertl, H.C. (1995). Manipulation of the immune response to a plasmid-encoded viral antigen by coinoculation with plasmids expressing cytokines. Immunity 2, 129-135.
    95. Kim, J.J., Trivedi, N.N., Nottingham, L.K., Morrison, L., Tsai, A., Hu, Y., Mahalingam, S., Dang, K., Ahn, L., Doyle, N.K., Wilson, D.M., Chattergoon, M.A., Chalian, A.A., Boyer, J.D., Agadjanyan, M.G, and Weiner, D.B. (1998). Modulation of amplitude and direction of in vivo immune responses by co-administration of cytokine gene expression cassettes with DNA immunogens. Eur J Immunol 28, 1089-1103.
    96. Gunmathan, S., Klinman, D.M., and Seder, R.A.(2000). DNA vaccines: immunology, application, and optimization~*. Annu Rev Immunol 18, 927-974.
    97. Rakhmilevich, A.L., Imboden, M., Hao, Z., Macklin, M.D., Roberts, T., Wright, K.M., Albertini, M.R., Yang, N.S., and Sondel, P.M. (2001). Effective particle-mediated vaccination against mouse melanoma by coadministration of plasmid DNA encoding Gp100 and granulocyte-macrophage colony-stimulating factor. Clin Cancer Res 7, 952-961.
    98. Scheerlinck, J.Y. (2001). Genetic adjuvants for DNA vaccines. Vaccine 19, 2647-2656.
    99. Boyer, J.D., Kim, J., Ugen, K., Cohen, A.D., Ahn, L., Schumann, K., Lacy, K., Bagarazzi, M.L., Javadian, A., Ciccarelli, R.B., Ginsberg, R.S., MacGregor, R.R., and Weiner, D.B. (1999). HIV-1 DNA vaccines and chemokines. Vaccine 17 Suppl 2, S53-64.
    100. Lu, Y., Xin, K.Q., Hamajima, K., Tsuji, T., Aoki, I., Yang, J., Sasaki, S., Fukushima, J., Yoshimura, T., Toda, S., Okada, E., and Okuda, K. (1999). Macrophage inflammatory protein-lalpha (MIP-lalpha) expression plasmid enhances DNA vaccine-induced immune response against HIV-1. Clin Exp Immunol 115, 335-341.
    101. Moore, A.C., Kong, W.P., Chakrabarti, B.K., and Nabel, G.J. (2002). Effects of antigen and genetic adjuvants on immune responses to human immunodeficiency virus DNA vaccines in mice. J Virol 76, 243-250.
    102. Parajuli, P., Pisarev, V., Sublet, J., Steffel, A., Varney, M., Singh, R., LaFace, D., and Talmadge, J.E. (2001). Immunization with wild-type p53 gene sequences coadministered with Fit3 ligand induces an antigen-specific type 1 T-cell response. Cancer Res 61, 8227-8234.
    103. Gurunathan, S., lrvine, K.R., Wu, C.Y., Cohen, J.I., Thomas, E., Prussin, C., Restifo, N.P., and Seder, R.A. (1998). CD40 ligand/trimer DNA enhances both humoral and cellular immune responses and induces protective immunity to infectious and tumor challenge. J Immunol 161, 4563-4571.
    104. Sin, J.I., Kim, J.J., Zhang, D., and Weiner, D.B. (2001). Modulation of cellular responses by plasmid CD40L: CD40L plasmid vectors enhance antigen-specific helper T cell type 1 CD4+ T cell-mediated protective immunity against herpes simplex virus type 2 in vivo. Hum Gene Ther 12, 1091-1102.
    105. Xin, K.Q., Lu, Y., Hamajima, K., Fukushima, J., Yang, J., Inumura, K., and Okuda, K. (1999). Immunization of RANTES expression plasmid with a DNA vaccine enhances HIV-1-specific immunity. Clin Immunol 92, 90-96.
