用户名: 密码: 验证码:
广西造林再造林固碳成本效益研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文在广西地区选择不同营造林措施的马尾松、杉木、桉树,研究其林分碳贮量空间分布格局及年际变化规律,并运用经济学原理,比较各林分固碳成本现值、效益净现值的大小;同时结合我国西南地区四个清洁发展机制(clean development mechanism,缩写为CDM)碳汇造林项目分析整个项目及其不同造林模式人工林临时核证减排量(temporary certified emission reduction,缩写为tCER)和长期核证减排量(long-term certified emission reduction,缩写为lCER)成本的动态变化。以期为我国主要树种人工林选择更为合理的营造林措施提供基础数据,为降低固碳成本-效益的不确定性及构建合理的人工林营造措施提供科学依据,并为我国实施CDM碳汇造林项目的可行性方面以及项目的定期监测、核查和核证提供参考。主要研究成果如下:
     1.杉木人工林不同营造林措施下碳空间格局及成本-效益变化
     不同营造林措施杉木乔木层碳贮量均随林龄的增加而增加,固碳成本现值均随林龄的增加而降低,效益净现值随林龄的增加而增加。固碳成本现值以不施肥低于施肥,间伐低于未间伐,全垦低于穴垦;效益净现值与之相反。
     15年生杉木林施肥与不施肥条件下总碳贮量分别为157.86 tC·hm~(-2)、143.74 tC·hm~(-2),其中乔木层分别占41.26%、36.67%,林下植被层占3.50%、2.43%,凋落物层占1.67%、1.16%,土壤层占56.14%、59.73%。年净固碳量分别为4.62 tC·hm~(-2)·a~(-1)、3.86 tC·hm~(-2)·a~(-1)。15年生时固碳成本现值分别为220.1$·(t C)~(-1)、210.0$·(t C)~(-1),效益净现值为370.9$·(t C)~(-1)、371.9$·(t C)~(-1)。
     间伐(16年生)与未间伐(15年生)条件下杉木人工林总碳贮量分别为150.41 tC·hm~(-2)、146.92 tC·hm~(-2),其中乔木层分别占44.44%、27.31%,林下植被层占2.77%、0.42%,凋落物层占3.08%、5.99%,土壤层占49.71%、66.28%。年净固碳量分别为4.73 tC·hm~(-2)·a~(-1)、3.30 tC·hm~(-2)·a~(-1)。15年生时固碳成本现值分别为236.9$·(t C)~(-1)、319.0$·(t C)~(-1),效益净现值为302.7$·(t C)~(-1)、266.8$·(t C)~(-1)。
     6年生杉木林全垦与穴垦条件下总碳贮量分别为135.78 tC·hm~(-2)和129.49 tC·hm~(-2),其中乔木层分别占15.02%、12.67%,林下植被层占10.80%、8.65%,土壤层占74.19%、78.69%。6年生时固碳成本现值分别为403.9$·(t C)~(-1)、474.7$·(t C)~(-1),效益净现值为223.6$·(t C)~(-1)、152.8$·(t C)~(-1)。
     2.马尾松人工林不同营造林措施下碳空间格局及成本-效益变化
     不同营造林措施马尾松乔木层碳贮量均随林龄的增加而增加,固碳成本现值均随林龄的增加而降低,效益净现值总体上随林龄的增加而增加,其中不同间伐强度下马尾松固碳效益净现值随林龄的增加先升高后降低。固碳成本现值以不施肥低于施肥,炼山低于未炼山,对照相对低于其他间伐强度;效益净现值与之相反。
     9年生马尾松林施肥与不施肥条件下总碳贮量分别为141.31 tC·hm~(-2)、121.39 tC·hm~(-2),其中乔木层分别占45.71%、40.15%,林下植被层占1.27%、0.75%,凋落物层占1.73%、2.74%,土壤层占51.30%、56.36%。年净固碳量分别为7.65 tC·hm~(-2)·a~(-1)、5.89 tC·hm~(-2)·a~(-1)。9年生时固碳成本现值分别为188.3$·(t C)~(-1)、177.8$·(t C)~(-1),效益净现值为139.9$·(t C)~(-1)、170.6$·(t C)~(-1)。
     炼山(13年生)与未炼山(8年生)条件下马尾松总碳贮量分别为116.19 tC·hm~(-2)、149.43 tC·hm~(-2),其中乔木层分别占41.78%、9.76%,林下植被层占2.96%、5.72%,凋落物层占2.51%、0.60%,土壤层占52.75%、83.92%。8年生时固碳成本现值分别为393.4$·(t C)~(-1)、511.6$·(t C)~(-1),效益净现值为-52.7$·(t C)~(-1)、~(-1)65.0$·(t C)~(-1)。25年生马尾松重度、中度、轻度间伐及对照条件下总碳贮量依次为235.76 tC·hm~(-2)、239.37 tC·hm~(-2)、237.97 tC·hm~(-2)、229.74 tC·hm~(-2),其中乔木层分别占51.29%、50.66%、52.20%、47.22%,林下植被层占1.65%、1.64%、2.05%、2.13%,凋落物层占1.74%、1.98%、1.49%、2.12%,土壤层占45.33%、45.72%、44.26%、48.53%。年净固碳量依次为5.16 tC·hm~(-2)·a~(-1)、5.20 tC·hm~(-2)·a~(-1)、5.31 tC·hm~(-2)·a~(-1)、4.73 tC·hm~(-2)·a~(-1)。25年生时固碳成本现值依次为111.0$·(t C)~(-1)、103.4$·(t C)~(-1)、96.2$·(t C)~(-1)、106.1$·(t C)~(-1),效益净现值分别为195.8$·(t C)~(-1)、211.1$·(t C)~(-1)、213.5$·(t C)~(-1)、244.4$·(t C)~(-1)。
     3.桉树人工林不同营造林措施下碳空间格局及成本-效益变化
     施肥与不施肥及不同施肥水平桉树乔木层碳贮量均随林龄的增加而增加,固碳成本现值均随林龄的增加而降低,效益净现值总体上随林龄的增加而增加,其中不同施肥水平桉树固碳效益净现值随林龄的增加先增加后降低。固碳成本现值以施肥低于不施肥,施肥水平III低于其他施肥水平;效益净现值与之相反。
     施肥(3年生)与不施肥(6年生)条件下桉树总碳贮量分别为83.44 tC·hm~(-2)、74.53 tC·hm~(-2),其中乔木层分别占35.58%、15.82%,林下植被层占0%、9.12%,凋落物层占2.03%、0%,土壤层占62.39%和75.06%。3年生时固碳成本现值分别为361.9$·(t C)~(-1)、2549.3$·(t C)~(-1),效益净现值为515.5$·(t C)~(-1)、~(-1)676.3$·(t C)~(-1)。
     16年生桉树不同施肥水平总碳贮量依次为(I、II、III):227.84 tC·hm~(-2)、232.19 tC·hm~(-2)、216.56 tC·hm~(-2),其中乔木层依次占72.32%、65.75%、68.25%,林下植被层占0.17%、0.95%、0.79%,凋落物层占1.09%、1.32%、1.79%,土壤层占26.42%、31.97%、29.17%。年净固碳量依次为10.48 tC·hm~(-2)·a~(-1)、9.87 tC·hm~(-2)·a~(-1)、9.59 tC·hm~(-2)·a~(-1)。16年生时固碳成本现值依次为183.2$·(t C)~(-1)、181.5$·(t C)~(-1)、164.3$·(t C)~(-1),效益净现值分别为416.7$·(t C)~(-1)、426.0$·(t C)~(-1)、429.8$·(t C)~(-1)。
     4.皆伐、炼山对杉木和马尾松两种林分碳贮量的影响
     皆伐对杉木林植被碳贮量的影响较大,使其损失了63.97%的植被碳贮量,使马尾松林损失了46.45%的植被碳贮量。炼山对马尾松林植被碳贮量的影响较大,使其林地上采伐剩余物全部烧毁,占植被总碳贮量的27.42%;使杉木林地上部分损失了植被碳贮量的9.49%。同时,炼山使两种林分类型的土壤腐殖质层碳贮量减少,而对腐殖质层以下的土壤部分影响不明显。
     5.四个CDM造林再造林项目固碳成本变化特征
     各项目tCER成本从造林初期到末期逐渐降低,lCER成本先降低后升高。tCER成本:云南隆阳退化土地多重效益再造林>四川西北地区退化土地造林再造林>广西西北地区退化土地再造林>广西珠江流域治理再造林项目;lCER成本以云南隆阳退化土地多重效益再造林和广西西北地区退化土地再造林项目较高,另外两个CDM项目较低;各项目第一承诺期末tCER和lCER成本相同,其他承诺期末均为lCER成本高于tCER成本。
     四个CDM碳汇造林项目不同造林模式各承诺期末tCER和lCER成本大小情况如下:广西珠江流域治理再造林项目均以枫香与杉木、枫香与马尾松较高,马尾松与荷木、马尾松与栎类较低,桉树最低。广西西北地区退化土地再造林项目以杉木最高,桉树最低,其他各树种居中。四川西北地区退化土地造林再造林项目以云杉较高,川杨较低,其他各树种大小各异。云南隆阳退化土地多重效益再造林项目均以华山松较高,思茅松纯林、华山松与云南松混交林次之,云南松与思茅松混交林较低。
     通过单因素分析方法,对人工林固碳成本-效益的敏感性进行分析。单位面积碳贮量、营造林费用、土地租金及木材销售价格各波动±30%时,单位面积碳贮量对成本现值影响较大,木材销售价格对效益净现值影响较大。
