用户名: 密码: 验证码:
武陵山区低山丘陵小流域土壤侵蚀特征及产流产沙模拟预测
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
长江中下游低山丘陵生态退化区为防治好水土流失已开展了大规模的植被恢复工作,要了解植被恢复所产生的水土保持效应乃至生态环境效应,研究流域土壤侵蚀特征及规律,是必不可缺的。本文以了解植被恢复对长江中下游低山丘陵区所产生的水土保持效应为主要目的,选取湖南西北部武陵山区女儿寨小流域为研究流域,对降雨侵蚀力、土壤可蚀性K值等因素进行详细分析,在总结流域不同尺度产流产沙特征与植被恢复对水土流失改善效果的基础上,选用GIS结合USLE及分布式水文模型SWAT两种方式对流域产流产沙进行模拟预测,对模型在流域的适宜性进行评价,通过比较找出更适合于流域的预测方式,为流域今后水土流失治理提供基础数据,为今后指导武陵山区及长江中下游低山丘陵区相似流域的水土保持工作提供借鉴与参考。主要得出如下结论:
     (1)流域降雨侵蚀力时间分布不均匀,主要集中在4-8月。2000-2008年9年间降雨侵蚀力波动变幅较大。次降雨量与次降雨侵蚀力、月降雨量与月降雨侵蚀力、年降雨量与年降雨侵蚀力均为乘幂关系,其拟合的函数可用于相应降雨侵蚀力的计算,其中以月侵蚀性降雨量作为变量计算精度最大,决定系数达到0.8605。在流域内长期计算与分析降雨侵蚀力,EI结构中以EI30最为适宜。半月步长日雨量模型R=α(Dj)β和非线性多参数模型Rj=a{1+bsin[Π(j-1)/12]} Pkc适合流域降雨侵蚀力的评价。
     (2)小流域土壤可蚀性K值介于0.2451—0.4623之间,其变幅较大。土壤表层质地普遍偏粗,粘土所占比例较小。K值离差系数Cv为0.1295,存在中等程度的变异性。流域几种主要土壤类型K值为:黄壤0.332,黄棕壤0.326,红壤0.318。通过Kriging插值得到K值在流域范围内的空间分布图。今后,增加采样密度和优化采样方法将是提高K值空间分布图精度的有效途径。
     (3)流域内几种具有代表性的植被恢复模式径流小区,其产流产沙量在2000-2008年9年间存在巨大的差异,自2004年后产流产沙均显著减少并基本稳定,植被恢复对水土流失的效益从2004年开始得到明显体现。灌木林和润楠林小区具有良好的保水减沙效益,退耕还林措施同样带来了良好的效益。从产流产沙的年内分布来看,4-8月是水土流失的主要时期。随着植被恢复年限增大,林分郁闭度增加,降雨因子对产流产沙的显著作用有所增加,体现在2004年后降雨因子与产流产沙的相关系数明显增大,产流产沙回归方程的回归相关系数从2004年后除润楠林小区外普遍有了增加。各个小区产沙量均随产流量的增大而增大,以润楠林小区产沙随产流的变化最大。
     (4)对于植被恢复径流小区,乔层盖度是对产流产沙影响最大的环境因子,其次是毛管持水量,地形因子的坡度对产沙有较大影响;对于退耕还林小区,坡度是对产流产沙影响最大的环境因子,其次是土壤渗透速度,灌层盖度和草层盖度对产流产沙有较大影响且影响作用相同。
     (5)从流域尺度上来看,汛期是流域径流产生的主要时期,洪水是流域泥沙产生的主要来源。径流量2004年前和2004年后没有太大变化,而产沙量自2004年后显著减少,2004-2008年来泥沙特征值的变化幅度大于降雨与径流特征值变化幅度。流域径流量随着降雨量的增加而增加,汛期月径流深与月输沙量呈正相关关系。水文指标对流域土壤侵蚀量的相关性要高于降水指标。选择3种降水指标、4种水文指标及径流系数Cr,建立流域土壤侵蚀量S的定量计算方程式,经检验方程复相关系数平方R2达到0.96,可用于流域土壤侵蚀量的定量计算。
     (6)利用GIS并以USLE为评价模型预测了流域土壤侵蚀量。<5t/(hm2·a)的微度侵蚀占侵蚀总面积的66.02%。林地除竹林外均为微度侵蚀,也说明了林地防治土壤侵蚀的效益。海拔300-400m与200-300m地带的侵蚀量分别占到侵蚀总量的34.99%和29.89%,是需要预防土壤侵蚀的重点地带。坡度20-40o地带侵蚀量占总侵蚀量的55.5%,也是防治土壤侵蚀的主要区域。整个流域年均侵蚀模数为652.37 t/(km2·a),与实测值相比未达到较为满意的结果,只能用于粗略的估算。
     (7)应用分布式水文模型SWAT对流域产流产沙进行预测。经过参数校准和模型验证,模型对径流深的模拟值相关系数(R2)与Nash-Suttclife系数(Ens)两个评价指标均在0.8以上,相对误差系数(RE)也仅为0.004;输沙模数整体值小于实测值,但R2为0.88,说明模拟值可以很好的反映泥沙变化的趋势,Ens为0.78也是模型可以接受的精度范围。结果表明,模型可以较好的模拟流域产流产沙,在流域内的适用性好于USLE模型。SWAT模型对产流的模拟效果要好于对产沙的模拟效果。
It has been implemented large-scale vegetation restoration in order to prevent soil and water loss in low-mountain hilly ecological degraded region of middle-lower Yangtze River. In order to realize the effect of soil and water conservation even ecological environment which produced by vegetation restoration,study on soil erosion characters of watershed is necessary. The main intention of this paper were to realize the effect of soil and water conservation which produced by vegetation restoration in low-mountain hilly region of middle-lower Yangtze River. This paper selected Nverzhai small watershed which lies in Wuling Moutain in northwest of Hunan province as study area,analyzed some factors such as rainfall erosivity、soil erodibility(K factor) in detail. Then generalized soil erosion characters on different scale and improvment of vegetation restoration to prevent soil and water loss. Based on above,this paper simulated runoff and sediment yield combining with GIS and USLE and distributed hydrological model SWAT. Then,This paper evaluated which model can be used better in watershed. This can provide basal data for soil and water conservation of watershed in future,and also can provide experience learned and reference for soil and water conservation in future in Wuling Moutain as well as low-mountain hilly region of middle-lower Yangtze River. Main results and conclusions showed as follows:
     Time distribution of rainfall erosivity in watershed were not symmetrical. It was mainly concentrated from April to August. Rainfall erosivity had comparatively high fluctuation in 9 years from 2000 to 2008. Single rainfall and single rainfall erosivity,monthly rainfall and monthly rainfall erosivity,yearly rainfall and yearly rainfall erosivity were in exponential function relation. Their regressive functions can calculate corresponding rainfall erosivity. Determinative coefficient of regressive functions were 0.8605,this can gain by ways of taking monthly rainfall as variable. To calculate and analyse rainfall erosivity for long-timg,EI30 were best applicable in EI configuration. Daily rainfall precipitation model of half month periods of time R=α∑(Dj)βand non-linear and more parameters model Rj=a{1+bsin[Π(j-1)/12]} Pkc also have good applicability for evaluating rainfall erosivity.
