用户名: 密码: 验证码:
木材动态黏弹性的温度、时间与频率响应机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为深入探讨木材动态黏弹特性,以期为人工林木材高效合理的干燥技术、加工技术以及高性能、高附加值材料的制备与应用提供理论依据和科学指导。本研究采用杉木(Cunninghamia lanceolata [Lamb.] Hook.)人工林木材作为试验材料,系统研究了温度-时间-频率作用下木材动态黏弹性的响应机理。
     本论文包括4个部分的研究内容:①通过测定不同温度下木材线性黏弹区域的临界应变值,得到临界应变值随温度和测量频率变化的信息,并以此作为动态黏弹性能测试参数的选择依据。②通过测定木材在轴向、径向和弦向上的动态黏弹性,考察了木材动态黏弹性的各向异性行为。③系统讨论并分析了木材贮存模量、损耗模量与损耗因子的温度谱、时间谱和频率谱。其中,通过测定动态黏弹性能温度谱,获取木材力学状态与松弛转变行为方面的相关信息。对3种干燥材的动态黏弹行为进行考察,探讨了不同干燥历程对木材结构与性能的影响及其机理;通过测定木材动态黏弹性能时间谱,得到木材的力学状态与松弛转变行为在热作用过程中的经时变化规律;通过测定木材动态黏弹性能频率谱,得到木材的动态刚度与阻尼性质随温度、测量频率的变化情况,并探讨了经历温度急剧变化后木材的动态黏弹行为。④验证并分析了木材时-温等效原理的适用性,通过合成贮存模量和损耗因子主曲线、对水平移动因子与温度的关系曲线进行WLF与Arrhenius模型拟合,讨论了时-温等效原理描述木材动态刚度与阻尼性能的适用性。本论文的主要研究结论归纳如下:
     1.在-120 ~ 220℃范围内的不同恒定温度水平下,木材线性黏弹区域的临界应变值为0.03% ~ 0.19%,临界应变值随温度的升高呈现出减小的变化趋势。在-80、-20、40、120和220℃时,临界应变值的降幅明显增大。临界应变值对温度的响应规律与木材的力学松弛过程有关,且随测量频率的增加而略有减小。
     2.木材轴向试样的贮存模量显著高于横向试样的贮存模量,其中,弦向试样的贮存模量最低。木材轴向、径向和弦向试样出现相似的力学松弛过程,力学损耗峰温度存在明显差异。木材轴向试样的刚度高,但其松弛过程的损耗峰温度却低于刚度较低的横向试样的损耗峰温度,这与许多高聚物复合材料的情况是相悖的。木材的动态黏弹行为依赖于试验所选取的形变模式
     3.在-120 ~ 280℃范围内的匀速升温过程中,木材的贮存模量随温度的升高呈现出减小的变化趋势。在温度升高的方向上依次出现了4个力学松弛过程:①木材细胞壁无定形区中伯醇羟基的回转取向运动与吸着水分子的回转取向运动叠加而成的松弛过程(出现在-100 ~ -80℃温度域);②低分子量的半纤维素发生玻璃化转变引起的松弛过程(出现在0 ~ 40℃温度域);③木质素发生玻璃化转变引起的松弛过程(出现在90℃附近)以及④木材细胞壁无定形聚合物的微布朗运动引起的松弛过程(出现在240℃附近)。力学损耗峰温度随着含水率的增加向低温方向移动。松弛转变行为出现的温度越高,其表观活化能值越大。
     4.不同干燥材之间以及干燥材与对照材之间的动态刚度性质、力学损耗峰温度、力学损耗峰强度以及力学松弛过程的表观活化能均存在明显差异。115℃干燥材动态刚度相对较高,是因为在该干燥过程中,木材细胞壁无定形区发生了结晶化或交联化反应,使得刚度增加。真空冷冻干燥材的动态刚度相对较低,是由于在干燥过程中木材细胞壁在负压作用下发生了一定程度的破坏所致。干燥历程改变了木材对水分子的吸着能力和吸着状态。3种干燥材之间、干燥材与对照材之间动态黏弹行为的差异随含水率的增加逐渐缩小。
     5.在25 ~ 220℃范围内的不同恒定温度水平下,温度和热作用时间主要引起木材出现动态刚度降低、木质素热软化和细胞壁无定形聚合物热降解等一系列现象。升高温度与延长热作用时间对引起木材动态刚度降低是等效的。在140、160和180℃恒温过程的不同时间域内均可观察到木质素的热软化现象,升高温度可以缩短木质素发生玻璃化转变的松弛时间。当温度高于180℃时,木材细胞壁无定形聚合物发生热降解是导致木材黏弹性能发生变化的一个主要因素。
     6.在25 ~ 220℃范围内的不同恒定温度水平下,木材的贮存模量随温度的升高而降低,随测量频率(0.1 ~ 100 Hz)的增加而增大。随着温度的升高,损耗因子的极小值所对应的特征频率值移向高频方向。经历温度急剧变化后,木材的动态刚度降低、阻尼性能增大,木材细胞壁无定形区内形成了不稳定结构,从而加快分子链段运动的松弛过程。
     7.在25 ~ 150℃温度范围内,利用时-温等效原理描述低含水率(约为0.6%)木材的动态刚度性质是适用的,但无法用来预测木材在宽阔频率范围内的松弛转变行为。
In order to investigate the dynamic viscoelasticities of wood, and provide theoretical basis and scientific instructions for drying technology, manufacture processing and high value-added materials of plantation wood, the dynamic viscoelasticity of Chinese fir (Cunninghamia lanceolata [Lamb.]Hook) wood under temperature - time - frequency coupling was systematically investigated in this current study.
