用户名: 密码: 验证码:
甲苯硝化反应热危险性的实验与理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
甲苯的多段硝化是重要的化学反应过程,其各段硝化产物在医药、染料、炸药、农药等方面应用广泛。由于这些硝化反应是复杂的液-液两相反应,受到动力学和传质的共同作用,且反应过程放热剧烈,所以通常认为此类反应热失控的危险性很大。本文采用风险矩阵法和失控情景分析方法评估此反应的热失控危险,对反应中的一些影响因素展开比较和分析,并结合实验结果,从理论角度进一步分析了各硝化产物分解的难易性和硝化反应亲电取代的硝化机理,这些工作对准确评估反应的热危险,减少反应失控事故具有重要的参考价值。
     首先采用差式扫描量热仪(DSC)、加速度绝热量热仪(ARC)和反应量热仪(RC1e)研究了甲苯一段硝化反应过程的热危险性,结果表明:选定条件下反应的热危险性均较低,但略高于同等反应条件下苯的硝化;温度的升高使甲苯硝化的反应速率加快,体系比热容增加,副反应加剧;加快搅拌速度能促进甲苯硝化;而减少硝酸与甲苯摩尔比会使甲苯反应不充分;甲苯一段硝化反应速率的数量级为10~(-4) mol·L~(-1)·s~(-1),反应的活化能平均值为30kJ·mol~(-1)。
     采用同样的方法对二段硝化反应进行研究,结果表明:二段硝化反应的热失控危险性也较低;延长加料时间,有利于反应完全;而随着硝酸与一硝基甲苯(MNT)摩尔比的减小,硝化难以进行完全;在选定温度范围内升高温度,产物得率无显著变化,反而易导致放热加剧,增加体系的热失控危险。
     在对三段硝化反应进行热危险性评估时发现,三段硝化反应的温度很高,氧化副反应随温度升高而加剧,风险矩阵法和失控情景分析方法难以准确评估该情况下的热失控危险,但实验结果表明降低反应温度,减缓加料速率能有效地防止热积累,减小反应过程中的热危险性。
     为了考察不同阶段氧化副反应对反应放热的贡献,用反应物和产物的标准生成焓推得氧化反应的理论反应热,计算结果表明,各段硝化的氧化副反应均为放热反应,其中三段硝化反应由于反应温度最高,氧化反应的温度系数比硝化反应高,故氧化副反应对三段硝化影响最大。此外,本文还考察了酸对反应的影响,研究结果表明酸在118℃以上会与不锈钢发生反应,放热迅速,同时酸还会催化产物的热分解,加大了反应过程中的危险性。
     最后,采用Hartree-Fock方法(HF)和密度泛函方法(DFT)计算了各硝化反应中主要有机物的Mulliken键级、最高占有轨道能和最低空轨道能,采用“最小键级原理”(PSBO)和“最易跃迁原理”(PET)判断出三硝基甲苯(TNT)最易分解,这与实验结果一致。在DFT-B3LYP/6-311G**水平下计算得到了各硝化反应的反应物、过渡态和Wheland中间体络合物的分子结构和能量,并且发现空间位阻是影响活化能的主要因素。
Mononitration, dinitration and trinitration of toluene are very important reactions. Products of these reactions are widely used in medicine, dyestuff, explosive, pesticide, etc. These reactions are complex heterogeneous liquid-liquid reactions, which are affected by kinetics and mass transfers. Furthermore, these reactions are accompanied with high heat generation; therefore, they are commonly regarded to be of great thermal runaway hazards. Here, Risk Assessment Code (RAC) matrix method and runaway scenario analysis method were used to evaluate the thermal runaway criticality, and some reaction conditions were compared and analyzed as well. At last, based on the experimental results, the theoretical calculation was adopted to analyze the decomposition of nitration product and the electrophilic substitution mechanism of these nitration reactions. All these work are of important value for the correct evaluation of thermal risk and the decrease of chemical reaction runaway accidents.