In this paper the spatial distribution pattern of carbon sequestration and inter-annual changes of carbon preliminary were studied for three tree species of Pinus massoniana, Cunninghamia lanceolata, Eucalyptus plantations under different afforestation measures which are main afforestation species on Guangxi. The cost present value and benefit net present value of stand carbon sequestration were compared by using economics principle. And based on a case study of four CDM carbon sinks reforestation projects of southwestern China, cost dynamic changes of carbon sequestration under the CDM projects and the different afforestation models in tCER and lCER were explored. This study is helpful to choice more reasonable afforestation measures of main plantation species, and to provide scientific basis on reducing cost-benefit uncertainty of carbon sequestration, and meanwhile to provide reference for implement feasibility and periodic monitoring, verification and certification of CDM project. The main research results were as follows:
     1. Carbon spatial distribution and cost-benefit changes of Cunninghamia lanceolata plantations under different afforestation measures
     As the stand age increased of Cunninghamia lanceolata under afforestation measures, Arbor layer carbon and net present value of benefit increased, but present value of cost decreased. The sequences of carbon cost present value of different afforestation measures were: no fertilization < fertilization, thinning < no thinning, and full reclamation < no reclamation, and net present value of benefit was contrast with the cost present value.
     Total carbon sequestration was respectively 157.86 tC·hm~(-2) and 143.74 tC·hm~(-2) of 15-year-old Cunninghamia lanceolata under fertilization and no fertilization, of which arbor layer accounted for 41.26% and 36.67%, understory vegetation layer accounted for 3.50% and 2.43 %, litter layer accounted for 1.67% and 1.16%, soil layer accounted for 56.14% and 59.73%. The annual net carbon sequestration was separately 4.62 tC·hm~(-2)·a~(-1) and 3.86 tC·hm~(-2)·a~(-1). The present value of carbon sequestration cost was in turn 220.1$·(t C)~(-1) and 210.0$·(t C)~(-1)at 15-year-old, and the net present value of benefit was respectively 370.9$·(t C)~(-1) and 371.9$·(t C)~(-1).
     Total carbon sequestration was respectively 150.41 tC·hm~(-2) and 146.92 tC·hm~(-2) of Cunninghamia lanceolata under thinning (16-year-old) and no thinning (15-year-old), of which arbor layer accounted for 44.44% and 27.31%, understory vegetation layer accounted for 2.77% and 0.42%, litter layer accounted for 3.08% and 5.99%, soil layer accounted for 49.71% and 66.28%. The annual net carbon sequestration was separately 4.73 tC·hm~(-2)·a~(-1) and 3.30 tC·hm~(-2)·a~(-1). The present value of carbon sequestration cost was in turn 236.9$·(t C)~(-1) and 319.0$·(t C)~(-1) at 15-year-old, and the net present value of benefit was respectively 302.7$·(t C)~(-1) and 266.8$·(t C)~(-1).
     Total carbon sequestration was respectively 135.78 tC·hm~(-2) and 129.49 tC·hm~(-2) of 6-year-old Cunninghamia lanceolata under full reclamation and no reclamation, of which arbor layer accounted for 15.02% and 12.67%, understory vegetation layer accounted for 10.80% and 8.65% , soil layer accounted for 74.19% and 78.69%. The present value of carbon cost was in turn 403.9$·(t C)~(-1) and 474.7$·(t C)~(-1) at 6-year-old, and the net present value of benefit was respectively 223.6$·(t C)~(-1) and 152.8$·(t C)~(-1).
     2. Carbon spatial distribution and cost-benefit changes of Pinus massoniana plantations under different afforestation measures
     While the stand age increased of Pinus massoniana under afforestation measures, Arbor layer carbon and net present value of benefit increased, but present value of cost decreased and net present value of benefit under different thinning intensity decreased at certain stand age. The sequences of carbon cost present value of different afforestation measures were: no fertilization < fertilization, controlled burning < no burning, and control < different thinning, and net present value of benefit was contrast with the cost present value.