     Firstly, the critical strain of wood linear viscoelastic region was determined at different temperatures, therefore, some valuable information concerning the changes of critical strain with temperature and measurement frequency could be obtained. Secondly, the dynamic viscoelastic properties in longitudinal, radial and tangential directions were also investigated, and the differences in wood anisotropic behaviour of viscoelasticity were discussed. Then, this dissertation systematically described and analysed the dynamic mechanical temperature/ time/frequency spectrum of wood. In the investigation of dynamic viscoelastic properties during temperature ramping process, the storage modulus, loss modulus and loss factor of specimens were measured. Thus, the changes of mechanical relaxation behavior during temperature ramping process can be clarified. Furthermore, the dynamic viscoelastic behavior of three kinds of dried wood was also investigated. As a result, the effects of heating/drying history on wood structure and properties were obtained. With respect to the dynamic viscoelastic properties under different constant temperatures, the dynamic mechanical behavior during isothermal processes at various constant temperatures was analyzed. Furthermore, the relationship between dynamic viscoelastic properties of wood over temperature and heating time were obtained. Moreover, the influence of frequency on wood viscoelasticity under two types of heating conditions was also investigated.
     In the investigation of the validity of wood TTSP (Time-Temperature Superposition Principle), a master curve was generated, and the shift factors were analyzed as a function of temperature to evaluate the fit of the data to the WLF equation and Arrhenius relation. As a result, the applicability of TTSP that predicts the stiffness and damping of wood over broad frequency scales were verificated and analyzed.
     The major achievements of this study were summarized as follows:
     1. Under constant temperatures ranged from -120 to 220oC, the critical strain value of linear viscoelastic region are between 0.03% and 0.19%, and it generally reduced with increasing temperature except temperatures of -80, -20, 40, 120 and 220oC. These five exceptions were reasoned by the occurrence of relaxation processes. With the increasing of applied frequency, the critical strain presented a smoothly decreasing tendency.
     2. The specimens oriented parallel to the grain presented the highest storage modulus, and the storage modulus was much lower in the tangential direction than that in the radial direction. Two relaxation processes were observed for all of longitudinal sample (L), radial sample (R) and tangential sample (T). While L, R and T samples differed in loss peak temperatures. The L sample showed a lower loss peak temperature than that for the R and T sample, and it was in conflict with polymer composites where the higher loss peak temperatures were found in the stiffer direction. The rheological properties of wood showed a dependence upon the mechanical modes used during experiments.
     3. During the temperature ramping process at temperature range from -120 to 280oC, the storage modulus decreased with the increase of temperature. Four relaxation processes were detected in this temperature range:①the relaxation process at about -100 to -80oC, which was most probably attributed to the motions of methyl groups in amorphous region of wood cell wall (absolutely dry state) and the motions of absorbed water molecules in wood (water existence state);②the relaxation process at about 0 to 40oC, which was presumably assigned to glass transition of hemicellulose with low molecular weight;③the relaxation process at around 90oC, which was attributed to molecular motion of lignin, and④the relaxation process at around 240oC, which was assigned to micro-Brownian motion of cell-wall polymers in the non-crystalline region. With the increase of moisture content, the loss peak temperatures of relaxation processes shifted to lower temperature range. The apparent activation energy of relaxation process at higher temperature location showed a higher value than that at lower temperature location.