    106. Nagata, T., Higashi, T., Aoshi, T., Suzuki, M., Uchijima, M., and Koide, Y. (2001). Immunization with plasmid DNA encoding MHC class Ⅱ binding peptide/CLIP-replaced invariant chain (Ii) induces specific helper T cells in vivo: the assessment of li p31 and p41 isoforms as vehicles for immunization. Vaccine 20, 105-114.
    107. van Bergen, J., Camps, M., Offringa, R., Melief, C.J., Ossendorp, F., and Koning, F. (2000). Superior tumor protection induced by a cellular vaccine carrying a tumor-specific T helper epitope by genetic exchange of the class Ⅱ-associated invariant chain peptide. Cancer Res 60, 6427-6433.
    108. Hess, A.D., Thoburn, C., Chen, W., Miura, Y., and Van der Wall, E. (2001). The N-terminal flanking region of the invariant chain peptide augments the immunogenicity of a cryptic "self" epitope from a tumor-associated antigen. Clin Immunol 101, 67-76.
    109. Ross, T.M., Xu, Y., Green, T.D., Montefiori, D.C., and Robinson, H.L. (2001). Enhanced avidity maturation of antibody to human immunodeficiency virus envelope: DNA vaccination with gp120-C3d fusion proteins. AIDS Res Hum Retroviruses 17, 829-835.
    110. Suzue, K., Zhou, X., Eisen, H.N., and Young, R.A. (1997). Heat shock fusion proteins as vehicles for antigen delivery into the major histocompatibility complex class I presentation pathway. Proc Natl Acad Sci U S A 94, 13146-13151.
    111. Planelles, L., Thomas, M.C., Alonso, C., and Lopez, M.C. (2001). DNA immunization with Trypanosoma cruzi HSP70 fused to the KMP 11 protein elicits a cytotoxic and humoral immune response against the antigen and leads to protection. Infect Immun 69, 6558-6563.
    112. Deliyannis, G, Boyle, J.S., Brady, J.L., Brown, L.E., and Lew, A.M. (2000). A fusion DNA vaccine that targets antigen-presenting cells increases protection from viral challenge. Proc Natl Acad Sci U S A 97, 6676-6680.
    113. Freund, Y.R., Mirsalis, J.C., Fairchild, D.G., Bruno, J., Hokama, L.A., Schindler-Horvat, J., Tomaszewski, J.E., Hodge, J.W., Schlom, J., Kantor, J.A., Tyson, C.A., and Donohue, S.J. (2000). Vaccination with a recombinant vaccinia vaccine containing the B7-1 co-stimulatory molecule causes no significant toxicity and enhances T cell-mediated cytotoxicity, Int J Cancer 85, 508-517.
    114. Biragyn, A., Tani, K., Grimm, M.C., Weeks, S., and Kwak, L.W. (1999). Genetic fusion of chemokines to a self tumor antigen induces protective, T-cell dependent antitumor immunity. Nat Biotechnol 17, 253-258.
    115. Ahlers, J.D., Belyakov, I.M., Matsui, S., and Berzofsky, J.A. (2001). Mechanisms of cytokine synergy essential for vaccine protection against viral challenge. Int lmmunol 13, 897-908.
    116. Hodge, J.W., Sabzevari, H., Yafal, A.G., Gritz, L., Lorenz, M.G, and Schlom, J. (1999). A triad of costimulatory molecules synergize to amplify T-cell activation. Cancer Res 59, 5800-5807.
    117. Berzofsky, J.A. (1993). Epitope selection and design of synthetic vaccines. Molecular approaches to enhancing immunogenicity and cross-reactivity of engineered vaccines. Ann N Y Acad Sci 690, 256-264.
    118. Morgan, D.J., Kreuwel, H.T., and Sherman, L.A. (1999). Antigen concentration and precursor frequency determine the rate of CDS+ T cell tolerance to peripherally expressed antigens. J Immunol 163, 723-727.
    119. Sandberg, J.K., Franksson, L., Sundback, J., Michaelsson, J., Petersson, M., Achour, A., Wallin, R.P., Sherman, N.E., Bergman, T., Jornvall, H., Hunt, D.E, Kiessling, R., and Karre, K. (2000). T cell tolerance based on avidity thresholds rather than complete deletion allows maintenance of maximal repertoire diversity. J Immunol 165, 25-33.