     Total carbon sequestration was respectively 141.31 tC·hm~(-2) and 121.39 tC·hm~(-2) of 9-year-old Pinus massoniana under fertilization and no fertilization, of which arbor layer accounted for 45.71% and 40.15%, understory vegetation layer accounted for 1.27% and 0.75%, litter layer accounted for 1.73% and 2.74%, soil layer accounted for 51.30% and 56.36%. The annual net carbon sequestration was separately 7.65 tC·hm~(-2)·a~(-1) and 5.89 tC·hm~(-2)·a~(-1). The present value of carbon sequestration cost was in turn 188.3$·(t C)~(-1) and 177.8$·(t C)~(-1) at 9-year-old, and the net present value of benefit was respectively 139.9$·(t C)~(-1) and 170.6$·(t C)~(-1).
     Total carbon sequestration was respectively 116.19 tC·hm~(-2) and 149.43 tC·hm~(-2) of Pinus massoniana under controlled burning (13-year-old) and no burning (8-year-old), of which arbor layer accounted for 41.78% and 9.76%, understory vegetation layer accounted for 2.96% and 5.72%, litter layer accounted for 2.51% and 0.60%, soil layer accounted for 52.75% and 83.92%. The present value of carbon sequestration cost was in turn 393.4$·(t C)~(-1) and 511.6$·(t C)~(-1) at 8-year-old, and the net present value of benefit was respectively -52.7$·(t C)~(-1) and ~(-1)65.0$·(t C)~(-1).
     Total carbon sequestration was in sequence of 235.76 tC·hm~(-2), 239.37 tC·hm~(-2), 237.97 tC·hm~(-2) and 229.74 tC·hm~(-2) of 25-year-old Pinus massoniana under intensity, intermediate, mild thinning and control, of which arbor layer accounted for 51.29%, 50.66%, 52.20% and 47.22%, understory vegetation layer accounted for 1.65%, 1.64%, 2.05% and 2.13%, litter layer accounted for 1.74%, 1.98%, 1.49% and 2.12%, soil layer accounted for 45.33%, 45.72%, 44.26% and 48.53%. The annual net carbon sequestration was in turn 5.16 tC·hm~(-2)·a~(-1), 5.20 tC·hm~(-2)·a~(-1), 5.31 tC·hm~(-2)·a~(-1) and 4.73 tC·hm~(-2)·a~(-1). The present value of carbon sequestration cost was in sequence of 111.0$·(t C)~(-1), 103.4$·(t C)~(-1), 96.2$·(t C)~(-1) and 106.1$·(t C)~(-1) at 25-year-old, and the net present value of benefit was respectively 195.8$·(t C)~(-1), 211.1$·(t C)~(-1), 213.5$·(t C)~(-1) and 244.4$·(t C)~(-1).
     3. Carbon spatial distribution and cost-benefit changes of Eucalyptus plantations under different afforestation measures
     While the stand age increased of Eucalyptus under afforestation measures, Arbor layer carbon and net present value of benefit increased, but present value of cost decreased and net present value of benefit under different levels of fertilization decreased at certain stand age. The sequences of carbon cost present value of different afforestation measures were: fertilization < no fertilization, fertilization III < other fertilization levels, and net present value of benefit was contrast with the cost present value.
     Total carbon sequestration was respectively 83.44 tC·hm~(-2) and 74.53 tC·hm~(-2) of Eucalyptus under fertilization (3-year-old) and no fertilization (6-year-old), of which arbor layer accounted for 35.58% and 15.82%, understory vegetation layer accounted for zero and 9.12%, litter layer accounted for 2.03% and zero, soil layer accounted for 62.39% and 75.06%. The present value of carbon sequestration cost was in turn 361.9$·(t C)~(-1) and 2549.3$·(t C)~(-1) at 3-year-old, and the net present value of benefit was respectively 515.5$·(t C)~(-1) and ~(-1)676.3$·(t C)~(-1).
     Total carbon sequestration was in sequence of 227.84 tC·hm~(-2), 232.19 tC·hm~(-2) and 216.56 tC·hm~(-2) of 16-year-old Eucalyptus under different fertilization levels (I, II, III), of which arbor layer accounted for 72.32%, 65.75% and 68.25%, understory vegetation layer accounted for 0.17%, 0.95%, and 0.79%, litter layer accounted for 1.09%, 1.32%, and 1.79%, soil layer accounted for 26.42%, 31.97%, and 29.17%. The annual net carbon sequestration was in turn 10.48 tC·hm~(-2)·a~(-1), 9.87 tC·hm~(-2)·a~(-1) and 9.59 tC·hm~(-2)·a~(-1). The present value of carbon sequestration cost was in sequence of 183.2$·(t C)~(-1), 181.5$·(t C)~(-1) and 164.3$·(t C)~(-1) at 16-year-old, and the net present value of benefit was respectively 416.7$·(t C)~(-1), 426.0$·(t C)~(-1) and 429.8$·(t C)~(-1).
     4. The effects of clear cutting and burning on stand carbon sequestration of Cunninghamia lanceolata and Pinus massoniana
     The effect of clear cutting on biomass carbon of Cunninghamia lanceolata is more obvious than Pinus massoniana; and two tree species had separately a loss of 63.97% and 46.45% of biomass carbon. Controlled burning had greater influence on biomass carbon of Pinus massoniana, which had a loss of 27.42%, but Cunninghamia lanceolata had a loss of 9.49% of biomass carbon. Meanwhile, two stand types were reduced of humus layer carbon sequestration by controlled burning, and it was not obvious to the soil part under the humus layer.
     5. Carbon cost changes of four CDM afforestation and reforestation projects
     The tCER costs of four CDM projects were decreased gradually, and lCER costs of the projects were increased after reducing under the entire project period. The order of tCER costs of four projects: Multiple-purposes reforestation on degraded lands in Longyang, Yunnan > Afforestation and reforestation on degraded lands in Northwest Sichuan > Reforestation on degraded lands in Northwest Guangxi > Facilitating reforestation for Guangxi watershed management in Pearl River Basin. The lCER costs of multiple-purposes reforestation on degraded lands in Longyang and reforestation on degraded lands in Northwest Guangxi were higher than other two CDM projects. The tCER costs were equal to lCER costs of four projects at the end of the first commitment period, and tCER costs were less than lCER cost at the end of other commitment periods.