     The value of soil erodibility(K factor) were between 0.2451 to 0.4623,it’s variation were relative large. Soil texture of surface layer were generally coarse and the proportion of clay were little. K value which Cv was 0.1295 were in moderate variability. K value of main soil types of watershed can be calculated. Yellow earth,yellow brown earth and red earth were 0.332,0.326 and 0.318 respectively. Spatial distribution map of K value in watershed can be made by Kriging interpolation. Precision of Spatial distribution map of K value can be improved by increasing sampling density and optimizing sampling method in future.
     Runoff and sediment yield had largely difference on typical vegetation patterns plots in 9 years from 2000 to 2008. It greatly decreased since 2004 year and stability hereafter. Benefit from vegetation restoration to soil and water loss were evidently received since 2004. Shrub and Pingii community had preferable benefit to prevent soil and water loss. The measure of returning land for farming to forest also had better benefit. Main period of soil and water loss was April to August for distribution of runoff and sediment within year. Following with the time increment of vegetation restoration and increment of forest canopy density,the effect which rainfall factor on runoff and sediment yield were obviously increased. The representative was that correlative coefficient between rainfall factors and runoff and sediment increased obviously,and also regressive correlative coefficient of regressive functions which between rainfall factors and runoff and sediment were generally increasing except Pingii community since 2004. Sediment yield were increasing follow with the increment of runoff yield on all plots,change of Pingii community were maximal.
     On runoff plots of vegetation restoration,the most impacting factor to runoff and sediment yield was arbor cover. The next was capillary water holding. Slope had relatively large impacting to sediment yield. On returning land for farming to forest plots,the most impacting factor to runoff and sediment yield was slope. The next was soil infiltration speed. Shrub cover and grass cover also had great impact and their effect were the same.
     On watershed scale,flood season was the main time of runoff yield,flood was the main source of sediment yield. Runoff had no high fluctuation,but sediment obviously decreased since 2004. Changing extent of sediment eigenvalue were higher than rainfall and runoff eigenvalue from 2004 to 2008. Runoff increased following with the increment of rainfall,monthly runoff depth and monthly sediment yield took on positive correlation in flood season. The relativity of hydrology indexes to soil erosion were higher than rainfall indexes.The calculative equation about sediment yield of watershed can be established after 3 rainfall indexes,4 hydrology indexes and runoff coefficient Cr were selected. R2 of the equation was 0.96 by testing,this showed the equation can be used to calculate sediment yield of watershed.
     Soil erosion of watershed were simulated based on combining with GIS and USLE. Feeble erosion which less than 5t/(hm2·a)occupied 66.02 percent in total erosion. Forest land were feeble erosion except bamboo,this showed the benefit which forest land to prevent soil erosion. Soil erosion in elevation of 300-400m and 200-300m occupied 34.99 and 29.89 percent in total erosion respectively. This was the main area which needed to prevent soil erosion. Soil erosion between slope of 20-40o occupied 55.5 percent in total,this was also the main area which needed to prevent soil erosion. The average of yearly sediment yield was 652.37 t/(km2·a)in watershed,this was not satisfying result comparing with actual observed result and only can be used to gross estimation.
     Runoff and sediment yield were simulated combining with distributed hydrological model SWAT. After parameter adjustment and model test , correlative coefficient ( R2 ) and Nash-Suttclife coefficient(Ens)about simulative value of runoff depth were higher than 0.8. Relative error coefficient was only 0.004. Whole sediment yield were less than actual observed result,but it’s correlative coefficient(R2) was 0.88. This showed simulative value can reflect the trend of sediment change preferable. The value of Ens was 0.78 also in precision range that model can accept. Result showed that SWAT model can simulate runoff and sediment yield preferable and had better applicability to USLE in watershed. Simulative result to runoff were better than sediment for SWATmodel.
