用户名: 密码: 验证码:
内塑化纤维素酯的制备、性能和结构研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纤维素是由许多D-葡萄糖基通过β-1,4苷键连接而成的线性高分子,是自然界中最丰富的可再生天然资源。利用纤维素为原料,制取具有广阔应用前景的可生物降解纤维素酯,部分取代来源于石化产品的塑料,将为塑料工业开拓一条新的原料渠道。但商品化的短链纤维素酯或混合酯基本都要使用增塑剂来拓宽其加工温度,而纤维素内塑化材料是通过接枝或化学修饰的方法使其内部塑化,克服在塑化和使用过程中增塑剂的迁移和流失问题,从而提高材料的综合性能。合成出较长碳链的脂肪酸纤维素酯是一种较为可行的对纤维素进行内增塑改性的方法。
     本论文的基本思路是将纤维素溶液化,均相体系下合成出纤维素内塑化材料所需的长链脂肪酸纤维素酯,与可生物降解的聚己内酯复配增韧,并揭示其制备、性能与结构的关系,为开发生物质基可降解高分子新材料及纤维素的增值利用提供理论参考,其主要研究内容和结果如下:
     1.纤维素非衍生化离子溶液的制备
     纤维素具有的晶区和非晶区共存的复杂结构,使其在良溶剂氯化锂/二甲基乙酰胺(LiCl/DMAc)中溶解也需进行活化处理,实验采用超声波一步法制备了室温下稳定的纤维素非衍生化离子溶液。通过调节超声波的输出功率和处理时间确定制备溶液的优化工艺,研究了超声波处理对纤维素分子及形态结构的影响,并对该溶液的流变性能进行了考察。红外光谱(FT-IR)、X-ray衍射(XRD)结果表明,超声波对纤维素在LiCl/DMAc中的处理过程起到了物理活化的效果,只需对纤维素、氯化锂和二甲基乙酰胺混合物超声处理5~7 min,并于室温下搅拌3~5 h,即可获得纤维素均匀溶液;13C-NMR图谱中只出现了纤维素缩水葡萄糖苷结构单元碳原子的特征化学位移,证明了纤维素经此工艺条件制备的体系中并未形成新的衍生物,这有利于对其进行后续的功能化改性研究。
     2.微波法合成纤维素长链脂肪酸酯及结构表征
     在均相体系下运用微波法制备纤维素长链脂肪酸酯是快速获得系列纤维素内塑化材料的必备条件。反应采用上述方法制备的非衍生化溶液,高级脂肪酸(己酸、辛酸和月桂酸)/甲苯-磺酰氯作为纤维素酯化的共反应体系,借助微波辐射技术,获得了不同链长取代基和取代度的酯化产物,并主要研究了取代度大小、取代侧链长短对产物性质的影响。
     首先讨论了工艺条件对纤维素月桂酸酯收率及取代度的影响,发现微波辐射条件是影响其合成结果的关键性因素。为缩短酯化反应时间、减少纤维素在反应过程中引起的降解等因素,本文将微波功率设置在300 W,进行间歇辐射60~90 s。当采用共反应剂与羧酸相同摩尔配比,催化剂使用量与纤维素脱水葡萄糖苷单元摩尔数相等时,产物的收率和取代度均达到最大;为充分利用纤维素和制备所需取代度的产物,确定原料配比为1: 4: 4。
     所得产物的FI-IR图谱和1H-NMR结果均表明,纤维素发生了部分取代反应;在化学位移δ为174.1, 173.6和172.9处出现的谱峰分别对应于纤维素缩水葡萄糖苷上的C-6, C-3, C-2上的取代基碳原子,印证了酯化反应的进行,且被取代的优先次序依次为C-6,C-3和C-2位。X-ray衍射结果则证明了改性反应不仅发生在原料纤维素的无定型区,同时也在结晶结构中进行。而差示扫描量热分析结果显示酰化反应大大削弱了纤维素分子间及分子内的作用力,使产物在0~80℃之间均出现一个明显的玻璃化转变。且随着取代度的增大,纤维素长链脂肪酸酯的数均分子质量Mn、重均分子质量Mw均随之增大,热稳定性提高,但它们具有相近的分子质量分布和相似的热分解过程。
     取代度在2.1左右的纤维素月桂酸酯、纤维素辛酸酯、纤维素己酸酯均能在二甲基亚砜、氯仿和四氢呋喃中溶解。随着取代基链长的增加,相对分子质量随之增加,而分子质量分布相差不大。纤维素己酸酯没有表现出明显的玻璃化转变区间,但在0~80℃之间,纤维素辛酸酯和纤维素月桂酸酯均出现了玻璃化温度。随着取代侧链长度的增加,对纤维素分子间及分子内氢键的破坏越明显,这样纤维素月桂酸酯、纤维素辛酸酯比纤维素己酸酯的热稳定性要低,但纤维素月桂酸酯的稳定性又稍好于纤维素辛酸酯,这是因为此时链长的空间位阻对热稳定性的影响占了主导作用。
     3.纤维素塑化材料的结构与性能研究
     由于引入的较长酯基链减弱了纤维素分子内及分子间的次价键(即范德华力),增大了纤维素分子间的距离(自由体积)而形成一定的空间,加之改性后的纤维素其链结构变得不规则,内聚力减弱,结晶性降低,从而增加了纤维素分子键的移动性,改善了纤维素高级脂肪酸酯的可塑性和溶解性。实验采用溶液流延法制备薄膜,并对材料的耐水性能、热学性质、结晶形态及力学性能进行了研究,考查了不同取代度及不同侧链对纤维素衍生物塑化材料各项性能的影响。