     The tCER and lCER costs of different afforestation models on four CDM carbon projects at the end of the commitment periods were as follows: The costs of Liquidambar formosana + Cunninghamia lanceolata and Liquidambar formosana + Pinus massoniana were higher than Pinus massoniana + Schima superba and Pinus massoniana + Quercus sp., and Eucalyptus was lowest in facilitating reforestation for Guangxi watershed management in Pearl River Basin; The cost of Cunninghamia lanceolata was higher than others, and Eucalyptus was lowest in Reforestation on degraded lands in Northwest Guangxi; The cost of Picea asperata was higher than others, and Poplus szechuanica was lowest in afforestation and reforestation on degraded lands in Northwest Sichuan; Pinus armandi was higher carbon cost than others, and Pinus yunnanensis + Pinus khasya was lowest in multiple-purposes reforestation on degraded lands in Longyang.
     The sensitivity of carbon cost-benefit was analyzed through single-factor analysis. Carbon sequestration per unit area was a greater impact on the carbon cost present value and timber selling price was more sensitivity to the benefit net present value, when it was fluctuated separately±30% of carbon sequestration per unit area, the cost of afforestation, land rent and selling price of wood.
引文
财政部注册会计师考试委员会办公室.财务成本管理.北京:经济科学出版社,2004
    陈广生,田汉勤.土地利用/覆盖变化对陆地生态系统碳循环的影响.植物生态学报,2007,31(2):189-204
    陈华,徐振邦.长白山红松针阔混交林倒木站杆树种组成和储量的调查.生态学杂志,1991,11(1):17-22
    陈华,徐振邦.粗死木质物残体生态研究历史、现状和趋势.生态学杂志,1991,109(1):45-50
    陈灵芝,黄建辉,严昌荣.中国森林生态系统养分循环.北京:气象出版社,1997
    陈少雄,李志辉,李天会等.不同初植密度的桉树人工林经济效益分析.林业科学研究,2008,21(1):1-6
    陈先刚,张一平,詹卉.云南退耕还林工程林木生物质碳汇潜力.林业科学,2008,44(5):24-30
    代力民,徐振邦,陈华.阔叶红松林倒木贮量的变化规律.生态学报,2000,20(3):412-416
    邓红兵,肖宝英,代力民等.溪流粗木质残体的生态学研究进展.生态学报,2002,22(1):87-93
    丁贵杰,严仁发,齐新民.不同种源马尾松造林效果及经济效益对比分析.林业科学,1994,30(6):506-512
    董鸣.陆地生物群落调查观测与分析.北京:中国标准出版社,1997,152-153
    方乐金,张运斌.杉木幼林地土壤肥力变化研究.土壤学报,2003,40(2):316-319
    方晰,田大伦,项文化.速生阶段杉木人工林碳素密度、贮量和分布.林业科学,2002,38(3):14-19
    冯祥锦,黄和亮,陈蕾.工业人工林投资经济效果评价应注意的若干问题.林业经济问题,2005,25(1):57-59
    冯宗炜,王效科,吴刚.中国森林生态系统的生物量和生产力.北京:科学出版社,1999
    郭浩,王兵,马向前等.中国油松林生态服务功能评估.中国科学C辑:生命科学,2008,38(6):565-572
    国家林业局.国家森林资源连续清查技术规定.2004 , [EB/OL]. [2005-07-10]. http://www.lknet.forestry.ac.cn/lybz.htm
    何英.森林固碳估算方法综述.世界林业研究,2005,18(1):22-27
    和爱军.浅析日本的森林公益机能经济价值评价CAF&ITTO森林环境价值核算国际研讨会论文集.北京:中国林业出版社,2001
    侯平,潘存德.森林生态系统中的粗死木质残体及其功能.应用生态学报,2001,12(2):309-314
    侯元兆,张佩昌,王琦.中国森林资源核算研究.北京:中国林业出版社,1995,134-136
    黄和亮,吴景贤,许少洪等.桉树工业原料林的投资经济效益与最佳经济轮伐期.林业科学,2007,43(6):128-133
    靳芳,鲁绍伟,余新晓等.中国森林生态系统服务功能及其价值评价.应用生态学报,2005,16(8):1531-1536
    
    景贵和,周人龙,徐樵利.综合自然地理学.北京:高等教育出版社,1989
    李金昌,姜文来,靳乐山等.生态价值论.重庆:重庆大学出版社1999,158-159
    李陵浩,党高第,汪铁军等.秦岭巴山冷杉林粗死木质残体研究.植物生态学报,1998,22(5):434-440
    李陵浩,邢雪荣,黄大明等.武夷山甜槠林粗死木质残体的储量、动态及其功能评述.植物生态学报,1996,20(2):132-143
    李意德,吴仲民,曾庆波等.尖峰岭热带山地雨林生态系统碳平衡的初步研究.生态学报,1998,18(4):371-378
    李意德,曾庆波,吴仲民等.我国热带天然林植被C贮存量的估算.林业科学研究,1998,11(2):156-162
    廖瑞琪,韦喜华,扬建林等.尾叶桉工业原料林经济成熟研究.林业经济问题,1996,54(4):54-59
    廖瑞祺.来宾县桉树造林成本分析及债务偿还能力评价.林业经济问题,2000,20(1):47-50
    刘国华,傅伯杰,方精云.中国森林碳动态及其对全球碳平衡的贡献.生态学报,2000,20(5):733-740
    刘文耀,谢寿昌,谢克金等.哀牢山中山湿性常绿阔叶林凋落物和粗死木质物的初步研究.植物学报,1995,37(10):807-814
    陆钊华,徐建民,韩超等.南方桉树人工林雨雪冰冻经济损失评估与分析.林业科学,2008,44(11):36-41
    吕爱锋,田汉勤,刘永强.火干扰与生态系统的碳循环.生态学报,2005,25(10):2734-2743
    吕爱锋,田汉勤.气候变化、火干扰与生态系统生产力.植物生态学报,2007,31(2):242-251
    吕超群,田汉勤,黄耀.陆地生态系统氮沉降增加的生态效应.植物生态学报,2007,31(2):205-218
    栾军伟,向成华,骆宗诗等.森林土壤呼吸研究进展.应用生态学,2006,17(12):2451-2456
    马明东,江洪,刘跃建.楠木人工林生态系统生物量、碳含量、碳贮量及其分布.林业科学,2008,44(3):34-39
    莫江明,薛璟花,方运霆.鼎湖山主要森林植物凋落物分解及其对N沉降的响应.生态学报,2004,24(7):1413-1420
    欧阳志云,王效科,苗鸿.中国陆地生态系统服务功能及其生态经济价值的初步研究.生态学报,1999,19(5):607-613
    欧阳志云,赵同谦,赵景柱等.海南岛生态系统生态调节功能及其生态经济价值研究.应用生态学报,2004,15(8):1395-1402
    潘辉.不同林地清理方式对巨尾桉林地生产力的影响.福建林学院学报,2003,23(4):312-316
    潘维侍,田大伦.森林生态系统第一性生产量的测定技术与方法.湖南林业科学,1981,2:1-12
    彭建,王仰麟,陈燕飞等.城市生态系统服务功能价值评估初探—以深圳市为例.北京大学学报(自然科学版),2005,41(4):594-604
    任志远,李晶.陕南秦巴山区植被生态功能的价值测评.地理学报,2003,58(4):503-511
    
    盛炜彤,范少辉.杉木人工林长期生产力保持机制研究.北京:科学出版社,2005
    宋磊.利用世行贷款致力绿化造林.国际经济合作,2003,(2):18-21
    唐旭利,周国逸,周霞等.鼎湖山季风常绿阔叶林粗死木质残体的研究.植物生态学报,2003,27(4):484-489
    唐旭利,周国逸.南亚热带典型森林演替类型粗死木质残体贮量及其对谈循环的潜在影响.植物生态学报,2005,29(4):559-568
    田大伦.杉木林生态系统定位研究方法.北京:科学出版社,2004,311-314
    王效科,冯宗炜,欧阳志云.中国森林生态系统的植物碳储量和碳密度研究.应用生态学报,2001,12(1):13-16
    王周绪,姜全飞.中国林业行业基准贴现率研究.林业经济,2006,(6):39-44
    魏平,温达志,黄忠良等.鼎湖山季风常绿阔叶林死木生物量及其特征.生态学报,1997,17(5):505-510
    吴庆标,王效科,段晓男等.中国森林生态系统植被固碳现状和潜力.生态学报,2008,28(2):517-524
    吴淑岱.联合国气候变化框架公司.北京:中国环境出版社,1994
    武曙红,张小全,李俊清.CDM林业碳汇项目的泄露问题分析.林业科学,2006,42(2):98-104
    武曙红,张小全,李俊清.CDM造林或再造林项目的基线问题.林业科学,2006,42(4):112-116
    肖复明,范少辉,汪思龙等.毛竹、杉木人工林生态系统碳贮量及其分配特征.生态学报,2007,27(7):2794-2801
    肖寒,欧阳志云,赵景柱等.森林生态系统服务功能及其生态经济价值评估初探—以海南岛尖峰岭热带森林为例.应用生态学报,2000,11(4):481-484
    肖寒.区域生态系统服务功能形成机制与评价方法研究.北京:中国科学院生态环境研究中心,2001
    许志晖,丁登山.南昆山国家自然保护区生态系统服务功能价值评估.经济地理,2006,26(4):677-680
    薛达元,包浩生,李文华.长白山自然保护区森林生态系统间接经济价值评估.中国环境科学,1999,19(3):247-252
    薛达元.生物多样性经济价值评估—长白山自然保护区案例研究.北京:中国环境科学出版社,1997
    闫恩荣,王希华,黄建军.森林粗死木质残体的概念及其分类.生态学报,2005,25(1):158-167
    杨金艳,赵惠勋,王传宽.森林对氮饱和的响应.应用与环境生物学报,2004,10(4):507-511
    杨丽君,宋光辉,李长河等.采用甜杨良种造林的经济效益分析.防护林科技,2007,(5):86-87
    杨丽韫,代力民,张扬建.长白山北坡暗针叶林倒木贮量和分解的研究.应用生态学报,2002,13(9):1069-1071
    杨玉盛.谈杉木营林制度与水土流失.1993,福建水土保持,(4):1-5
    殷永元,王桂新.全球气候变化评估方法及其应用.北京:高等教育出版社,2004
    余新晓,鲁绍伟,靳芳等.中国森林生态系统服务功能价值评估.生态学报,2005,25 (8):2096-2102