引文
蔡崇法,丁树文,史志华,等.应用USLE模型与地理信息系统IDRISI预测小流域土壤侵蚀量的研究.水土保持学报,2000,14(2):19—24.
    蔡强国,王贵平,陈永宗.黄土高原小流域侵蚀产沙过程与模拟.北京:科学出版社,1998.
    蔡强国.黄土高原小流域侵蚀产沙过程与模拟.科学出版社,1998.
    蔡强国,刘纪根.关于我国土壤侵蚀模型研究进展.地理科学进展,2003,22(3):242—250.
    程飞,徐向舟,高吉惠,等.用于土壤侵蚀试验的降雨模拟器研究进展.中国水土保持科学,2008,6(2):107—112.
    陈军峰,李秀彬.森林植被变化对流域水文影响的争论.自然资源学报,2001,16(5):474—480.
    陈军锋,李秀彬.土地覆被变化的水文响应模拟研究.应用生态学报,2004,15(5):833—836.
    陈腊娇.基于SWAT模型的土地利用/覆被变化产流产沙效应模拟——以陇东马莲河流域为例.浙江师范大学硕士学位论文,2004.
    陈欣,郭新波.采用AGNPS模型预测小流域磷素流失的分析.农业工程学报,2000,16(5):44—47.
    陈业银,田育新,李锡泉,等.女儿寨小流域林地土壤渗透性能研究.湖南林业科技,2006,33(5):14—17.
    丁飞.SWAT模型小尺度流域模拟的适宜性研究——以淮河上游迎河小流域为例.南京农业大学硕士学位论文,2007.
    窦葆章译.土壤侵蚀预报与控制.美国土壤保持协会,北京:农业出版社,1981.
    樊军,邵明安,王全九.田间测定土壤导水率的方法研究进展.中国水土保持科学,2006,4(2):114—119.
    范丽丽,沈珍瑶,刘瑞民,等.基于SWAT模型的大宁河流域非点源污染空间特性研究.水土保持通报,2008,28(4):133—137.
    郭培才.黄土高原抗蚀性预报及评价方法研究.水土保持学报,1992,6(3):48—51.
    郭新波,王兆骞,张如良.浙江红壤区降雨侵蚀力季节分布与日雨量模型研究[J].水土保持学报,2001,15(3):35~38.
    郝芳华,陈利群,刘昌明,等.土地利用变化对产流和产沙的影响分析.水土保持学报,2004,18(3):5—8.
    何兴元,胡志斌,李月辉,等.GIS支持下岷江上游土壤侵蚀动态研究.应用生态学报,2005,16(12):2271—2278.
    胡续礼,潘剑君,杨树江,等.几种降雨侵蚀力模型的比较研究[J].水土保持通报,2006,26(1):68—70.
    花利忠,贺秀斌,颜昌宙,等.三峡库区大宁河流域AnnAGNPS模型参数评价.水土保持学报,2008,22(4):65—74.
    黄诗峰,钟邵南,徐美.基于GIS的流域土壤侵蚀量估算指标模型方法——以嘉陵江上游西汉水流域为例.水土保持学报,2001,15(2):105—107.
    贾媛媛,郑粉莉,杨勤科,等.国内坡面土壤侵蚀预报模型评述.水土保持研究,2004,11(4):109—112.
    姜小三,潘剑君,杨林章,等.土壤可蚀性K值的计算和K值图的制作方法研究.土壤,2004,36(2):177—180.
    江忠善,李秀英.黄土高原土壤流失方程中降雨侵蚀力和地形因子的研究[J].中国科学院西北水土保持研究所集刊,1988,7:40—45.
    江忠善,刘志.降雨因素和坡度对溅蚀影响的研究.水土保持学报,1989(2):29—35.
    金栋梁.森林对水文要素的影响.人民长江,1989,1:28—35.
    金林,李养龙.森林植被对河川径流及泥沙影响的分析.人民长江,2008,39(1):41—45.
    景可,张信宝.长江中上游土壤自然侵蚀量及其估算方法.地理研究,2007,26(1):67—74.
    孔亚平,张科利,曹龙熹.土壤侵蚀研究中的坡长因子评价问题.水土保持研究,2008,15(4):43—47.
    李丽娇,薛丽娟,张奇.基于SWAT的西苕溪流域降雨—径流关系及水量平衡分析.水土保持通报,2008,28(5):81—85.
    李勇,吴钦孝.黄土高原植物根系提高土壤抗冲性能的研究.水土保持学报,1990,4(1):1—5,10.
    李硕.GIS和遥感辅助下流域模拟的空间离散化和参数化研究与应用.南京:南京师范大学,2002.
    李硕,孙波,曾志远,等.遥感和GIS辅助下流域空间离散化方法研究.土壤学报,2004,41(2):183—189.
    李锡泉,田育新,袁正科,等.湘西山地不同植被类型的水土保持效益研究.水土保持研究,2003,10(2):123—126.
    李小涛,黄诗峰,李琳,等.嘉陵江流域土壤侵蚀变化遥感分析.泥沙研究,2006,12,6:65—69.
    李元寿,王根绪,王一博,等.长江黄河源区覆被变化下降水的产流产沙效应研究.水科学进展,2006,17(5):616—623.
    刘卉芳,朱清科,孙中锋,等.晋西黄土区森林植被对流域径流及产沙的影响.干旱区资源与环境, 2005,19(5):61—66.