     不同取代程度的月桂酸塑化纤维素材料的吸水率和接触角实验结果均表明,其表面均具有良好的疏水性,其接触角均在90°左右;而透射电镜(TEM)和XRD则证明了它们的相似结晶形态。动态热机械分析(DMA)测试的Tanδ温度谱显示出整个分子链段的运动出现在150℃左右的温度点上,而取代侧基的次级转变则在-30℃左右,正是由于此峰的存在才使得此类材料在玻璃化温度以下较宽的区域内(如常温)仍然保持柔软的特性。纤维素月桂酸酯的拉伸强度随着取代度的增加而减少,而断裂伸长率都达到了60%以上,但随着取代度的增加,长链基团增加到一定程度对材料的内增塑作用变得微弱而使应变的增加不明显。
     具有不同取代侧链的纤维素塑化材料表现出不同的性能特征。其中短链改性纤维素材料的吸水率均大于长链改性材料,相近取代链长改性材料则有相近的吸水性。引入的短链烷基使纤维素塑化材料具有较明显的结晶区,界限分明,而长链侧基改性后的纤维素材料结晶现象相像,但它们具有相似的热分解过程。商品化的醋酸纤维素、醋酸丙酸纤维素和醋酸丁酸纤维素均仅有20%左右的断裂伸长率。而采用长链烷基塑化纤维素,极大地优化了材料的柔性,改性材料最大伸长率可达70%。
     4.纤维素内塑基复合材料的性能与结构研究
     为了对单一聚合物的性能缺陷进行修复或改进,以某一种聚合物为主体,添加其它组分对主体聚合物进行改性已成为高分子材料科学及工程中最为活跃的领域之一。本实验通过加入聚己内酯(PCL)来进一步改善纤维素塑化材料的力学性能,并利用FT-IR、DMA、扫描电镜(SEM)和TEM等手段对PCL和纤维素月桂酸酯的相容性进行了研究。当加入10%质量比例的PCL时,对薄膜的改性效果最明显,拉伸强度从原来14 MPa几乎提高到了30 MPa,断裂伸长率也从70%增大到了103%;
     随着PCL加入到纤维素月桂酸酯内,复配薄膜的FT-IR谱图显示—OH和—CH—基团的伸缩振动均有蓝移现象,尤其是—C=O的吸收谱带比起复配改性前变化明显。这可能是由于C=O…O=C或者C=O…O—C之间的偶极作用以及酯基的强电子吸引效应造成的。
     运用DMA对不同复配比例的薄膜进行分析,其损耗因子Tanδ曲线和Tg数据表明纤维素月桂酸酯和聚己内酯的玻璃化温度彼此靠拢,说明这两种成分具有相互作用。扫描电镜和透射电镜的测试结果也显示,在聚己内酯加入量较低时,PCL和纤维素月桂酸酯具有一定的相容性。
     5.纤维素基材料的酶可降解性初探
     环境可降解高分子材料符合材料绿色化的趋势,并已成为世界各国的共识。对不同取代程度的纤维素月桂酸酯薄膜材料进行酶解处理,并运用高效液相色谱、凝胶渗透色谱(GPC)和SEM分别测定和观察了酶解过程产生的葡萄糖、降解前后的分子质量及薄膜表观形貌。随着取代度的降低,酶解液中的葡萄糖含量逐渐增加,葡萄糖得率也明显增加。所考察的纤维素衍生物在取代程度接近的情况下,短链的纤维素衍生物随着取代度的增加,其酶解液中的葡萄糖含量和葡萄糖得率并没有很明显的区别。而长链的纤维素衍生物其葡萄糖得率随着取代侧基链长的增加,酶解液中的葡萄糖含量逐渐减少。GPC分析结果显示,样品经过酶解处理后其Mn减少,Mw增大,说明该类材料的酶降解主要是小分子质量成分的瓦解和流失。另外,SEM图片中的薄膜表面均有斑点和凹洞出现。上述结果说明所得纤维素衍生物具有一定的酶可降解性。
Cellulose, a linear homo-polymer composed of D-anhydroglucopyranose units (AGU), linked together byβ(1→4)-glycosidic bonds, is the most abundant polymer raw material available today worldwide. Esterification of cellulose represents one of the most versatile transformations as it provides access to a variety of bio-based materials with valuable properties. The internal plasticization of cellulose through grafting or chemical modification is an effective way to eliminate the change of material performance resulted from exudation or volatilization of low molecular weight plasticizers in processing and application. One potentially feasible solution would be the synthesis of esters of cellulose with longer chain acids than the currently commercial acetate, propionate and butyrate.