    余新晓,秦永胜,陈丽华等.北京山地森林生态系统服务功能及其价值初步研究.生态学报,2002,22 (5):783-786
    张国斌,刘世荣,张远东等.岷江上游亚高山暗针叶林的生物量碳密度.林业科学,2008,44(1):1-6
    张先仪.整地方式对水土保持及杉木幼林生长的影响研究.林业科学,1986,22(3):225-231
    张小全,武曙红.中国CDM造林再造林项目指南.北京:中国林业出版社,2006
    张颖.中国森林生物多样性价值核算研究.林业经济,2001,(3):37-42
    章明奎,徐建明.造林方式对红壤养分流失和肥力质量的影响.浙江大学学报(农业与生命科学版),2000,26(6):649-652
    赵敏,周广胜.中国森林生态系统的植物碳储量及其影响因子分析.地理学报,2004,24(1):50-54
    赵同谦,欧阳志云,郑华等.中国森林生态系统服务功能及其价值评价.自然资源学报,2004,19(4):480-491
    赵秀海,代力民,杨丽韫.粗木质残体研究动态.吉林林学院学报,2000,16(1):1-4
    中国生物多样性国情研究报告编写组.中国生物多样性国情研究报告.北京:中国环境科学出版社,1997
    周玉荣,于振良,赵士洞.我国主要森林生态系统碳贮量和碳平衡.植物生态学报,2000,24(5):518-522
    Amiro B D, MacPherson J I, Desjardins R L. BOREAS flight measurements of forest-fire effects on carbon dioxide and energy fluxes. Agricultural and Forest Meteorology, 1999, 96: 199-208
    Amiro B D, MacPherson J I, Desjardins R L, et al. Post-fire carbon dioxide fluxes in the western Canadian boreal forest:evidence from towers,aircraft and remote sensing.Agricultural and Forest Meteorology, 2003, 115: 91-107
    Andersson M, Michelsen A, Jensen M, et al. Tropical savannah woodland: effects of experimental fire on soil microorganisms and soil emissions of carbon dioxide. Soil Biology and Biochemistry, 2004, 36: 849-858
    Bacilli, M.J., Mendelsohn, L. Assessing the economic value of traditional medians from tropical rain forest. Conservation Biology, 1992, 6: 128-130
    Bass S, Dubois O, Moura Costa P, et al. Rural livelihood and carbon management. IIED Natural Resources Issues Paper No.1. London: IIED. 2000
    Bjorklund J, Limburg K, Rydberg T. Impact of production intensity on the ability of the agricultural land scape to generate ecosystem services: an example from Sweden. Ecological Economics, 1999, 29: 269-291
    Bolund P, Hunhammar S. Ecosystem services in urban areas. Ecological Economics, 1999, 29: 293-301
    Bond-Lamberty B, Wang C, Gower S T. Net primary production and net ecosystem production of a boreal black spruce wildfire chronosequence. Global Change Biology, 2004, 10: 473-487
    Borken W, Muhs A, Beese F. Application of compost in spruce forests: Effects on soil respiration, basal respiration and microbial biomass. Forest Ecology and Management, 2002, 159: 49-58
    Bowden R D, Davidson E, Savage K, et al. Chronic nitrogen additions reduce total soil respiration and microbial respiration in temperate forest soils at the Harvard Forest. Forest Ecology and Management, 2004, 196: 43-56
    Brais S, David P, Ouimet R. Impacts of wild fire severity and salvage harvesting on the nutrient balance of jack pine and black spruce boreal stands. Forest Ecology and Management, 2000, 137: 231-243
    Brown S. Measuring carbon in forests: current status and future challenges. Environmental Pollution, 2002, 116: 363-372
    Cacha M D M. Starting resource accounting in protected areas. In: Munasinghe M, McNeely J. (Eds.), Protected Area Economics and Policy. IUCN, Cambridge, 1994, 151-157
    Chen X G, Zhang X Q, Zhang Y P, et al. Carbon sequestration potential of the stands under the Grain for Green Program in Yunnan Province, China. Forest Ecology and Management,(2008),doi: 10.1016/j.foreco.2008.07.010
    Chladna Z. Determination of optimal rotation period under stochastic wood and carbon prices. Forest Policy and Economics, 2007, 9(8): 1031-1045
    Chopra, K. The value of non-timber forest products: an estimation for tropical deciduous forests in India. Economic Botany, 1993, 47:251-257
    Christensen N L. The effect of fire on physical and chemical properties of soil in Mediterranean-climate shrubland. In: Moreno J M, Oechel W C. The Role of Fire in Mediterranean-type Ecosystems. Ecological Studies, 1994, 79-95
    Costanza R, Arge R, Groot R, et al. The value of the world’s ecosystem services and natural capital. Nature, 1997, 387(15): 253-260
    Currie W S. The responsive C and N biogeochemistry of the temperate forest floor. Trends in Ecology and Evolution, 1999, 14: 316-320
    Currie W S, Jadelhoffer K N. The imprint of land use history: patterns of carbon and nitrogen in downed woody debris at the Harvard forest. Ecosystems, 2002, 5: 446-460
    De Vries W, Reinds G J, Gundersen P, et al. The impact of nitrogen deposition on carbon sequestration in European forests and forest soils. Global Change Biology, 2006, 12: 1151-1173
    Delaney M, Brown S, Lugo A E, et al. The quantity and turnover of dead wood in permanent forest in six life zones of Venezuela. Biotropica, 1998, 30: 2-11
    Dixon J A, Scura T, Van’t H. Meeting ecological and economic goals: marine parks in the Caribbean. Ambio, 1993, 22(2~3): 117-125
    Dixon R K, Brown S, Houghton R A, et al. Carbon pools and flux of global forest ecosystems. Science, 1994, 263: 185-190
    Fang J Y,Chen A P,Peng C H, et al. Changes in forest biomass carbon storage in China between 1949 and 1998.Science, 2001, 292: 2320-2322
    Field C B, Chapin F S, Matson P A, et al. Responses of terrestrial ecosystems to the changing atmosphere: a resource-based approach. Annual Review of Ecology and Systematics, 1992, 23: 201-235
    Fioretto A, Papa S, Aniello M, et al. Microbial activities in burned and unburned soils in a low shrub-land ecosystem. In: Trabaud L, Prodon R eds. Fire and Biological Processes. Backhuys Publishers, Leiden, the Netherlands, 2002, 151-162