     First of all, Differential Scanning Calorimeter (DSC), Accelerating Rate Calorimeter (ARC) and Reaction Calorimeter (RC1e) were employed to study thermal hazards of the mononitration of toluene, and the results showed that thermal risks of these nitrations under given conditions were low, but a bit higher than benzene nitration under the same conditions; high temperature could accelerate reaction rate, increase the specific heat of reaction system and support side reactions; high stirring rate could accelerate reaction as well; decreasing the molar ratio of nitric acid to toluene made an insufficient conversion of toluene. And it was also found that the reaction rate was 10~(-4) mol L~(-1) s~(-1) order of magnitude, the average activation energy of second order kinetic is about 30kJ·mol~(-1).
     The same methods were used to study toluene dinitration, and the results indicated that the thermal runaway risks of these reactions were low too; prolonging dosing duration was helpful to the conversion of all nitrotoluene; decreasing the molar ratio of nitric acid to mononitrotoluene (MNT) would make an insufficient conversion; among the given temperatures, rising reaction temperature couldn't markedly change the yield coefficient, but lead more heat generation and higher thermal runaway risk.
     Studies on the trinitration of toluene showed that, the trinitration temperatures were high enough to intensify oxidation, and the two thermal hazard evaluation methods mentioned above couldn't evaluate the situation well. Results were found from the reaction calorimeter experiments that lower reaction temperature and decelerating dosing rate could prevent thermal accumulation and decrease thermal hazard efficiently.
     To assess the thermal contribution from oxidation reaction, the standard formation enthalpes of all reactants and products were used to calculate the oxidation enthalpies. It could be found that all oxidation reactions were exothermic. And oxidation played a more important role during the toluene trinitration at high temperature, because the reaction temperature of toluene trinitration is the higher than mononitration and dinitration, and the temperature coefficient of oxidation is higher than that of trinitration too. Besides, the effects of mixed acid on the reaction were analyzed, and the results indicated the mixed acid would react with stainless steel at the temperature higher than 118℃with a sharp exothermal, and could catalyze product decomposition, increase thermal hazards as well.
     At last, Hartree-Fock (HF) and Density Functional Theory (DFT) was used to calculate the Mulliken bond orders, HOMO and LUMO. The "principle of the smallest bond order" (PSBO) and the "principle of the easiest transition" (PET) were selected to judge the decomposition potential of the nitration products, and the results indicated trinitrotoluene (TNT) would decompose easier than other product, and it was consistent with the experimental results. After that, the reactants, transition states and Wheland intermediate complexes were fully optimized at the B3LYP/6-311G~(**) level to get the information of the molecular geometries and energies, and it was found that the steric effect was the main influence factor on activation energy.