    刘纪根,张平仓,任洪玉.长江流域土壤侵蚀预报模型研究进展.长江科学院院报,2007,24(3):11—15.
    刘世荣,温远光,王兵,等.中国森林生态系统水文生态功能规律.北京:中国林业出版社,1996.
    刘文耀.云南昭通坝区降雨侵蚀力R指标的初步研究[J].云南林业科技,1996,(2):24—26.
    刘新华,张晓萍,杨勤科,等.不同尺度下影响水土流失地形因子指标的分析与选取.西北农林科技大学学报(自然科学版),2004,32(6):107—111.
    刘艳,王东梅.我国降雨侵蚀力计算方法研究进展[J].水土保持应用技术,2007,3:45—47.
    罗志军,刘耀林,贾泽露.基于RS和GIS的小流域土壤侵蚀量估算研究.华中师范大学学报(自然科学版),2005,39(2):269—272.
    马雪华.岷江上游森林的采伐对河流流量和泥沙悬移质的影响.资源科学,1980,(3):78—89.
    马雪华.四川米亚罗地区高山冷杉林水文作用的研究.林业科学,1987,23(3):253—265.
    缪驰远,徐霞,魏欣,等.重庆市主城区降雨侵蚀力特征分析.资源科学,2007,29(4):54—60.
    牛志明,解明曙,孙阁,等.ANSWER2000在小流域土壤侵蚀过程模拟中的应用研究.水土保持学报,2001,15(3):56—60.
    宁丽丹,石辉.利用日降雨量资料估算西南地区的降雨侵蚀力[J].水土保持研究,2003,10(4):183—186.
    潘建平,龚健雅,李长风,等.土壤侵蚀模型研究现状和GIS、RS应用.地质灾害与环境保护,2005,16(1):89—93.
    彭立,苏春江,徐云,等.森林对流域水文过程影响的研究进展.江西农业学报,2007,19(4):94—97.
    彭镇华.中国森林生态网络体系建设.北京:中国林业出版社,2003.
    卜兆宏,宫世俊,阮伏水,等.降雨侵蚀力因子的算法及其在土壤流失量监测中的选用.遥感技术与应用,1992,7(3):1—10.
    卜兆宏,李全英.土壤可蚀性(K)值图编制方法的初步研究.农村生态环境(学报),1995,11(1):5—9.
    漆良华,张旭东,周金星,等.湘西北小流域典型植被恢复群落土壤贮水量与入渗特性.林业科学,2007,43(4):1—8.
    漆良华.武陵山区小流域退化土地植被恢复生态学特性研究.中国林业科学研究院博士论文.2007.
    漆良华,张旭东,周金星,等.武陵山区小流域典型植被恢复模式产流产沙特征.资源科学,2008, 30(5):709—716.
    祁伟,曹文洪,郭庆超,等.小流域侵蚀产沙分布式数学模型的研究.中国水土保持科学,2004,2(1):16—22.
    秦富仓,余新晓,张满良,等.植被对小流域汇流及侵蚀产沙的影响研究.干旱区资源与环境,2005,19(5):165—168.
    邱国玉,尹婧,熊育久,等.北方干旱化和土地利用变化对泾河流域径流的影响.自然资源学报,2008,23(2):211—218.
    全国农业技术推广服务中心.土壤分析技术规范(第二版).中国农业出版社,2006,6.
    饶良懿,王玉杰,朱金兆,等.森林植被变化(采伐)对小流域水文化学循环过程的影响.生态学报,2008,28(8):3981—3990.
    尚佰晓,王瑄,王莉.利用REE示踪技术研究土壤侵蚀的进展.核农学报,2008,22(1):111—115.
    邵颂东,王礼先,周金星.国外土壤侵蚀研究的新进展.水土保持科技情报,2000(1):32—36.
    师长兴.长江上游输沙尺度效应研究.地理研究,2008,27(4):800—810.
    史德明.土壤侵蚀.中国大百科全书·农业.1990,1236—1237.
    史志华,蔡崇法,丁树文,等.基于GIS和RUSLE的小流域农地水土保持规划研究.农业工程学报,2002,18(4):172—175.
    史志华,郭国先,曾之俊,等.武汉降雨侵蚀力特征与日降雨侵蚀力模型研究[J].中国水土保持,2006,1:22~24.
    水利部标准.土壤侵蚀分类分级标准(SL 190-96)[S].北京:水利电力出版社,1997.
    宋阳,刘连友,严平,等.土壤可蚀性研究述评.干旱区地理,2006,29(1):124—131.
    孙立达,孙保平.西吉县黄土丘陵沟壑区小流域土壤侵蚀量预报.自然资源学报,1988,3(20):141—153.
    汤立群,陈国祥,蔡明扬.黄土丘陵区小流域数学产沙模型.河海大学学报,1990,18(6):10—16.
    唐政洪,蔡强国.我国主要土壤侵蚀产沙模型研究评述.山地学报,2002,20(4):466—475.
    田育新,李锡泉,张灿明,等.植被恢复与重建过程中小流域降雨及水沙变化特征研究.湖南林业科技,2005,32(6):29—32.
    王飞,李锐,杨勤科.区域尺度土壤侵蚀研究方法.西北林学院学报,2003,18(4):74—78.
    王晗生,刘国彬,王青宁.流域植被整体防蚀作用及景观结构剖析.水土保持学报,2000,14(5):73—77.