    Freibauer A, Hohenstein W, Makundi W, et al. LUCF Sector Good Practice Guidance. In: IPCC Good Practice Guidance for LULUCF. The Institute for Global Environmental Strategies (IGES) for the IPCC, Hayama, Kanagawa, Japan, 2004, 3.1-3.317
    Gifford R M, Lutze J L, Barrett D. Global atmospheric change effects on terrestrial carbon sequestration: exploration with a global C- and N-cycle model. Plant and Soil, 1996, 187: 369-387
    Gower S T, McMurtrie R E, Murty D. Aboveground net primary production decline with stand age: potential causes. Trends in Ecology and Evolution, 1996, 11: 378-382
    Gren I M, Groth K H, Sylven M. Economic values of Danube floodplains. Journal of Environmental Management, 1995, 45: 333-345
    Guo Z W, Xiao X M, Gan Y L, et al. Ecosystem functions, services and their values-A case study in Xingshan County of China. Ecological Economics, 2001, 38: 141-154
    Harmon M E, Franklin J F, Swanson F J, et al. Ecology of coarse woody debris in temperate ecosystems. Advances in Ecological Research, 1986, 15: 133-302
    Harmon M E, Chen H. Coarse woody debris dynamics in two old-growth ecosystem comparing a deciduous forest in China and a conifer forest in Oregon. BioScience, 1991, 41: 604-610
    Herbert D A, Williams M, Rastetter E B. A model analysis of N and P limitation on carbon accumulation in Amazonian secondary forest after alternate land-use abandonment. Biogeochemistry, 2003, 65: 121-150
    Hicke J A, Asner G P, Kasischke E S, et al. Postfire response of North American boreal forest net primary productivity analyzed with satellite observations. Global Change Biology, 2003, 9: 1145-1157
    Holland E A, Braswell B H, Lamarque J F, et al. Variations in the predicted spatial distribution of atmospheric nitrogen deposition and their impact on carbon uptake by terrestrial ecosystems. Journal of Geophysical Research, 1997, 102: 849-866
    Holmund C, Hammer M. Ecosystem services generate by fish population. Ecological Economics, 1999, 29: 253-268 Hudson R J M, Gherini S A, Goldstein R A. Modeling the global carbon cycle: nitrogen fertilization of the terrestrial biosphere and the“missing”CO2 sink. Global Biogeochemical Cycles, 1994, 8: 307-333
    Hyde W F, Kanel K R. The marginal cost of endangered species management. In: Munasinghe M, McNeely J. (Eds.), Protected Area Economics and Policy. IUCN, Cambridge, 1994, 171-180
    Ian, B. Placing money values on the unpriced benefits of forest. Quarterly Journal of Forestry, 1991, 85(3): 152-165 IPCC. Working Group III Report“Mitigation of Climate Change”: Forestry. UK: Cambridge University Press, 2007, 9: 549-551
    Jenkinson D S, Goudling K, Powlson D S, et al. Nitrogen deposition and carbon sequestration. Nature, 1999, 400: 629-630
    Johnson D W. Nitrogen retention in forest soils. Journal of Environmental Quality, 1992, 21: 1-12
    Johnson D W, Curtis P S. Effects of forest management on soil C and N storage: meta analysis. Forest Ecology and Management, 2001, 140: 227-238
    Kasischke E S, Christensen N L, Stocks B J. Fire, global warming, and carbon balance of boreal forest. Ecological Applications, 1995, 5: 437-451
    Kasischke E S, French N H F. Constraints on using AVHRR composite index imagery to study patterns of vegetation cover in boreal forests. International Journal of Remote Sensing, 1997, 18: 2403-2426
    Kasischke E S. Boreal ecosystem in the global cycle. In: Kasischke ES, Stocks BJ eds Fire, Climate Change and Carbon Cycling in North American Boreal Forests, Ecological Studies Series. New York: Springer, 2000, 19-30
    Kramer R, Munasinghe M. Valuing a protected tropical forest: a case study in Madagascar. In: MunasingheM, McNeely J. (Eds.), Protected Area Economics and Policy. IUCN, Cambridge, 1994, 191-204
    Laclau P. Biomass and carbon sequestration of ponderosa pine plantations and native cypress forests in northwest Patagonia. Forest Ecology and Management, 2003, 180: 317-333
    Lacy T, Lockwood M. Estimating the nonmarket conservation values of protected landscapes. In: Munasinghe M, McNeely J. (Eds.), Protected Area Economics and Policy. IUCN, Cambridge, 1994, 181-190
    Lee K H, Jose S. Soil respiration, fine root production, and microbial biomass in cottonwood and loblolly pine plantations along a nitrogen fertilization gradient. Forest Ecology and Management, 2003, 185: 263-273
    Levine J S, Coffer W R, Cahoon D R, et al. Biomass burning, biogenic soil emissions, and the global nitrogen budget. In: Levine JS ed. Biomass Burning and Global Change VI. The MIT Press, Cambridge, 1996, 370-380
    Like R, Wang S Q, Zhao S D. Carbon storage in China’s vegetation and soils. Science in China(Series D), 2000, 33(1): 72-80
    Liu J X, Price D T, Chen J M. Nitrogen controls on ecosystem carbon sequestration: a model implementation and application to Sakatchewan, Canada. Ecological Modelling, 2005, 186: 178-195
    Macadam A. Effects of prescribed fire on forest soils. B.C. Ministry of Forests, Smithers, Research Report, 89001-PR, 1989
    Mackensen J, Jügen B. Density loss and respiration rates in coarse woody debris of Pinus radiata, Eucalyptus regnanas and Eucalyptus maculata. Soil Bioligy & Biochemistry, 2003, 35: 177-186
    Magill A H, Aber J D, Currie W S, et al. Ecosystem response to 15 years of chronic nitrogen additions at the Harvard Forest LTER, Massachusetts, USA. Forest Ecology and Management, 2004, 196: 7-28