引文
[1]刘荣海,陈网桦,胡毅亭.安全原理与危险化学品测评技术.第1版.北京:化学工业出版社,2004
    [2]T.乌尔班斯基著,孙荣康译.火炸药的化学与工艺学第Ⅰ卷.第1版.北京:国防工艺出版社,1976
    [3]董云.一硝基甲苯及其衍生物的开发(一).化工中间体,2003,23:7-12
    [4]董云.一硝基甲苯及其衍生物的开发(二).化工中间体,2003,24:10-13
    [5]李刚,尚世志.二硝基甲苯毒性研究进展.中华劳动卫生职业病杂志,2000,18(5):298-300
    [6]武海明,李斌,吴琼,王玉玲,杜文霞,李良,陈亚丽.二硝基甲苯的毒性研究.卫生毒理学杂志,2000,14(3):178-179
    [7]李汝辉.传质学基础.第1版.北京:北京航空航天大学出版社,1987
    [8]J.金克普利斯.第1版.北京:清华大学出版社,1985
    [9]国家安全监管总局.国家安全监管总局关于中国化工集团公司沧州大化TDI有限责任公司“5.11”爆炸事故的通报[EB].安监总危化(2007)119号
    [10]Theodor Grewer.Thermal hazards of chemical reactions.1st ed.The Netherlands:Elservier Science B.V.,1993:365-380
    [11]Varma A,Morbidelli M,Wu H.Parametric Sensitivity in Chemical Systems.1st ed.Cambridge:The press syndicate of the university of Cambridge,1999:1-8
    [12]Al(?)s M A,Strozzi F,Zald(?)var J M.A New Method for Assessing the Thermal Stability of Semibatch Processes Based on Lyapunov Exponents.Chemical Engineering Science,1996,51(11):3089-3094
    [13]Strozzi F,Zald(?)var J M.A method for assessing thermal stability of batch reactors by sensitivity calculation based on Lyapunov exponents.Chemical Engineering Science,1994,49(16):2681-2688
    [14]甘一如,吴鹏,陈建新,李绍芬.固定床催化反应器的研究进展.化工进展,1993,(3):36-39
    [15]陈尚伟,张超,程晓勇.固定床催化反应器的参数灵敏性及失控行为.四川轻化工学院学报,2000,13(1):15-18
    [16]黄书文,陈尚伟,程晓勇.固定床反应器参数灵敏性分析中径向温度分布的简化处理.四川轻化工学院学报,2000,13(2):21-25
    [17]陈尚伟,程晓勇,张超.固定床反应器参数灵敏性与失控分析.化学研究与应用, 2000,12(5):552-556
    [18]陈尚伟,黄书文,程晓勇.固定床反应器改进一维模型的参数灵敏性.绵阳经济技术高等专科学校学报,1999,16(3):53-57
    [19]陈尚伟,程晓勇.绝热固定床反应器的参数灵敏性.化学研究与应用,2000,12(1):106-111
    [20]刘秀玉,蒋军成.连续搅拌釜式反应器放热反应失控事故预防.中国安全科学学报,2006,16(11):140-144
    [21]刘秀玉,蒋军成,王彦富.间歇放热反应系统热失控参数敏感性研究,化学工程,2008,36(3):13-16
    [22]Hugo P,Steinbach J.A comparison of the limits of safe operation of a SBR and a CSTR.Chemical Engineering Science,1986,41(4):1081-1087
    [23]Steensma M,Westerterp K R.Thermally safe operation of a cooled semi-batch reactor.Slow liquid-liquid reactions.Chemical Engineering Science,1988,43(8):2125-2132
    [24]Steensma Metske,Westerterp K Roel.Thermally safe operation of a semi-batch reactor for liquid-liquid reactions.Slow reactions.Industrial and Engineering Chemistry Research,1990,29:1259-1270
    [25]Woezik B A A van,Westerterp K R.Runaway behavior and thermally safe operation of multiple liquid-liquid reactions in the semi-batch reactor.The nitric acid oxidation of 2-octannol.Chemical Engineering and Processing,2002,41:59-77
    [26]Molga Eugeniusz J,Lewak Michal,Westerterp K R.Runaway prevention in liquid-phase homogeneous semi-batch reactors.Chemical Engineering Science,2007,62:5074-5077
    [27]Westerterp K Roel,Molga Eugeniusz J.No more runaway in fine chemical reactors.Industrial and Engineering Chemistry Research,2004,43:4585-4594