    王建勋,郑粉莉,江忠善,等.WEPP模型坡面版在黄土丘陵沟壑区的适用性评价——以坡长因子为例.水土保持通报,2007,27(2):50—55.
    王莉雯,牛铮,卫亚星.应用遥感技术探测土壤侵蚀的研究进展.地理科学进展,2007,26(2):59—66.
    王礼先,张志强.干旱地区森林对流域径流的影响.自然资源学报,2001,16(5):439—444.
    王林,陈兴伟.基于SWAT模型的晋江西溪流域产沙模拟.福建师范大学学报(自然科学版),2008,24(3):93—97.
    王万忠.黄土地区降雨侵蚀力R指标的研究[J].中国水土保持,1987,(12):34—40.
    王万忠,黄土地区降雨侵蚀力R指标的研究.中国水土保持,1987,12:34—40.
    王万忠.中国降雨侵蚀力R值的计算与分布(?).水土保持学报,1995,9(4):5—16.
    王万忠,焦菊英,郝小品,等.中国降雨侵蚀力R值的计算与分布(Ⅱ)[J].水土保持学报,1996,9(4):6~18.
    王万忠.中国降雨侵蚀力R值的计算与分布(Ⅱ).土壤侵蚀与水土保持学报,1996,2(1):29—40.
    王占礼,黄新会,牛振华.国内主要流域侵蚀产沙模型评述.水土保持研究,2004,11(4):28—33.
    王政权.地统计学及其在生态学中的应用.北京:科学出版社,1999,35—149.
    王中根,刘昌明,黄友波.SWAT模型的原理、结构及应用研究.地理科学进展,2003,22(1):79—86.
    魏强,张秋良,代海燕,等.大青山不同植被下的地表径流和土壤侵蚀.北京林业大学学报,2008,30(5):111—117.
    魏天兴.黄土残塬沟壑区降雨侵蚀分析.水土保持学报,2001,15(4):45—51.
    吴军,张万昌.SWAT径流模拟及其对流域内地形参数变化的响应研究.水土保持通报,2007,27(3):52—58.
    吴素业.安徽大别山区降雨侵蚀力简易算法与时空分布规律研究[J].中国水土保持,1994,4:12—13.
    吴钦孝,赵鸿雁.植被保持水土的基本规律和总结.水土保持学报,2001,15(4):13—15.
    谢树楠,王孟楼,张仁.黄河中游黄土沟壑区暴雨产沙模型的研究.北京:清华大学出版社,1990.
    谢云,章文波,刘宝元.用日雨量和雨强计算降雨侵蚀力[J].水土保持通报,2001,21(6):53—56.
    谢云,刘宝元,章文波.侵蚀性降雨标准研究[J].水土保持学报,2000,14(4):6—11.
    徐宪立,马克明,傅伯杰.植被与水土流失关系研究进展.生态学报,2006,26(9):3137—3143.
    许月卿,蔡运龙.贵州省猫跳河流域土壤侵蚀量计算及其背景空间分析.农业工程学报,2006,22(5):50—54.
    杨建英,赵廷宁.坡面侵蚀研究现状及展望.北京林业大学学报,1994,16(1):95—101.
    杨劼,高清竹,李国强,等.内蒙古皇甫川流域植被空间动态变化分析.水土?盅Пǎ?001,15(3):41—43.
    杨军,李荣伟,胡庭兴,等.岷江上游亚高山针叶林植被恢复研究综述.四川林业科技,2007,28(1):23—28.
    杨勤科,贾大韦,李锐,等.基于DEM的坡度研究——现状与展望.水土保持通报,2007,27(1):146—150.
    杨新兵,余新晓,孙庆艳,等.植被对流域水文特征响应研究.水土保持学报,2007,21(3):170—173.
    殷水清,谢云,王春刚.用小时降雨资料估算降雨侵蚀力的方法[J].地理研究,2007,26(3):541~547.
    于东升,史学正,吕喜玺.不同土地利用类型C值及在低山红壤区估计值研究.土壤侵蚀与水土保持学报,1998,4(1):71—76.
    于磊,顾鎏,李建新,等.基于SWAT模型的中尺度流域气候变化水文响应研究.水土保持通报,2008,28(4):152—155.
    余新晓,张晓明,武思宏,等.黄土区林草植被与降水对坡面径流和侵蚀产沙的影响.山地学报,2006,24(1):19—26.
    余新晓,张学霞,李建牢,等.黄土地区小流域植被覆盖和降水对侵蚀产沙过程的影响.生态学报,2006,26(1):1—8.
    袁东海,陈明亮.鄂东南红壤水分运动参数与红壤性质的相关性.华中农业大学学报,1995,14(1):53—57.
    张光辉.土壤侵蚀模型研究现状与展望.水科学进展,2002,13(3):389—396.
    张海斌.基于SWAT模型的小流域产沙产流的研究——以三峡地区张家冲小流域为例.华中农业大学硕士学位论文,2004.
    张科利,彭文英,杨红丽.中国土壤可蚀性值及其估算.土壤学报,2007,44(1):7—13.
    张晴雯,雷廷武,赵军.利用REE示踪法研究细沟流净剥蚀率.土壤学报,2005,42(1):163—166.
    章文波,谢云,刘宝元.利用日雨量计算降雨侵蚀力的方法研究.地理科学,2002,22(6):705—710.
    章文波,谢云,刘宝元.用雨量和雨强计算次降雨侵蚀力[J].地理研究,2002,21(3):384—390.