     4. Three kinds of dried wood and control wood differed in the dynamic stiffness properties, the loss peak temperatures, the loss peak density and the apparent activation energy of relaxation processes. 115oC dried wood displayed more stiffness than the other two kinds of dried specimens as well as the untreated wood. It was probably due to the crosslinking action or cellulose crystallization during drying process. Damage to the wood cell walls during the freeze vacuum drying process probably caused the lowest stiffness of vacuum-freeze dried wood. Furthermore, the moisture adsorption capability and adsorption state were altered by different heating/drying history. With increasing moisture content, the differnence in dynamic viscoelastic properties was reduced among dried and control wood.
     5. Under constant temperatures ranged from 25 to 220oC, the temperature and heating time mainly resulted in the reduction of wood stiffness, thermal softening and thermal degradation of wood. Elevation of temperature or prolongation of heating time has the equal effects on wood stiffness. Lignin softening was suggested to be the cause of the relaxation process that appeared at temperatures of 140, 160 and 180oC. The relaxation time for glass transition of lignin could be shortened by elevating temperature. At temperatures above 180oC, the loss of amorphous polysaccharides due to degradation was considered to be the main factor affecting wood viscoelasticity.
     6. Under constant temperatures ranged from 25 to 220oC, storage modulus exhibited lower values at higher temperatures and decreased gradually as frequencies decreased from 100 to 0.1 Hz for specimens acclimated at constant temperatures. The minimum value of the loss factor slightly shifted towards higher frequencies at higher temperatures. After suffered rapid heating process, the dynamic stiffness and damping of wood showed decreasing and increasing, respectively. It was suggested that the unstable structures were formed in the cell walls because of rapid heating and consequently increased the mobility of molecular chains.
     7. The time-temperarture superposition principle (TTSP) could be used effectively to demonstrate frequency-temperature equivalence for the dynamic stiffness property of wood with minor moisture content (about 0.6%) over a temperature range of 25 to 150oC. While it was failed in predicting the relaxation transition behavior of wood over broad frequency scales.
引文
村上谦吉.高分子の化学レオロジ.日本:朝仓书店,1969
    过梅丽.高聚物与复合材料的动态力学热分析.北京:化学工业出版社,2002
    何曼君,陈维孝,董西侠.高分子物理.上海:复旦大学出版社,2000
    蒋佳荔,吕建雄.木材动态粘弹性的含水率依存性.北京林业大学学报,2006a,28(增刊2):118-123
    蒋佳荔,吕建雄,赵广杰.化学处理木材的动态粘弹性研究.北京林业大学学报,2006b,28(1):92-96
    蒋佳荔,吕建雄.干燥处理材的动态粘弹性.北京林业大学学报,2008,30(3):96-100
    李大纲,蒋本浩,徐永吉.温湿处理对杉木弯曲蠕变性能的影响.建筑人造板,1994,1:9-12
    李大纲.意杨木材弯曲蠕变特性的初步研究.四川农业大学学报(木材研究专辑),1998,16(1):99-101
    马德柱,何平笙,徐种德等.高聚物的结构与性能(第二版).北京:科学出版社,2003
    王逢湖.木质材料流变学.哈尔滨:东北林业大学出版社,2005
    王洁瑛,赵广杰.空气介质中热处理杉木压缩木材的蠕变.北京林业大学学报,2002,24(2):52-58
    王培元.木材横纹压缩流变参数的测定.林业科学,1985,21(4):404-413
    王培元.白杨木材横纹压缩流变性能Ⅰ:粘弹性.林业科学,1987a,23(2):182-190
    王培元.白杨木材横纹压缩流变性能Ⅱ:塑性.林业科学,1987b,23(3):357-363
    王培元.白杨刨片横纹压缩流变性能.林业科学,1989,25(6):522-528
    王培元.刨花在压缩力下变形状态的研究Ⅰ:大片刨花压缩流变性能的研究.林业科学,1992a,28(4):323-329
    王培元.刨花在压缩力下变形状态的研究Ⅱ:杨木刨花压缩力学行为对刨花板质量影响的分析研究.林业科学,1992b,28(5):415-421
    樋口隆昌.木质分子生物学.日本东京:文永堂,1985
    Akerholm M., Salmèn L. The oriented structure of lignin and its viscoelastic properties studied by static and dynamic FT-IR spectroscopy. Holzforschung, 2003, 57(5):459-465
    Alén R., Kotilainen R., Zaman A. Thermochemical behavior of Norway spruce (Picea abies) at 180-225oC. Wood Science and Technology, 2002, 36(2), 163-171
    Arima T. Creep in process of temperature changes: I. Creep in process of constant, elevated and decreased temperature. Mokuzai Gakkaishi, 1972a, 18(7):349-353
    Arima T. Creep in process of temperature changes: II. History effect on creep of wood in process of temperature changes. Mokuzai Gakkaishi, 1972b, 18(8):377-380