    120. Berzofsky, J.A., Ahlers, J.D., and Belyakov, I.M. (2001). Strategies for designing and optimizing new generation vaccines. Nat Rev Immunol 1,209-219.
    121. Thornton, A.M., and Shevach, E.M. (1998). CD4+CD25+ immunoregulatory T cells suppress polyclonal T cell activation in vitro by inhibiting interleukin 2 production. J Exp Med 188, 287-296.
    122. Shimizu, J., Yamazaki, S., and Sakaguchi, S. (1999). Induction of tumor immunity by removing CD25+CD4+ T cells: a common basis between tumor immunity and autoimmunity. J Immunol 163, 5211-5218.
    123. Salomon, B., Lenschow, D.J., Rhee, L., Ashourian, N., Sing, h, B., Sharpe, A., and Bluestone, J.A. (2000). B7/CD28 costimulation is essential for the homeostasis of the CD4+CD25+ immunoregulatory T cells that control autoimmune diabetes. Immunity 12, 431-440.
    124. Waldmann, H., and Cobbold, S. (2001). Regulating the immune response to transplants, a role for CD4+ regulatory cells? Immunity 14, 399-406.
    125. Thornton, A.M., and Shevach, E.M. (2000). Suppressor effector function of CD4+CD25+ immunoregulatory T cells is antigen nonspecific. J Immunol 164, 183-190.
    126. Terabe, M., Matsui, S., Noben-Trauth, N., Chen, H., Watson, C., Donaldson, D.D., Carbone, D.P., Paul, W.E., and Berzofsky, J.A. (2000). NKT cell-mediated repression of tumor immunosurveillance by IL-13 and the IL-4R-STAT6 pathway. Nat Immunol 1, 515-520.
    127. Krummel, M.F., and Allison, J.P. (1995). CD28 and CTLA-4 have opposing effects on the response of T cells to stimulation. J Exp Med 182, 459-465.
    128. Ahlers, J.D., Takeshita, T., Pendleton, C.D., and Berzofsky, J.A. (1997). Enhanced immunogenicity of HIV-1 vaccine construct by modification of the native peptide sequence. Proc Natl Acad Sci U S A 94, 10856-10861.
    129. Greenwald, R.J., Boussiotis, V.A., Lorsbach, R.B., Abbas, A.K., and Sharpe, A.H. (2001). CTLA-4 regulates induction of anergy in vivo. Immunity 14, 145-155.
    130. Shrikant, P., Khoruts, A., and Mescher, M.F. (1999). CTLA-4 blockade reverses CD8+T cell tolerance to tumor by a CD4+T cell-and IL-2-dependent mechanism. Immunity 11,483-493.
    131. Leach, D.R., Krummel, M.F., and Allison, J.P. (1996). Enhancement of antitumor immunity by CTLA-4 blockade. Science 271, 1734-1736.
    132. Sutmuller, R.P., van Duivenvoorde, L.M., van Elsas, A., Schumacher, T.N., Wildenberg, M.E., Allison, J.P., Toes, R.E., Offringa, R., and Melief, C.J. (2001). Synergism ofcytotoxic T lymphocyte-associated antigen 4 blockade and depletion of CD25(+) regulatory T cells in antitumor therapy reveals alternative pathways for suppression of autoreactive cytotoxic T lymphocyte responses. J Exp Med 194, 823-832.
    133. Matsui, S., Ahlers, J.D., Vortmeyer, A.O., Terabe, M., Tsukui, T., Carbone, D.P., Liotta, L.A., and Berzofsky, J.A. (1999). A model for CDS+ CTL tumor immunosurveillance and regulation of tumor escape by CD4 T cells through an effect on quality of CTL. J Immunol 163, 184-193.
    134. Mor, G, Yamshchikov, G, Sedegah, M., Takeno, M., Wang, R., Houghten, R.A., Hoffman, S., and Klinman, D.M. (1996). Induction of neonatal tolerance by plasmid DNA vaccination of mice. J Clin Invest 98, 2700-2705.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700