    章文波,谢云,刘宝元.中国降雨侵蚀力空间变化特征[J].山地学报,2003,21(1):33—40.
    章文波,付金生.不同类型雨量资料估算降雨侵蚀力[J].资源科学,2003,25(1):35—41.
    张金池,李海东,林杰.基于小流域尺度的土壤可蚀性K值空间变异.生态学报,2008,28(5):2199—2206.
    张晓明,余新晓,武思宏,等.黄土区森林植被对坡面径流和侵蚀产沙的影响.应用生态学报,2005,16(9):1613—1617.
    张晓明,余新晓,武思宏,等.黄土区森林植被对流域径流和输沙的影响.中国水土保持科学,2006,4(3):48—53.
    张雪松,郝芳华,杨志峰,等.基于SWAT模型的中尺度流域产流产沙模拟研究.水土保持研究,2003,10(4):38—42.
    张岩,袁建平,刘宝元.土壤侵蚀预报模型中的植被覆盖与管理因子研究进展.应用生态学报,2002,13(8):1033—1036.
    张玉斌,郑粉莉.AGNPS模型及其应用.水土保持研究,2004,11(4):124—127.
    张玉斌,郑粉莉.ANSWERS模型及其应用.水土保持研究,2004,11(4):165—168.
    张玉斌,郑粉莉,贾媛媛.WEPP模型概述.水土保持研究,2004,11(4):146—149.
    张志强,王盛萍,孙阁,等.流域径流泥沙对多尺度植被变化响应研究进展.生态学报,2006,26(7):2356—2364.
    赵护兵,刘国彬,许明祥.黄土丘陵区植被恢复与流域养分环境演变研究进展.水土保持通报,2004,24(2):72—75.
    赵小光,吴发启,刘秉正,等.再论土壤侵蚀的坡度界限.水土保持研究,1999,6(2):42—46.
    郑粉莉,刘峰,杨勤科,等.土壤侵蚀预报模型研究进展.水土保持通报,2001,21(6):16—18.
    郑粉莉,高学田.坡面土壤侵蚀过程研究进展.地理科学,2003,23(2):230—235.
    朱显谟.黄土高原水流侵蚀的主要类型及有关因素.水土保持通报,1982,2:1—3.
    周伏建,陈明华,林福兴,等.福建省降雨侵蚀力指标R值[J].水土保持学报,1995,9(1):13—18.
    周文佐,刘高焕,潘剑君.土壤有效含水量的经验估算——以东北黑土为例.干旱区资源与环境,2003,17(4):88—95.
    周晓峰,赵惠勋,孙慧珍.正确评价森林水文效应.自然资源学报,2001,16(5):420—426.
    周正朝,上官周平.土壤侵蚀模型研究综述.中国水土保持科学,2004,2(1):52—55.
    Abbort M B,Bathurst J C,Cunge J A,et al.An introduction to the European hydrological system-Systeme Hydrologique European,“SHE”,1:History and philosophy of a phydically-based,distributed modeling system.Journal of Hydrology,1986,87:45—49.
    Anys H,Bonn F,Merzouk A.Remote sensing and GIS based mapping and modeling of water erosion and sediment yield in a semi-arid watershed of morocco.Geocart Inte,1994,9:31—40.
    Arnold J.G.et al.. SWAT:Soil and Water Assessment Tool(Model Documentation/User Manual).1996.
    Arnold J G,Srinivasan R,Muttiah R S,et al.Large Area Hydrologic Modeling and Assessment.PartⅠ:Model Development.Journal of the American Water Resources Association.1998,34(1):73—89.
    Arnold J G,Srinivasan R,Muttiah R S.Continental scale simulation of the hydrologic balance.Journal of the American Water Resources Association.1999,35(5):1037—1051.
    Beasley L.F. Huggins. E.J.Monke..ANSWERS:A model for watershed planning.Transactions of the ASAE, 1981,23(4):938—944.
    Borah D.K.et al..Sediment discharge model for small watersheds.Transactions of the ASAE,1989,32(3):874—880.
    Bosch J M,Hewlett J D.A review of catchment experiments to determine the effect of vegetation changes on water yield and evapotranspiration.Journal of Hydrology,1982,55:3—23.
    Bouraoui F,Dillaha T A.ANSWERS-2000:Nonpoint Source Nutrient Transport Model.Journal of Environmental Engineering,2000,126(11):1045—1055.
    Bouraoui F,Benabdallah S,Jrad A,et al.Application of the SWAT model on the Medjerda river basin(Tunisia).Physics and Chemistry of the Earth,2005,30:497—507.
    Breshears D D,Whicker J J.Wind and water erosion and transport in semi-arid shrub land,grassland and forest ecosystems:Quantifying dominance of horizontal wind-driven transport.Earth Surface Process Landforms,2003,28(11):1189—1209.
    Bryan,R.B.the influence of slope angle on soil entrainment by sheetwash and rainsplash.Earth Surf Proc,1973 ,4:43—58.
    Chow T L,Daigle J L,Ghanem I,Cormier H.Effects of potato cropping on water run-off and soil erosion.Can.J.Soil Sci,1990,70:137—148.
    Croke J,Hairsine P,Fogarity P.Sediment transport redistribution and storage on logged forest hillslopes in southeastern Australia.Hydrl Process,1999,13:2705—2720.
    De Jong S M,Paracchini M L,Bertolo F,et al.Regional assessment of soil erosion using the distributed mode SEMMED and remotely sensed data.Catena,1999,37:291—308.