     The idea of the present paper is to synthesize long-chain cellulose esters in a homogeneous phase by microwave irradiation for preparing internally plasticized materials, which are modified by blending with other polymers, and to discover the correlation of its preparation, properties and structure, and as well as to provide access to a variety of cellulose-based materials with valuable properties. The main research works and results are summarized as follows:
     1. Preparation of cellulose solution by ultrasonic treatment
     The insolubility of cellulose in water and in most organic solvents was caused by areas of both high order (crystalline) and low order (amorphous). And the mixed solvent N,N’-dimethyl acetamide with lithium chloride (LiCl/DMAc) was used to dissolve cellulose after being activated. One-step procedure of activation and dissolution of cellulose in LiCl/DMAc irradiated by ultrasonic was studied. The effect of the ultrasonic on the supermolecular structure of cellulose was assessed by means of FT-IR and Wide-angle X-ray diffractometry, respectively. And ultrasonic irradiation exerted a clear influence on the morphological character of cellulose measured by scanning electron microscopy. The results of analysis showed that ultrasonic treatment affected the crystallization of the cellulose examined. The multiple parameters during the solvation process such as ultrasonic power, treatment time and degree of polymerization shown in the paper were evaluated. It was found that cellulose could be easily solubilized in LiCl/DMAc after being treated for 7 min by ultrasound at 400 w, with no degradation of the cellulose chain during the process. A study of the rheological property of the cellulose solution indicated that it was non-Newtonian fluids.13C-NMR spectrum proved that no derivatives of cellulose were formed during the solvation process.
     2. Esterification of cellulose with long-chain fatty acid irradiated by ?microwave
     Acylation of cellulose in a homogeneous phase by microwave irradiation was essential to get internally plasticized cellulose derivatives. The reaction system was cellulose, fatty acid and LiCl/DMAc with p-toluenesulfonyl chloride as an activating reagent. The cellulose esters of different degree of substitution (DS) were directly synthesized, and the correlation of properties, structure and DS, and as well substituents were investigated.
     The effect of the reaction conditions on esterification was evaluated and the results showed that microwave power and irradiation time were critical factors. For reducing reaction time and utilizing the cellulose sufficiently, the reaction time of 60-90s at 300 w was chosen in the experiment. The reagent molar ratio has significant impact on weight yields (Rmass ), molar yields(Rmol), and the DS, when irradiation power and time was kept constant. The feasible molar ratio of reagent was 1:4:4 to obtain products with desired DS.
     The—OH band in FT-IR spectra of cellulose laureates with different DS did not disappear thoroughly due to partial substitution and the remaining hydroxyl groups from crystalline regions of the cellulose, which were in good agreement with those observation from 1H-NMR for all DS < 3. Concerning 13C-NMR data of cellulose laurate with 2.6, it was observed that C-6 position was substituted, preferentially to C-3 and then to C-2 in the study. And the changes in the WAXD pattern of starting cellulose, caused by esterification reaction, were attributed to the long-chain ester bonded to cellulose. These cellulose esters had glass-transition temperature (Tg) in the 0-80°C range. However, further increase in molecular weight and DS had very little effect on Tg although the Mn and Mw of cellulose lauroyl esters increased with the DS increased.