    Arima T. Creep in process of temperature changes: prediction of creep curves in process of elevated temperature. Mokuzai Gakkaishi, 1973, 19(2):75-79
    Armstrong L.D., Kingston R.S.T. Effect of moisture changes on creep in wood. Nature, 1960, 185(4716):862-863
    Armstrong L.D., Christensen G.N. Influence of moisture changes on deformation of wood under stress. Nature, 1961, 196(4791):869-870
    Armstrong L.D., Kingston R.S.T. The effect of moisture content on the deformation of wood under stress. Australian Journal of Applied Science, 1962, 13(4):257-276
    Armstrong L.D. Deformation of wood in compression during moisture movement. Wood Science, 1972, 5(2):81-86
    Astley R.J., Stol K.A., Harrington J.J. Modelling the elastic properties of softwood. Part 2: The cellular microstructure. Holz als Roh- und Werkstoff, 1998, 56(1):43-50
    Bach L. Non-linear mechanical behavior of wood in longitudinal tension. Ph.D. Dissertation, State University College of Forestry at Syracuse University, Syracuse, N.Y. 1965
    Bach L., Pentoney R.E. Non-linear mechanical behavior of wood. Forest Products Journal, 1968, 18(3):60-66
    Back E.L., Salmèn N.L. Glass transition of wood components hold implications for molding and pulping processes. Tappi Journal, 1982, 65(7):107-110
    Backman A.C., Lindberg K.A.H. Difference in wood material responses for radial and tangential direction as measured by dynamic mechanical thermal analysis. Journal of Material Science, 2001, 36(15):3777-3783
    Bengtsson C., Kliger R. Bending creep of high-temperature dried spruce timber. Holzforschung, 2003, 57(1):95-100
    Bernier G.A., Kline D.E. Dynamic mechanical behavior of birch compared with methyl methacrylate impregnated birch from 90 to 475K. Forest Products Journal, 1968, 18(4): 79-82
    Birkinshaw C., Buggy M., Henn G.G. Dynamic mechanical analysis of wood. Journal of Materials Science letters, 1986, 5(9): 898-900
    Bond B.H., Loferski J., Tissaoui J., Holzer S. Development of tension and compression creep models for wood using the time-temperature superposition principle. Forest Products Journal, 1997, 47(1): 97-103
    Boutelje J.B. The relationship of structure to transverse anisotropy in wood with reference to shrinkage and elasticity. Holzforschung, 1962, 16(1):33-46
    Bowyer J.L., Shmulsky R., Haygreen J.G. Forest Products and Wood Science. Iowa State press: Americans, Iowa, USA. 2003
    Breese M.C., Bolton A.J. The effect of temperature and moisture content on the time-dependent behaviour of isolated earlywood specimens of Sitka spruce (Picea sitchensis), loaded in compression in the radial direction. Holzforschung, 1993, 47(6):523-528
    Bucur V. An ultrasonic method for measuring the elastic constants of wood increment cores bored from living trees. Ultrasonics, 1983, 21(3): 116-126
    Burmester A. Relationship between sound and velocity and the morphological, physical and mechanical properties of wood. Holz als Roh- und Werkstoff, 1965, 23(6):227-236
    Chen P., Nakao T., Kobayashi S. Vibrational properties of wood in frequency ranges including ultrasonic waves temperature dependencies of dynamic Young’s modulus and loss tangent. Journal of the Japan Wood Research Society, 1999, 45(1): 51-56
    Chniewind A. On the influence of moisture content changes on the creep of beech wood perpendicular to the grain including the effects of temperature and temperature changes. Holz als Roh- und Werkstoff, 1966, 24(3):87-98
    Choong E.T., Mackay J.F.G.., Stewart C.M. Collapse and moisture flow in kiln-drying and freeze-drying of woods. Wood Science, 1973, 6(2):127-135
    Chow S.Z., Pickeles K.J. Thermal softening and degradation of wood and bark. Wood and Fiber Science, 1971, 3(3):166-178
    Davidson R.W. The influence of temperature on creep in wood. Forest Products Journal, 1962, 12(8):377-381
    Dwianto W., Morooka T., Norimoto M. The compressive stress relaxation of albizia (Paraserienthes falcata Becker) wood during heat treatment. Mokuzai Cakkaishi, 1998, 44(6): 403-409