    [28]Francesco Maestri,Renato Rota.Thermally safe operation of liquid-liquid semibatch reactors.Part Ⅰ:Single kinetically controlled reactions with arbitrary reaction order.Chemical Engineering Science,2005,60:3309-3322
    [29]Francesco Maestri,Renato Rota.Thermally safe operation of liquid-liquid semibatch reactors.Part Ⅱ:Single diffusion controlled reactions with arbitrary reaction order.Chemical Engineering Science,2005,60:5590-5602
    [30]Francesco Maestri,Renato Rota.Temperature diagrams for preventing decomposition or side reactions in liquid-liquid semibatch reactors.Chemical Engineering Science,2006,61:3068-3078
    [31]Gygax R.Chemical reaction engineering for safety.Chemical Engineering Science, 1988,43(8):1759-1771
    [32]Gygax R.Scale up principles for assessing thermal runaway risks.Chemical Engineering Progress,1990,February:53-60
    [33]Stoessel Francis.What is your thermal risk? Chemical Engineering Progress,1993,Octorber:68-75
    [34]Stoessel Francis.Design thermally safe semibatch reactor.Chemical Engineering Progress,1995,September:46-53
    [35]Stoessel Francis.Thermal safety of chemical processes--risk assessment and process design.1st ed.The FEDERAL Republic of Germany:Wiley-VCH,2008
    [36]Stoessel F,Ubrich O.Safety assessment and optimization of semi-batch reactor by calorimetry.Journal of Thermal Analysis and Calorimetry,2001,64:61-74
    [37]Ubrich O,Srinvasan B,Lerena P,Bonvin D,Stoessel F.The use of calorimetry for on-line optimization of isothermal semi-batch reactors.Chemical Engineering Science,2001,56:5147-5156
    [38]Lerena P,Wehner W,Weber H,Stoessel F.Assessment of hazards linked to accumulation in semi-batch reactors.Thermochimica Acta,1996,289:127-142
    [39]Serra Eduard,Nomen Rosa,Sempere Julia.Maximum temperature attained by rtmaway of synthesis reaction in semi-batch processes.Journal of Loss Prevention in the Process Industries,1997,10(4):211-215
    [40]王晓峰,陈网桦,薛艳.甲苯一段半间歇硝化工艺的反应失控研究.火工品,2007(3):18-22
    [41]陈利平,陈网桦,李春光,刘颖,张幼平,彭金华.混酸中甲苯半间歇硝化过程的危险性研究.中国安全科学学报,2007,17(12):102-106
    [42]王晓峰.甲苯一段硝化的工艺优化和过程安全性研究.南京:南京理工大学化工学院,2005
    [43]刘章蕊.半间歇式甲苯二段硝化的反应安全性及工艺优化研究.南京:南京理工大学化工学院,2006
    [44]吕春绪.硝化理论.第1版.南京:江苏科学技术出版社,1993年10月。
    [45]Е.Ю.奥尔洛娃著,叶庆棠,王忠桓,李祜新译.烈性炸药的化学及工艺学.第1版.北京:国防工业出版社,1965年
    [46]Hanson C,Marsland J G..Macrokinetics of toluene nitration.Chemical Engineering Science,1971,26:513-1520
    [47]Hanson C,Ismail H A M.Macrokinetics of toluene and benzene nitration under laminar condition.Chemical engineering science,1977,32:775-777
    [48]Cox P R and Strachan A N.Two phase nitration of toluene-Ⅰ.Chemical Engineering Science,1972,21:457-463
    [49]Chapman J W,Cox P R,Strachan A N.Two phase nitration of toluene-Ⅲ.Chemical Engineering Science,1974,29:1247-1251.
    [50]Field John P,Strachan Alec N.Dependence of rate constant and activation energy of aromatic nitration on mixed acid composition.Ind.Eng.Chem.Prod.Res.Dev.1992,21:352-355