     Cellulose laurate, cellulose caprylate, and cellulose caproate are all soluble in DMSO, CHCl3 and THF when the DS was around 2.1. At cellulose caproate,the endotherm was barely visible in the DSC thermograms, while a clear glass transition was found for cellulose caprylate and cellulose laurate in the 0-80°C range. The Mn and Mw of these cellulose esters increased with the ester chain length increasing, but thermal stability was decreased because of the weakening of extensive hydrogen bond.
     3. Structure and properties of cellulose ester plastics
     These longer chain esters (LCCEs) show promise as internally plasticized cellulose esters because the supermolecular structure of cellulose was significantly changed with the introduction of longer substituents. The internally plasticized cellulose films were obtained by casting and the influences of the DS and substitutents on the properties of these films, such as water resistance, thermal stability, glass transition temperature, tensile strength and elongation, were investigated.
     Contact angle of cellulose laurate films with different DS was nearly 90°. TEM images and XRD diffraction patterns all showed that their crystalline state was similar. DMTA in tension mode revealed separate relaxations, denotedαandβ, corresponding to the glass transition and side-chain melting processes, respectively. For the three cellulose laurate samples, two main peaks separated were readily distinguished in the tanδcurves. The relaxation at the higher temperature (αransition), which varied between 120°C and 200°C, was accompanied by the most important decrease of G′, and this indicated that it corresponded to the glass transition of the polymer. At a lower temperature, the peak corresponded toβtransition, accompanying lateral substituent melting in the vicinity of -30°C.
     The films properties of long-chain cellulose esters were also compared to those of cellulose acetate, cellulose acetate propionate and cellulose acetate butyrate. The results showed that the water absorption and tensile strength of short-chain cellulose ester plastic films were higher than the long-chain ones with preferable failure strain level. In addition to this, thermal decomposition process was similar.
     4. Compatibility Characterization of cellulose ester matrix
     Blending is a practical way to improve the performance of a single polymer. Cellulose laurate(CE) was blended with polycaprolactone (PCL) in order to improve its mechanical property. The result indicated that the elongation of the CE was improved significantly through blending with PCL, and a synergism was observed for certain compositions (CE/PCL = 90/10). The tensile strength rose from around 12MPa to 30MPa, and tensile strain increased from 70% to 103%. All the blend films showed better water resistibility regardless of mass ratio of CE and PCL.
     FT-IR spectroscopy revealed that there were several specific interactions between the chains of CE and PCL, such as the interaction between C—H and O=C—and C=O…O=C or C=O…O—C dipole–dipole interactions. TEM and SEM images showed that there was somewhat compatibility between CE and PCL.
     5. Elementary investigation on the enzyme degradation of cellulose ester films
     Biodegradable polymers featuring ecological advantages for sustainable development have attracted great commercial interest because of growing environmental concerns. A different assay was developed based on the utilization of ester enzyme and cellulolytic enzymes rather than dynamic mixed cultures found in the natural environment.The extent of biodegradation was followed by monitoring glucose production using HPLC. As the DS and the acyl chain length increased, the rate of biodegradation rates decreased. Preferential attack of the microorganisms was observed on the face of the cellulose laurate film in SEM images. Collectively, this work indicated that the cellulose ester films with lower DS and shorter side-chain showed better biodegradability.
引文
[1]戈进杰.生物降解高分子材料及其应用[M].北京:化学工业出版社,2002, 3-78.
    [2]张元琴,陈进明,黄勇.用木粉制备生物降解塑料的探讨[J].广州化学,1997, 3: 31-39.
    [3] Calil M.R., Gaboardi F., Guedes C G. F., et al. Comparison of the Biodegradation of Poly (ε– caprolactone ) , Cellulose Acetateand Their Blends by the Sturm Test and Selected Cultured Fungi [J]. Polym. Test, 2006,25(5):597-604.
    [4]张俐娜.天然高分子改性材料及应用[M].北京:化学工业出版社, 2006, 158-159.
    [5] Ei-shafee E., Saad G.R., Fahmy S.M. Miscibility, Crystallization and Phase Structure of Poly(3-hydroxybutyrate)/Cellulose Acetate Butyrate Blend[J]. Eur. Polym. J.,2001, 37(10):2091-2104.
    [6] Yoshikuni T., Yoshiyuki N. Biodegradable Cellulose Diacetate-graft-poly (L-lactide)s: Enzymatic Hydrolysis Behavior and Surface Morphological Characterization[J]. Biomacromolecules, 2004, 5 (2): 407 -414.