    Dwianto W., Morooka T., Norimoto M., Kitajima T. Stress relaxation of sugi (Cryptomeria japonica D.Don) wood in radial compression under high temperature steam. Holzforschung, 1999, 53(5):541-546
    Dwianto W., Morooka T., Norimoto M. Compressive creep of wood under high temperature steam. Holzforschung, 2000, 54(1):104-108
    Erickson R.W., Haygreen J., Hossfeld R. Drying prefrozen redwood with limited data on other species. Forest Products Journal, 1966, 16(8):57-65
    Erickson R.W., Haygreen J., Hossfeld R. Drying of prefrozen redwood-fundamental and applied considerations. Forest Products Journal, 1968, 18(6):49-56
    Faix O., Jakab E., Till F., Szekely T. Study on low mass thermal degradation products of milled wood lignin by thermogravimetry-mass-spectrometry. Wood Science and Technology, 1988, 22(4):323-334
    Fengel D., Wegener G. Wood Chemistry, ultrastructure, reactions. Walter de Gruyter and Co. Berlin, New York. 1989
    Ferry J.D. Viscoelastic properties of polymers. 3rd edition. Wiley, New York. 1980
    Furuta Y., Aizawa H., Yano H., Makinaga M. Thermal-softening properties of water-swollen wood IV. The effects of chemical constituents of the cell wall on the thermal-softening properties of wood. Mokuzai Cakkaishi, 1997, 43(9): 725-730
    Furuta Y., Norimoto M., Yano H. 1998. Thermal-softening properties of water-swollen wood V. The effects of drying and heating histories. Mokuzai Cakkaishi, 1998, 44(2): 82-88
    Furuta H., Imanishi M., Kohara M., Yokoyama Y., Kanayama K. Thermal-softening properties of water swollen wood. VII. The effect of lignin. Mokuzai Gakkaishi, 2000, 42(6):132-136
    Furuta Y., Obata Y., Kanayama K. Thermal-softening properties of water-swollen wood: The ralaxation process due to water soluble polysaccharides. Journal of Material Science, 2001, 36(4):887-890
    Futo L.P. Qualitative and quantitative evaluation of the microtensile strength of wood. Holz als Roh- und Werkstoff, 1969, 27(5):192-201
    Garcia R., Triboulot M.C., Merlin A., Deglise X. Variation of the viscoelastic properties of wood as a surface finishes substrate. Wood Science and Technology, 2000, 34(2):99-107
    Goring D.A.I. Thermal softening of lignin, hemicellulose, and cellulose. Pulp and Paper magazine of Canada, 1963, 64:517-527
    Grossman P.U.A., Armstrong L.D., Kingston R.S.T. An assessment of research in wood rheology. Wood Science and Technology, 1969, 3(4): 324-328
    Gündüz G., Niemz P., Aydemir D. Changes in specific gravity and equilibrium moisture content inheat-treated fir (abies nordmanniana subsp. bornmülleriana Mattf.) wood. Drying Te chnology, 2008, 26(9): 1135-1139
    Haines D.W., Leban J.M., HerbéC. Determination of Young’s modulus for Spruce, Fir and isotropic materials by the resonance flexure method with comparisons to static flexure and other dynamic methods. Wood science and technology, 1996, 30(4): 253-263
    Hanhij?rvi A. Deformation properties of Finnish spruce and pine wood in tangential and radial directions in association to high temperature drying. Holz als Roh- und Werkstoff, 2000, 58(1/2):63-71
    Hearmon R.F.S. Vibration testing of wood. Forest Products Journal, 1966, 16(8): 29-40
    Hillis W.E., Rosa A.N. The softening temperatures of wood. Holzforschung, 1978, 32(2):68-73
    Hillis W.E. High temperature and chemical effects on wood stability. Part 1: General considerations. Wood Science and Technology, 1984, 18(4):535-542
    Hillis W.E., Rozsa A.N. High temperature and chemical effects on wood stability. Part 2: The effect of heat on the softening of radiata pine. Wood Science and Technology, 1985, 19(1):57-66
    Hirai N., Sobue N., Asano I. Studies on piezoelectric effect of wood. IV. Effect of heat treatment on cellulose crystallites and piezoelectric effect of wood. Mokuzai Gakkaishi, 1972, 18(6):535-542
    Hirai N., Date M., Miyachi Y., Suzuki Y., Maruyama N., Hayamura S. Elastic dispersion of wood in high temperature region. Journal of the Society of Materials Science (Japan), 1990, 39(444): 1203-1206