    [51]Albright Lyle F,Hanson Carl.Industrial and laboratory nitrations.1st ed.The united states of America:ACS,1976
    [52]Zaldivar J M,Molga E,Alos M A,Hernandez H,Westerterp K R.Aromatic nitration by mixed acid.Fast liquid-liquid reaction regime.Chemical Engineering and Progressing,1996,35:91-105
    [53]Zald(?)var J M,Molga E,Alos M A,Hernandez H,Westerterp K R.Aromatic nitration by mixed acid.Slow liquid-liquid reaction regime.Chemical Engineering and Progressing,1995,34:543-559
    [54]Zald(?)var J M,Barcons C,Hernandez H,Molga E,Snee T J.Modeling and optimization of semi-batch toluene mononitration with mixed acid from performance and safety viewpoints.Chemical Engineering Science,1992,47(9-11):2517-2522
    [55]Chen Chun-Yu,Wu Chia-Wei.Thermal Hazard assessment and macrokinetics analysis of toluene mononitration in a batch reactor.Journal of Loss Prevention in the Process Industries,1996,9(5):309-316
    [56]Luo Kuo-Ming,Chang Jih-Guang.The stability of toluene mononitration in reaction calorimeter reactor.Journal of Loss Prevention in the Process Industries,1998,11:81-87
    [57]刘丽荣,吕春绪,李霞.甲苯区域选择性硝化的研究进展.火炸药学报,2006,29(1):32-35
    [58]Mohamed Haouas,Andreas Kogelbauer,Roel Prins.The effect of flexible lattice aluminium in zeolite beta during the nitration of toluene with nitric acid and acetic anhydride.Catalysis Letters,2000,70:61-65
    [59]Santosh Kumar Samantaray,Kulamani Parida.Effect of phosphate ion on the textural and catalytic activity of titania-silica mixed oxide.Applied Catalysis A:General,2001,220:9-20
    [60]Xinhua Peng,Hitomi Suzuki,and Chunxu Lu.Zeolite-assisted nitration of neat toluene and chlorobenzene with a nitrogen dioxide/molecular oxygen system.Remarkable enhancement of para-selectivity.Tetrahedron Letters,2001,42:4357-4359
    [61]Wincenty Skupi(?)ski,Monika Malesa.An infrared study on the MoO_3/SiO_2 catalytic system employed in toluene nitration,Applied Catalysis A:General,2002,236:223-234
    [62]Sharda P Dagade,Suresh B Waghmode,Vijay S Kadam,Mohan K Dongare.Vapor phase nitration of toluene using dilute nitric acid and molecular modeling studies over beta zeolite.Applied Catalysis A:General,2002,226:49-61
    [63]Samantha Bernasconi,Gerhard D Pirngruber,Andreas Kogelbauer,Roel Prins.Factors determining the suitability of zeolite BEA as para-selective nitration catalyst.Journal of Catalysis,2003,219:231-241
    [64]Samantha Bernasconi,Gerhard D Pirngruber,Roel Prins.Influence of the properties of zeolite BEA on its performance in the nitration of toluene and nitrotoluene.Journal of Catalysis,2004,224:297-303
    [65]Tatjana N Parac-Vogt,Karen Deleersnyder,Koen Binnemans.Lanthanide(Ⅲ)complexes of aromatic sulfonic acids as catalysts for the nitration of toluene.Journal of Alloys and Compounds,2004,374:46-49
    [66]Tatjana N Parac-Vogt and Koen Binnemans.Lanthanide(Ⅲ) nosylates as new nitration catalysts.Tetrahedron Letters,2004,45:3137-3139