    De Roo A.P.J.,Wesseling C.G,Ritsema C.J..LISEM:a single event physically-based hydrological soil erosion model for drainage basins:I. Theory,input and output.Hydrological Processes,1996c,10(8):1107—1117.
    De Roo A P J.The LISEM project:an introduction.Hydrological Processes,1996,10:1021—1025.
    De Roo A.P.J,Wesseling C.G.and C.J.Ritsema.LISEM:a single event physically-based hydrological soil erosion model for drainage basins:I.theory,input and output.Hydrological Processes, 1996c,10(8):1107—1117.
    Di Luzio,Srinivasan M R,Arnold J G,et al.ArcView Interface For SWAT2000 User’s Guide.Texas:Texas Water Resources Institute,College Station,2002.
    Elsenbeer H E.A daily rainfall erosivity model for western Amazonia[J].J.Soil and Water Cons,1993,48(5):439~444.
    Fernandez C,Wu J Q,McCool D K,et al.Estimating water erosion and sediment yield with GIS,RUSLE and SEDD.Journal of Soil and Water Conservation,2003,58(5):283~289.
    F H Bornann and G E Likens.Pattern and processes in a forested ecosystem.Springer Verlag,New York,1979.
    Fontarne T A,Cruickshank T S, Arnold J G.Development of a snowfall-snowmelt routine for mountainous terrain for the soil water assessment tool(SWAT).Journal of Hydrology,2002,262:209—223.
    Foster G.R.etc.Close-from soil erosion equation for upland areas.Water Resources Research,1968(6):1176—1187.
    Foster G R,Wischmeier W H.Evaluating irregular slopes for soil loss prediction.Trans of the ASAE,1974,17:305—309.
    Foster G.R..Estimating erosion and sediment yield on field-sized areas.Transactions of the ASAE,1981,24(5):1253—1262.
    Halvorson J J,Smith J L,Papendick R I.Issues of scale for evaluating soil quality.J.Soil and Water Cons,1997,52(1):26—30.
    Hernandez M,Miller S N,et al.Modeling runoff response to land cover and rainfall spatial variability in semi-arid watersheds.Environmental Monitoring and Assessment,2000,64:285—298.
    Hibbert A R.Water yield changes after converting a forested catchment to grass.Water Resour. Res.,1969,5:634—655.
    Jesse D Schomberg,George Host,Lucinda B Johnson,et al.Evaluating the influence of landform,surficial geology,and land use on streams using hydrologic simulation modeling.Aquatic Sciences,2005,67:528—540.
    Kenneth G Renard,George R Foster,Glenn A Weesies,et al.Predicting soil erosion by water:a guide to conservation planning with the Revised Universal Soil Loss Equation[M].USDA Handbook,1997.
    Kinnell P L A,Risse L M.USLE-M:empirical modeling rainfall erosion through runoff and sediment concentration.Soil Sci Soc Am J,1998,62:1667—1672.
    Kinnell P L A.Slope length factor for applying the USLE-M to erosion in grids cells.Soil Till Res,2001,58:11—17.
    Knisel W G(Ed).CREAMS:A Field Scale Model for Chemicals,Runoff,and Erosions from Agricultural Management Systems.USDA Conservation Research Report,1980.
    Krikby,M.J.and Morgan,R.C.Soil erosion.John wiley & sons Ltd,1980.
    Laflen J.M.et al..WEPP:a new generation of erosion prediction technology.J.Soil and Water Cons,1991,46(1):34—39.
    Laflen J.M.et al. WEPP-Predicting water erosion using a process-based model.J.soil water cons,1997,52(2):96—102.
    Leng S Y,Feng R G,Li R,et al.Key research issues of soil erosion and conservation in China.Journal of Soil and Water Conservation,2004,18(2):1—6.
    Leonard R.A.et al. . GLEAMS : ground water loading effects of agricultural management systems.Transactions of the ASAE,1987,30(5):1403—1418.
    Liu B Y,Nearing M A,Risse L M.Slope gradient effects on soil loss for steep slopes.Trans of the ASAE,1994,37:1835—1840.
    Liu Baoyuan,Zhang Keli,Xie Yun.An Empirical Soil Loss Equation.In:Process of soil erosion and its environment effect volume II 12th ISCO.Beijing:Tsinghua Press,2002:21—25.
    L.J.Lane,K.G.Renard,G.R.Foster,J.M.Laflen.Development and application modern soil erosion prediction technology-The USDA experience.Aust.J.Soil Resources,1992,30:893—912.
    Lowery B,Swan J,Schumacher T,Jones A.Physical Properties of selected soils by erosion class Journal Soil and water Conservation,1995,50(3):306—311.
    Luzio M D,Srinivasab R,Arnold J G.Arcview interface for SWAT 2000,user’guide.Blachland research center Texas Agriculture Experiment Station,2001.
    McCool D K,Foster G R,Mutchler C K,et al.Revise slope length factor for the universal soil loss equation.Transactions of ASAE,1989,32:1571—1576.
    Meyer L.D.and Wischmeier W.H. Mathematical Simulation of the Process of Soil Erosion by Water.Trans.Am.Soc.Agric.Engrs,1969(12):754—758.
    Morgan R.P.C.,Quinton J.N.,Smith R.E. et al..The EUROSEM Model in:Boardman J.Favis-Mortlock D.T.Eds.Modelling Soil Erosion by water.NATO-ASI Series 1-55,Springer,Berlin,pp,1998:389—398.