    Hunt D.G. Dimensional changes and creep of spruce, and consequent model requirements. Wood Science and Technology, 1997, 31(1): 3-16
    Iida I. The thermal softening of green wood evaluated by its Young’s modulus in bending. Mokuzai Gakkaishi, 1986, 32(6):472-477
    Iida I., Murase K., Ishimaru Y. Stress relaxation of wood during the elevating and lowering processes of temperature and the set after relaxation. Journal of Wood Science, 2002a, 48(1):8-13
    Iida I., Kudo M., Onizuka J., Ishimaru Y., Furuta Y. Stress relaxation of wood during elevating and lowering processes of temperature and the set after relaxation II: consideration of the mechanism and simulation of stress relaxation behavior using a viscoelastic model. Journal of Wood Science, 2002b, 48(2):119-125
    Inoue M., Norimoto M. Permanent fixation of compressive deformation in wood by heat treatment. Wood Research, 1991, 27(1):31-40
    Irvine G.M. The glass transition of lignin and hemicellulose and their measurement by differential thermal analysis. Tappi Journal, 1984, 67(5):118-121
    Ishimaru Y., Yamada Y., Iida I., Urakami H. Dynamic Viscoelastic Properties of Wood in Various Stages of Swelling. Mokuzai Gakkaishi, 1996, 42(3):250-257
    Jacem T. Effects of long-term creep on the integrity of modern wood structures. Virginia Polytechnic Institute and State University. Ph.D Thesis.1996
    James W.L. Effect of temperature and moisture content on: Internal friction and speed of sound in Douglas-fir. Forest Products Journal, 1961, 11(9): 383-390
    Jernqvist L.O., Thuvander F. Experimental determination of stiffness variation across growth rings in Picea abies. Holzforschung, 2001, 55(3):309-317
    Jiang J.L., Lu J.X. Dynamic viscoelastic properties of wood treated by three drying methods measured at high-temperature range. Wood and Fiber Science, 2008a, 40(1): 72-79
    Jiang J.L., Lu J.X. Dynamic viscoelasticity of wood after various drying processes. Drying Technology, 2008b, 26(5): 537-543
    Kabir M.F., Daud W.M., Khalid K.B., Sidek H.A.A. Temperature dependence of the dielectric properties of rubber wood. Wood and Fiber Science, 2001, 33(2): 233-238
    Kamei K., Ishimaru Y., Iida I., Ishimaru Y. Effect of preparation methods of samples on mechanical properties of wood I: Effect of period and temperature kept in water, and cooling rate after heating on water-swollen wood. Mokuzai Cakkaishi, 2004, 50(1): 10-17
    Kelly S.S., Rilas T.G., Glasser W.G. Relaxation behavior of amorphous components of wood. Journal of Material Science, 1987, 22(2): 617-625
    Kifetew G. The influence of the geometrical distribution of cell-wall tissue on the transverse anisotropic dimensional changes of softwood. Holzforschung, 1999, 53(4):347-349
    Kingston R.S.T., Clarke L.N. Some aspects of the rheological behavior of wood. I.&II. Australian Journal of Applied Science, 1961, 12(2): 211-226, 227-240
    Kitahara K., Yukawa K. The influence of the change in temperature on creep in bending. Mokuzai Gakkaishi, 1964, 10(5):169-175
    Kojiro K., Furuta Y., Ishimaru Y. Influence of heating and drying history on micropores in dry wood. Mokuzai Gakkaishi, 2008, 54(4):202-207
    Kollmann F., Fengel D. Changes in the chemical composition of wood by thermal treatment. Holz als Roh- und Werkstoff, 1965, 23(12): 461-468
    Korai H., Suzuki M. Dimensional stability and dynamic viscoelasticity of double chemically treated wood. Mokuzai Gakkaishi, 1995, 41(1):51-62
    Kubojima Y., Okano T., Ohta M. Vibrational properties of Sitka spruce heat treated in nitrogen gas. Journal of Wood Science, 1998, 44(1):73-77
    Kubojima Y., Wada M., Tonosaki M. Real-time measurement of vibrational properties and fine structural properties of wood at high temperature. Wood Science and Technology, 2001, 35(6): 503-515
    Kudo K., Iida I., Ishimaru Y., Furuta Y. The effects of quenching on the mechanical properties of wet wood. Mokuzai Gakkaishi, 2003, 49(4): 253-259
    Laborie M.P.G., Salmén L., Frazier C.E. Cooperativity analysis of the in situ lignin glass transition. Holzforschung, 2004, 58(2):129-133