    [67]Abdol Reza Hajipour,Arnold E Ruoho,Nitric acid in the presence of P_2O_5 supported on silica gel--a useful reagent for nitration of aromatic compounds under solvent-free conditions.Tetrahedron Letters,2005,46:8307-8310
    [68]Andreas Kogelbauer,Diego Vassena,Roel Prins,John N Armor.Solid acids as substitutes for sulfuric acid in the liquid phase nitration of toluene to nitrotoluene and dinitrotoluene.Catalysis Today,2000,55:151-160
    [69]Nivedita S Chaubal,Manohar R Sawant.Synergistic role of aluminium in stabilization of mixed metal oxide catalyst for the nitration of aromatic compounds.Catalysis Communications,2006,7:443-449
    [70]Kuba M G,Prins R,Pimgruber G D.Gas-phase nitration of toluene with zeolite beta.Applied Catalysis A:General,2007,333:78-89
    [71]Nivedita S Chaubal,Manohar R Sawant.Vapor phase nitration of toluene over CuFe_(0.8)Al_(1.2)O_4.Catalysis Communications,2007,8:845-849
    [72]彭新华,吕春绪.Menke条件下甲苯的固体酸催化选择性硝化.含能材料,1995,3(4):27-30
    [73]彭新华,吕春绪.固体酸催化剂和载体上芳烃的选择性硝化.南京理工大学学报, 1996,20(2):1117-119
    [74]程广斌,侍春明,彭新华,吕春绪.钼磷酸催化下甲苯的选择性硝化.含能材料,2004,12(2):110-112
    [75]奚立民,任其龙,纳米固体超强酸TiO_2/SO_4~(2+)的制备及其催化甲苯选择性硝化.化学研究与应用,2007,19(1):24-28
    [76]彭新华,吕春绪,蒋德炉,陈天云.改性高岭土上甲苯的选择性硝化.精细石油化工,1997,(6):12-14
    [77]彭望明,陈恒初,赵俐敏.高分子.过渡金属复合物催化甲苯选择性硝化.湖北化工,1998,(1):15-16
    [78]彭新华,吕春绪,陈天云,张婷曦.改性皂土催化下甲苯的浓硝酸硝化(Ⅶ).精细化工,1997,14(4):57-58
    [79]易文斌,蔡春.甲苯的氟两相硝化反应研究(Ⅱ).含能材料,2006,14(1):29-31
    [80]李小青,杜晓华,徐振元.三氟甲磺酸盐催化甲苯硝化反应的研究.有机化学,2006,26(8):1111-1114
    [81]齐秀芳,程广斌,段雪蕾,吕春绪.Brφnsted酸性功能离子液体存在下甲苯的硝化反应.火炸药学报,2007,30(5):12-14
    [82]刘丽荣,吕春绪,张晓波.磷酸二氢钾催化下甲苯的选择性硝化.含能材料,2008,16(1):63-65
    [83]程广斌,钱德胜,齐秀芳,吕春绪.已内酰胺对甲基苯磺酸离子液体中甲苯的选择性硝化反应.应用化学,2007,27(11):1255-1258
    [84]刘丽荣,吕春绪,张晓波.磷酸二氢钠催化下甲苯的区域选择性硝化.精细化工,2007,24(11):1139-1141
    [85]蔡春,吕春绪.NO_2-O_2对甲苯硝化反应的影响.化炸药学报,2003,26(2):1-2,21
    [86]彭新华,吕春绪.ZSM-5催化机上甲苯硝酸硝化的区域选择性.精细化工,2000,17(1):17-18
    [87]钱华,叶志文,吕春绪.HZSM-5催化下N_2O_5对甲苯的绿色硝化.火炸药学报,2006,29(5):9-11
    [88]谢长红,张凌云,袁晶,谢家理.稀土固体超强酸SO_4~(2+)/TiO_2-La~(3+)催化硝化甲苯的研究.化学研究与应用,2006,18(9):1052-1056
    [89]方东,施群荣,巩凯,刘祖亮,吕春绪.离子液体催化甲苯绿色硝化反应研究.含能材料,2007,15(2):122-124
    [90]刘丽荣,吕春绪,李霞.固体铌酸催化下甲苯的硝化.应用化学,2007,24(12):1374-1377
    [91]刘丽荣,吕春绪,张晓波,李霞.铌酸及其改性催化剂上甲苯的区域选择性硝化.精细化工,2007,24(10):988-990,995
    [92]齐秀芳,程广斌,吕春绪,钱德胜.甲苯在基于己内酰胺的离子液体-硝酸/乙酐体系中的区域选择性硝化反应.应用化学,2008,25(2):147-151
    [93]陆长远,陈华,吴剑平.2,3-二硝基甲苯的合成.化学试剂,1999,21(4):233-234
    [94]曹一平,曹端林,王建龙.2,6-二硝基甲苯合成路线述评.华北工学院学报,1998,19(3):223-225
    [95]陈玫君,曹端林,王建龙.高纯度2,6-二硝基甲苯制备的研究进展.染料与染色,2006,43(2):19,34-37
    [96]陈玫君,张远闻,曹端林,王建龙,王慧宁.2,6-二硝基甲苯的制备.应用化工,2006,35(1):57-59
    [97]王建龙,刘大鹏.3,5-二硝基甲苯制备的工艺改进研究.山西化工,2001(2):24-25
    [98]Mellor John M,Mittoo Stifun,Parkes Rachel,Millar Ross W.Improved nitrations using metal nitrate-sulfuric acid systems.Tetrahedron,2000,56:8019-8024
    [99]Diego Vassena,Andreas Kogelbauer,Roel Prins.Potential routes for the nitration of toluene and nitrotoluene with solid acids.Catalysis Today,2000,60:275-287