    Morgan R P C,Quinton J N,Smith R E,et al.The European Soil Erosion Mode(lEUROSEM):A dynamic approach for predicting sediment transport from fields and small catchments.Earth Surface Processes and landforms,1998,23:527—544.
    Mushtak T J.Application of GIS to estimate soil erosion using RUSLE.Geo-spatial Information Science(Quarterly),2003,6(1):34.
    Nash J E,Sutcliffe J E.River flow forecasting through conceptual models,Part I:A discussion of principles.Journal of Hydrology,1970,10(3):282—290.
    Nearing M A,Ascough L D,Laflen J M.Sensitivity analysis of the WEPP hillslope profile.Transaction of the ASAE,1990,Vol33(3):839—849.
    Nearing M A.A single,continuous function for slope steepness influence on soil loss.Soil Science Society of America Journal,1997,61(3):917—919.
    Neitsch S.L,Arnold J.G,Kiniry J.R.et al.Soil and Water Assessment Tool user’s manual version 2000,Agriculture Research Service and Blackland Research Center,2002.
    Neitsch S L,Arnold J G,Kiniry J R,et al.Soil and Water Assessment Tool User’s theoretical documentation,version 2000[R].TWRI Report TR-191,Texas Water Resources Institute.College Station,Texas,2002a.
    Neitsch S L,Arnold J G,Kiniry J R,et al.Soil and Water Assessment Tool User’s Manual,version 2000[R].GSWRL Report 02-02.Temple,Texas,2002b.
    Norman Hudson.Soil Conservation.Iowa State University Press,1995,pp:127—149.
    Planagan D C,Ascough J C,Nicks A D,et al.Overview of the WEPP erosion prediction model.Technical Documentation,USDA-Water Erosion Prediction Project,1995.
    Renard K.G.et.al.RUSLE:Revised universal soil loss equation.J.soil water cons,1991,46(1):30—33.
    Renard K.G.et.al.RUSLE revisited: Status, question,answers,and the future.J. soil water cons,1994,49(2):213—220.
    Renard K G,Foster G R,Weesies G A,et al.Predicting soil erosion by water:a guide to conservation planning with the revised universal soil loss equation(RUSLE)[R] .National Technical Information Service,United States Department of Agriculture(USDA),No.703,1997.
    Rewerts C C,Engel B A.ANSWERS on GRASS:Integrating a watershed simulation with a GIS.ASAE paper No.91-2621,1991,ASAE,st.Joseph,MI.
    Schulze R..ACRU:background,concepts and theory.Report 35,Agricultural Catchments Research Unit,Department of Agricultural Engineering,University of Natal,Pietermaritzburg,South Africa,1989.
    Sharply A N,Williams J R.EPIC erosion/productivity impact calculator.Model documentation(M).USDA,TB-1768,1990,25—33.
    Srinivasan R,Arnold J G,Jones C A.Hydrologic modeling of the United States with the Soil and Water Assessment Tool.International Journal of Water Resources Development.1998,14(3):315—325.
    Stednick J D.Monitoring the effects of timber water yield harvest on annual.Journal of Hydrology,1996,176:79—95.
    Srinivasan R,Ramanarayanan T S,Arnold J G,et al.Large Area Hydrologic Modeling and Assessment,PartⅡ:Model Application.American Water Resources Association.1998,34(1):91—101.
    Sun G,Zhou G Y,Zhang Z Q,et al.Potential Water Yield Reduction due to Forestation across China.Journal of Hydrology,2006.
    Tripathi M P,Panda R K,Raghuwanshi N S.Development of effective management plan for critical subwatersheds using SWAT model.Hydrological Process,2005,19:809—826.
    Vieux B E . Geographic information systems and non-point source water quality and quantity modeling.Hydrological Processes,1991,5:101—113.
    White J G,Welch R M,Norvell W A.Soil zinc map of the USA using GIS.Soil Sci. Soc. Am. J.,1997,61:185—194.
    Williams J R,Jones C A,Dyke P T.The EPIC model and its application.PP,1984,111—121.ICRISAT-IBSNAT-SYSS Symp.On Minimum Data Sets for Agro-technology Transfer,March 1983,Hyderabad,India.
    Williams J.N.et al..EPIC:A new method for assessing erosion effect on soil productivity.J.Soil Water Cons,1983,38(5):381—383.
    Williams J N,Sharply A N.EPIC-Erosion Productivity Impact Calculator.Model Documentation US Department of Agriculture Technical Bulletin N.1990,1768.
    Wischmeier W.H. A rainfall erosion index for universal soil loss equation.Pro.Soil Sci.Soc.Am,1959,23:246—249.
    Wischmeier W.H,Johnson C B,Cross B V.A soil erodibility nomograph for farmland and construction cites.Journal of Soil and Water Conservation,1971,26(5):189—193.
    Wischmeier W H,Smith D D.Predicting rainfall erosion losses.USDA Agricultural Handbook,No.537,1978.
    Young R.A.,C.A.Onstad D.D.,Bosch W.P.Anderson.AGNPS:Agricultural Non-point Source Pollution Model:A Watershed Analysis Tool.Conservation Research Report 35,Washington,DC,1987:U.S.Department of Agriculture.
    Young R A,Onstad C A,Bosch D D.AGNPS:an agricultural non-point source model.Computer models of water shed hydrology.Water Resources Publications.W153705,1995.
    Yu,B,Rosewell,C J.An assessment of a daily rainfall erosivity model for New South Wales[J].Australian Journal of Soil Research,1996,34:139~152.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700