    Leaderman H. Elastic and creep properties of filamentous materials and other high polymers. Washington DC: Textile Foundation, 1943
    Leicester R.H. A rheological model for mechano-sorptive deflections of beams. Wood Science and Technology, 1971, 5(3):211-220
    Length C., Sargent R. Wood material behavior during drying: moisture dependent tensile stiffness and strength of Radiata Pine at 70-150oC. Drying Technology, 2008, 26(9): 1112-1117
    Lenth C.A., Kamke F.A. Moisture dependent softening behavior of wood. Wood and Fiber Science, 2001, 33(3): 492-507
    Li D.G., Gu L.B. The mechano-sorptive behavior of Poplar during high-temperature drying. Drying Technology, 1999, 17(9): 1947-1958
    Lu J.X., Lin Z.Y., Jiang J.L. Comparative studies on the liquid penetration between the freeze-drying and the air-drying wood. Journal of Forestry Research, 2005, 16(4):293-295
    Manninen A.M., Pasanen P., Holopainen J.K. Comparing the VOC emissions between air-dried and heat-treated Scots pine wood. Atmospheric Environment, 2002, 36(11): 1763-1768
    Mano F. The viscoelastic properties of cork. Journal of Material Science, 2002, 37(2):257-263 Mark R.E. Cell wall mechanics of tracheids. New Haven, Yale University Press. 1967
    Moraes P.D., Rogaume Y., Triboulot P. Influence of temperature on the modulus of elasticity (MOE) of Pinus sylvestris L. Holzforschung, 2004, 58(1): 143-147
    Mukudai Y. Modeling and simulation of viscoelastic behavior (tensile strain) of wood under moisture change. Wood Science and Technology, 1986, 20(4):335-348
    Mukudai Y. Modeling and simulation of viscoelastic behavior (bending strain) of wood under moisture change. Wood Science and Technology, 1987, 21(1):49-63
    Mukudai Y. Verification of Mukudai’s mechano-sorptive model. Wood Science and Technology, 1988, 22(1):43-58
    Nakano T., Honma S., Matsumoto A. Physical properties of chemically-modified wood containing metalⅠ.Effects of metals on dynamic mechanical properties of half-esterified wood. Mokuzai Gakkaishi, 1990, 36(12):1063-1068
    Nogi M., Yamamoto H., Okuyama T. Relaxation mechanism of residual stress inside logs by heat treatment: choosing the heating time and temperature. Journal of Wood Science, 2003, 49(1):22-28
    Norimoto M. Structure and properties of wood used for musical instruments I. On the selection of wood used for piano soundboards. Mokuzai Gakkaishi, 1982, 28(7):407-413
    Obataya E., Yokoyama M., Norimoto M. Mechanical and dielectric relaxations of wood in a low temperature range I. Relaxations due to methylol groups and adsorbed water. Mokuzai Cakkaishi, 1996, 42(3): 243-249
    Obataya E., Ono T., Norimoto M. Vibrational properties of wood along the grain. Journal of Material Science, 2000, 35(12):2993-3001
    Obataya E., Furuta Y., Gril J. Dynamic viscoelastic properties of wood acetylated with acetic anhydride solution of glucose pentaacetate. Journal of Wood Science, 2003, 49(2):152-157
    Ohsaki H., Kubojima Y., Tonosaki M., Ohta M. Changes in vibrational properties of wetwood of Japanese fir (Abies Sachalinensis Mast.) with time during drying. Wood and Fiber Science, 2007, 39(2): 233-240
    Olsson S., Perstorper M. Elastic wood properties from dynamic tests and computer modeling. Journal of structural engineering, 1992, 118(10): 2677-2690
    Olsson A.M., Salmèn N.L. The effect of lignin composition on the viscoelastic properties of wood. Nordic Pulp and Paper Research Journal, 1997, 12(3):140-144
    Ooi K., Wang Y., Asada T., Iida I., Furuta Y., Ishimaru Y. Changes of mechanical properties of wood under an unstable state by heating or cooling. Mokuzai Cakkaishi, 2005, 51(6): 357-363
    Ota M., Tsubota Y. Studies on the fatigue of 2-ply laminated wood. I. Seeral investigations on the static viscoelasticity behaviors of wood subjected to bending test. Journal of the Japan Wood Research Society, 1966, 12(1): 26-29
    Placet V., Passard J., PerréP. Viscoelastic properties of green wood across the grain measured by harmonic tests in the range 0-95oC: Hardwood vs. softwood and normal wood vs. reaction wood. Holzforschung, 2007, 61(6): 548-557