    [100]Andreas Kogelbauer,Diego Vassena,Roel Prins,John N Armor.Solid acids as substitutes for sulfuric acid in the liquid phase nitration of toluene to nitrotoluene and dinitrotoluene.Catalysis Today,2000,55:151-160
    [101]刘敏,陈晋南.甲苯硝化生产三硝基甲苯的模拟和优化.北京理工大学学报,2001,21(3):382-387
    [102]刘敏,张洪刚,官波,郑文诚.邻硝基甲苯生产三硝基甲苯反应过程模拟.聊城师范学报(自然科学版),2001,14(4):48-49,57
    [103]Wheland G W.A quantum mechanical investigation of the orientation of substituents in aromatic molecules.Journal of the American Chemical Society,1942,64:900-909
    [104]陈丽涛.芳烃亲电取代硝化机理的理论研究.南京:南京理工大学化工学院,2004
    [105]Peter Politzer,Keerthi Jayasuriya,Per Sjoberg,Patricia R Laurence.Properties of some possible intermediate stages in the nitration of benzene and toluene.Journal of the American Chemical Society,1985,107:1174-1177
    [106]K(?)m(?)n J Szab(?),Anna-Britta H(o|¨)rnfeldt,Salo Gronowitz.Theoretical study on mechanism and selectivity of electrophilic aromatic nitration,Journal of the American Chemical Society,1992,114:6827-6834
    [107]陈丽涛,肖鹤鸣,肖继军.甲苯定向硝化的理论研究.化学学报,2003,61(8):1169-1174
    [108]Chen Litao,Xiao Heming,Xiao Jijun,Gong Xuedong.DFT Study on Nitration Mechanism of Benzene with Nitronium Ion.Journal of Physical Chemistry A,2003,107:11440-11444
    [109]Ying Fuchang.Computational studies of aromatic nitration.Mississippi State:The Faculty of Mississippi State University,2004
    [110]Strozzi F,Zaldivar J M,Kronberg A E,Westerterp K R.On-line runaway detection in batch reactors using chaos theory techniques.AIChE Journal,1999,45(11):2429-2443
    [111]罗云,樊运晓,马晓春.风险分析与安全评价.第1版.北京:化学工业出版社,2004
    [112]中国石油天然气集团公司HSE指导委员会.健康、安全与环境管理体系--风险评价.第1版.北京:石油工业出版社,2001
    [113]Choudhury S,Utiger L,Riesen R.Heat Transport in Agitated Vessels:Scale-up methods.METTLER TOLEDO Publication,00724218:2-15
    [114]Townsend D.I.,Tou J C.Thermal hazard evaluation by an accelerating rate calorimeter.Thermochimica Acta,1980,37:1-30
    [115]钱新明,王耘,冯长根.用加速量热仪研究KClO_3/CuO/S/Mg-Al/C_6Cl_6的热分解.物理化学学报,2001,17(1):71-74
    [116]钱新明,刘丽,张杰.绝热加速量热仪在化工生产热危险性评价中的应用.中国安全生产科学技术,2005,1(1):13-18
    [117]王鹏,李海华.由邻硝基甲苯制备邻卤代苯乙酸的新方法.北京理工大学学报,2000,20(2):254-256
    [118]杨光,华京.梯恩梯.1974
    [119]梁英教,车荫昌,刘晓霞等.无机物热力学数据手册.第1版.沈阳:东北大学出版社,1993
    [120]刘振海.分析化学手册(第八分册)--热分析.第2版.北京:化学工业出版社,2000
    [121]姚允斌,解涛,高英敏.物理化学手册.第1版.上海:上海科学技术出版社,1985
    [122]叶毓鹏.炸药工艺设计.第1版.北京:国防工业出版社,1988
    [123]孙荣康,魏运洋.硝基化合物炸药化学与工艺学.第1版.北京:兵器工业出版社,1992
    [124]孙荣康,任特生,高怀琳.猛炸药的化学与工艺学(上册).第1版,北京:国防工业出版社,1981
    [125]董新法,方利国,陈砺.物性估算原理及计算机计算.第1版.北京:化学工业出版社,2006
    [126]日本硫酸协会编辑委员会.硫酸手册.第1版.北京:化学工业出版社,1982
    [127]胡荣祖,史启祯.热分析动力学.第1版.北京:科学出版社,2001
    [128]陈念陔,高坡,乐征宇.量子化学理论基础.第1版.哈尔滨:哈尔滨工业大学出版社,2002
    [129]廖沐真,吴国是,刘洪霖.量子化学从头计算方法.第1版.北京:清华大学出版社,1984
    [130]林梦海.量子化学简明教程.第1版.北京:化学工业出版社,2005
    [131]陈颖健.密度泛函理论与量子化学计算.国外科技动态,1999,354:11-14
    [132]刘靖江.基础量子化学与应用.第1版.北京:高等教育出版社,2004
    [133]肖鹤鸣.硝基化合物的分子轨道理论.第1版.北京:国防工业出版社,1993
    [134]肖鹤鸣.高能化合物的结构和性质.第1版.北京:国防工业出版社,2004
    [135]何宇中,崔季平.三硝基甲苯起爆机理实验研究.高压物理学报,1999,13(3):184-186

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700