    M?kip?? R, Karjalainen T, Pussinen A, et al. Effects of nitrogen fertilization on carbon accumulation in boreal forests: Model computations compared with the results of long term fertilization experiments. Chemosphere, 1998, 36: 1155-1160
    Malhi Y, Baldocchi D D, Javis P G. The carbon balance of tropical, temperate and forests. Plant, Cell and Environment, 1999, 22: 715-740
    Martin D A, Moody J A. Comparison of soil infiltration rates in burned and unburned mountainous watersheds. Hydrological Process, 2001, 15: 2893-2903
    McKenney D W, Yemshanov D, Fox G, et al. Cost estimates for carbon sequestration from fast growing poplar plantations in Canada. Forest Policy and Economics, 2004, 6(3-4): 345-358
    McNeely J A. Economic incentives for conserving: lessons for Africa. Ambio, 1993, 22 (2-3): 144-150
    Melillo J M, Gosz J R. Interaction of biogeochemical cycles in forest ecosystems. In: Bolin B, Cook RB eds. The
    Major Biogeochemical Cycles and Their Interactions. John Wiley & Sons, Chichester, UK, 1983, 177-222
    Mendham D S, O’Connell A M, Grove T S. Change in soil carbon after land clearing or afforestation in highly weathered lateritic and sandy soils of south-western Australia. Agriculture, Ecosystems & Environment, 2003, 95(1): 143-156
    Meyer G A, Pierce J L, Wood S H, et al. Fire, storms, and erosional events in the Idaho batholith. Hydrological Processes, 2001, 15: 3025-3038
    Micks P, Aber J D, Boone R D, et al. Carbon stocks, soil and nitrogen immobilization response to nitrogen applications in control and nitrogen-enriched temperate forests. Forest Ecology and Management, 2004, 196: 57-70
    Muller R N, Liu Y. Coarse woody debris in an old-growth deciduous forest on the Cumberland Plateau, southeastern Kentucky. Canadian Journal of Forest Research, 1991, 21: 1567-1572
    Munasinghe M. Biodiversity protection policy: environmental valuation and distribution issues. Ambio, 1992, 21(3): 227-236
    Munasinghe M. Economic and policy issues in natural habitats and protected areas. In: Munasinghe M, McNeely J. (Eds.), Protected Area Economics and Policy. IUCN, Cambridge, 1994, 15-49
    Myers N. The greenhouse effect: a tropical forestry response. Biomass, 1990, 18: 73-78
    Nabuurs G J, Dolman A J, Verkaik E, et al. Article 3.3 and 3.4 of the Kyoto Protocol: Consequences for industrialized countries’commitment, the monitoring needs, and possible side effects. Environmental Science & Policy, 2000, 3: 123-134
    Nadelhoffer K J, Emmet B A, Gundersen P, et al. Nitrogen deposition makes a minor contribution to carbon sequestration in temperate forests. Nature, 1999, 398: 145-148
    Neary D G, Klopatek C C, DeBano L F, et al. Fire effects on belowground sustainability: a review and synthesis. Forest Ecology and Management, 1999, 122: 51-71
    Neff J C, Townsend A R, Gleixner G, et al. Variable effects of nitrogen additions on the stability and turnover of organic carbon. Nature, 2002, 419: 915-917
    O’Neill K P, Kasischke E S, Richter D D. Seasonal and decadal patterns of soil carbon uptake and emissionalong an age sequence of burned black spruce stands in interior Alaska.Journal of Geophysical Research, 2003, 108: 8155-8170
    Ogee J, Brunet Y A. Forest floor model for heat and moisture including a litter layer. Journal of Hydrology, 2002, 255: 212-233
    Pardini G, Gispert M, Dunjo G. Relative influence of wildfire on soil properties and erosion processes in different Mediterranean environments in NE Spain. Science of the Total Environment, 2004, 328: 237-246
    Pearce D, Moran D. The Economic Value of Biodiversity. IUCN, Cambridge, 1994
    Perrings C, Folke C, Maeler K G. The ecology and economics of biodiversity loss: The research agenda. Ambio, 1992, 21(3): 201-211
    Peters C M, Gentry A H, Mendelsohn R O. Valuation of an Amazonian rainforest. Nature, 1989, 339(29): 655-656
    Peterson E B, Peterson N M. Aspen managers handbook for British Columbia. Canadian Forest Service and B. C. Ministry of Forest, Victoria. FRAD Rep.230.1995
    Pimental D, Wilson C, McCullum C. Economic and environmental benefits of biodiversity. Bioscience, 1997, 387: 253-260
    Portey P R, Weyant J P. Discounting and intergenerational equity. Washington DC: Resources for the Future. 1999
    Priess J A, F?lster H. Microbial properties and soil respiration in submontane forests of Venezuelian Guyana: Characteristics and response to fertilizer treatments. Soil Biology & Biochemistry, 2001, 33: 503-509
    Richter D D, O'Neil K P, Kasischke E S. Post-fire stimulation of microbial decomposition in black spruce forest soils: a hypothesis. In: Kasischke E S, Stocks B J. Fire, Climate Change and Carbon Cycling in North American Boreal Forests, Ecological Studies Series, New York: Springer, 2000, 197-213
    Robert K D. Conservation and sequestration of carbon: the potential of forest and agro-forest management practices. Global Environmental Change, 1993, 2: 162-173
    Sampson D A, Waring R H, Maier C A, et al. Fertilization effects on forest carbon storage and exchange and net primary production; a new hybrid process model for stand management. Forest Ecology and Management, 2005, 221: 91-109