    Quis D. On the frequency dependence of the modulus of elasticity of wood. Wood Science and Technology, 2002, 36(4): 335-346
    Rusche H. Thermal degradation of wood at temperatures up to 200oC. Part I: Strength properties of dried wood after heat treatment. Holz als Roh - und Werkstoff, 1973, 31(7): 273-281
    Sakata I., Senju R. Thermoplastic behavior of lignin with various synthetic plastisizers. Journal of Applied Polymer Science, 1975, 19(10):2799-2810
    Salmèn L. Viscoelastic properties of in situ lignin under water saturated conditions. Journal of Material Science, 1984, 19(9): 3090-3096
    Salmén L. Micromechanical understanding of the cell-wall structure. Comptes Rendus Biologies, 2004, 327(9/10): 873-880
    Samarasinghe S., Loferski J.R., Holzer S.M. Creep modeling of wood using time-temperature superposition. Wood and Fiber Science, 1994, 26(1): 122-130
    Schaffer E.L. Effect of pyrolytic temperatures on the longitudinal strength of dry Douglas-fir. Journal of Testing and Evaluation, 1973, 1(4):319-329
    Schniewind A.P. Recent progress in the study of the rheology of wood. Wood Science and Technology, 1968, 2(3): 188-206
    Suevos F.L., Frazier C.E. Parallel-plate rheology of latex films bonded to wood. Holzforschung, 2005, 59(4):435-440
    Suevos F.L., Frazier C.E. Rheology of latex films bonded to wood: influence of cross-linking. Holzforschung, 2006, 60(1):47-52
    Sugiyama M., Norimoto M. Temperature dependence of dynamic viscoelasticities of chemically treated woods. Mokuzai Cakkaishi, 1996, 42(11): 1049-1056
    Sugiyama M., Obataya E., Norimoto M. Viscoelastic properties of the matrix substance of chemically treated wood. Journal of Material Science, 1998, 33(14):3505-3510
    Sun N., Das S., Frazier C.E. Dynamic mechanical analysis of dry wood: Linear viscoelastic response region and effects of minor moisture changes. Holzforschung, 2007a, 61(1):28-33
    Sun N.J., Frazier C.E. Time/temperature equivalence in the dry wood creep response. Holzforschung, 2007b, 61(6): 702-706
    Suzuki M., Nakato K. Temperature dependence of dynamic viscoelasticity of wood. Journal of the Japan Wood Research Society, 1964, 10(3): 89-95
    Tajvidi M. Static and dynamic mechanical properties of a kenaf fiber-wood flour/polypropylene hybrid composite. Journal of Applied Polymer Science, 2005, 98(2):665-672
    Taniguchi T., Nakato K. Effects of heat treatment on the fine structure of soft wood. Kyoto University Forestry, 1966, 38:192-199
    Tanner R.I. The change face of rheology. Journal of Non-Newtonian Fluid Mechanics, 2009, 157(3):141-144
    Wang Y., Iida I., Furuta Y., Ishimaru Y. Mechanical properties of wood in an unstable state due to temperature changes, and an analysis of the relevant mechanism I. Stress relaxation behavior of swollen
    wood after quenching. Mokuzai Cakkaishi, 2006, 52(2): 83-92
    Wang Y., Iida I., Minato K. Mechanical properties of wood in an unstable state due to temperature changes, and analysis of the relevant mechanism IV. Effect of chemical components on destabilization of wood. Journal of Wood Science, 2007, 53(5): 381-387
    Watanabe U. Shrinking and elastic properties of coniferous wood in relation to cellular structure. Wood Research, 1998, 85(1):1-47
    Williams M.L., Landel R.F., Ferry J.D. The temperature dependence of relaxation mechanisms in amorphous polymers and other glass-forming liquids. Journal of the American Chemical Society, 1955, 77(14): 3701-3705
    Wu Q.L., Milota M.R. Rheological behavior of douglas-fir perpendicular to the grain at elevated temperatures. Wood and Fiber Science, 1995a, 27(3):285-295 Wu Q.L. Rheological behavior of Douglas-fir as related to the process of drying. Drying Technology, 1995b, 13(8): 2239-2240
    Zhang W., Tokumoto M., Takeda T. Effects of temperature on mechano-sorptive creep of delignified wood. Journal of Wood Science, 2007, 53(3):187-191

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700