    Samuelson L J, Kurt J, Tom S, et al. Intensive management modifies soil CO2 efflux in 6-year-old Pinus taeda L. stands. Forest Ecology and Management, 2004, 200: 335-345
    Sawamoto T, Hatano R, Yajima T, et al. Soil respiration in Siberian taiga ecosystems with different historiesof forest fire. Soil Science and Plant Nutrition, 2000, 46: 31-42
    Schindler D W, Bayley S E. The biosphere as an increasing sink for atmospheric carbon: estimates from increased nitrogen deposition. Global Biogeochemical Cycles, 1993, 7: 717-733
    Schleppi P, Bucher W I, Siegwolf R, et al. 1999. Simulation of increased nitrogen deposition to a montane forest ecosystem: partitioning of the added 15N. Water, Air, & Soil Pollution, 1999, 116: 129-134
    Serafy S. Pricing the invaluable: the value of the world; ecosystem services and natural capital. Ecological Economics, 1998, 25: 25-27
    Song C, Woodcock E C. A regional forest ecosystem carbon budget model: impacts of forest age structure and landuse history. Ecological Modelling, 2003, 164: 33-47
    Sturtevant B R, Bissonette J A, Long J N, et al. Coarse woody debris as a function of age, stand structure, and disturbance in boreal New foundland. Ecological Applications, 1997, 7(2): 702-712
    Thomas A D, Walsh R P D, Shakesby R A. Nutrient losses in eroded sediment after fire in eucalyptus and pine forests in the wet Mediterranean environment of northern Portugal. Catena, 1999, 36: 283-302
    Thomas J G. Balancing atmospheric carbon dioxide. Ambio, 1990, 19(5): 230-236
    Tian H, Melillo J M, Kicklighter D W, et al. The sensitivity of terrestrial carbon storage to historical climate variability and atmospheric CO2 in the United States. Tellus, 1999, 51B: 414-452
    Tian H, Melillo J M, Kicklighter D W, et al. Climatic and biotic controls on annual carbon storage in Amazonian ecosystems. Global Ecology and Biogeography, 2000, 9: 315-336
    Tian H, Melillo J M, Kicklighter D W, et al. Regional carbon dynamics in monsoon Asia and its implications for the global carbon cycle. Global and Planetary Change, 2003, 37: 201-217
    Titus D B. Using tropical forest to fix atmospheric carbon: the potential in theory and practice. Ambio, 1992, 21(6): 414-419
    Tobias D, Mendelsohn R. Valuing eco-tourism in a tropical rainforest reserve. Ambio, 1991, 20: 91-93
    Townsend A R, Braswell B H, Holland E A, et al. Spatial and temporal patterns in terrestrial carbon storage due to deposition of anthropogenic nitrogen. Ecological Applications, 1996, 6: 806-814
    UNFCCC. Decision 11/CP.7: Land use change and forestry. In: Report of the conference of the parties on its seventh session, held at Marrakesh from 29 October to 10 November 2001, Addendum: Part two:Action taken by the conference of the parties, Volume I. FCCC/CP/2001/13/Add.1, 2001, 54-63
    UNFCCC. Kyoto Protocol to the United Nations Framework Convention on Climate Change. 1997.[EB/OL]. [2008-06-12]. http://unfccc. Int/resource
    Valentina C T, Justus W, Nesci F S. Diverging incentives for afforestation from carbon sequestration: an economic analysis of the EU afforestation program in the south of Italy. Forest Policy and Economics, 2004, 6: 567-578
    Van Kooten G C, Binkley C S, Delcourt G. Effect of carbon taxes and subsidies on optimal forest rotation age and supply of carbon services. American Journal of Agricultural Economics, 1995, 77: 365-374
    Vestgarden L S. Carbon and nitrogen turnover in the early stage of Scots pine needle litter decomposition: Effects of internal and external nitrogen. Soil Biology & Biochemistry, 2001, 33: 465-474
    Wang C, Ouyang H, Maclaren V, et al. Evaluation of the economic and environmental impact of converting cropland to forest: A case study in Dunhua county, China. Journal of Environmental Management, 2007, 85(3): 746-756
    Wang X K, Feng Z W, Ouyang Z Y. The impact of human disturbance on vegetative carbon storage in forest ecosystems in China. Forest Ecology and Management, 2001, 148: 117-123
    White P C L, Gregory K W, Lindsey P J, et al. Economic Values of threatened mammals in Britain: a case study of the Otter lutra lutra and the water vole Arvicola terrestris. Biological Conservation, 1997, 82: 345-354
    Wiseman P E, Seiler J R. Soil CO2 efflux across four age classes of plantation loblolly pine on the Virginia Piedmont, Forest Ecology and Management, 2004, 192: 297-311
    Wondzell S M, King J G. Post-fire erosional processes in the Pacific Northwest and Rocky Mountain region. Forest Ecology and Management, 2003, 178: 75-87
    Wüthrich C, Schaub D, Weber M, et al. Soil respiration and soil microbial biomass after fire in a sweet chestnut forest in southern Switzerland, Catena, 2002, 48: 201-215
    Xu D Y. The potential for reducing atmospheric carbon by large-scale afforestation in China and related cost/benefit analysis.Biomass and Bioenergy, 1995, 8(5): 337-344
    Zhang X Q, Xu D Y. Potential carbon sequestration in China’s forests. Environmental Science and Policy, 2003, 6(5): 421-432
    Zhang X Q, Kirschbaum M U F, Hou Z H, et al. Carbon stock changes in successive rotations of Chinese Fir plantations. Forest Ecology and Management, 2004, 202: 131-147
    Zimmmermann S, Frey B. Soil respiration and microbial properties in an acid forest soil: Effects of wood ash. Soil Biology & Biochemistry, 2002, 34: 1727-1737

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700