    [7] Hanna L., Qi Z., Harry B ,et al. Grafting of Cellulose Fibers with Poly(-caprolactone) and Poly(L-lactic acid) via Ring-Opening Polymerization[J]. Biomacromolecules, 2006, 7 (7): 2178 -2185.
    [8] Ayaka M., Takuya K., Hiroyuki W. Partial Substitution of Cellulose by Ring-opening Esterification of Cyclic Esters in a Homogeneous System[J]. J. Appl. Polym. Sci., 2006, 102(5): 4358– 4364.
    [9] Christopher J.B., Ramani N. Grafting of Poly(ethylenimine) onto Mesylated Cellulose Acetate, Poly(methyl methacrylate) and Poly(vinyl chloride)[J]. Carbohydrate Polymers, 1990,12(3): 323-327.
    [10] Petr V., Miroslav J., Petra L., et al. Controlled Grafting of Cellulose Diacetate[J]. Polymer, 2006,47(5): 2587-2595.
    [11] Debashish R., James T.G., and Sébastien P. Graft Polymerization: Grafting Poly(styrene) from Cellulose via Reversible Addition-Fragmentation Chain Transfer (RAFT) Polymerization[J]. Macromolecules, 2005, 38 (25): 10363-10372.
    [12] Francesca C., Claudia S., Enrico P., et al. Effectiveness of Graft Synthetic Polymers in Preventing Biodeterioration of Cellulose-Based Materials[J]. Macromolecular Symposia. 2006, 238(1): 84-91.
    [13] Gupta K.C., Sujata S. Graft Copolymerization of Acrylonitrile and Ethyl Methacrylate Comonomers on Cellulose Using Ceric Ions[J]. Biomacromolecules, 2001, 2 (1), 239 -247.
    [14] Mohammed K., Robert G., Pierre B., et al. New Photoantimicrobial Films Composed of Porphyrinated Lipophilic Cellulose Esters[J]. Bioorganic & Medicinal Chemistry Letters. 2006, 16(6): 1651-1655.
    [15] Edgar K.J., Buchanan C.M., Debenham J.S., et al. Advances in Cellulose Ester Performance and Application[J]. Prog. Polym. Sci. , 2001, 26(9): 1605-1688.
    [16] Ong H.L., Kumar R.N., Rozman H.D., et al. Grafting of Sodium Carboxymethylcellulose (CMC) with Glycidyl Methacrylate and Development of UV Curable Coatings from CMC-g-GMA Induced by Cationic Photoinitiators[J]. Carbohy. Polym. , 2005, 59(1): 57-69.
    [17] Gupta K.C., Keerti K. Temperature-Responsive Cellulose by Ceric(IV) Ion-Initiated Graft Copolymerization of N-Isopropylacrylamide[J]. Biomacromolecules, 2003, 4 (3): 758 -765.
    [18] Lee S.H., Shiraishi N. Plasticization of Cellulose Diacetate by Reaction with Maleic Anhydride, Glycerol, and Citrate Esters during Melt Processing[J]. J. Appl. Polym. Sci., 2001, 81(1): 243–250.
    [19] Yoshioka M., Hagiwara N., Shiraishi N. Thermoplasticization of Cellulose Acetates by Grafting of Cyclic Esters [J]. Cellulose, 1999, 6(3): 193–212.
    [20]胡艾希,谭英,游天彪,等.醋酸纤维素与环糊精接枝共聚物的制备方法及其缓释应用[P]. ZL200510032452.9, 2007.
    [21] Warth H., Mulhaupt R., Schatzle J. Thermoplastic cellulose acetate and cellulose acetate compounds prepared by reactive processing [J]. J. Appl. Polym. Sci. 1997, 64(2): 231-242.
    [22] Teramoto Y., Ama S., Higeshiro T., et al. Cellulose Acetate-graft-Poly(hydroxyalkanoate)s: Synthesis and Dependence of the Thermal Properties on Copolymer Composition [J]. Macromol. Chem. Phys. 2004, 205(14): 1904-1915.
    [23] Nishio Y. Material Functionalization of Cellulose and Related Polysaccharides via Diverse Microcompositions [J]. Adv. Polym. Sci.,2006, 205: 97-151.
    [24] Teramoto Y., Yoshioka M., Shiraishi N., et al. Plasticization of Cellulose Diacetate by Graft Copolymerization of Caprolactone and Lactic Acid[J]. J. Appl. Polym. Sci., 2002, 84(14): 2621-2628.
    [25] Teramoto Y., NishioY. Biodegradable Cellulose Diacetate-graft-poly(l-lactide)s: Thermal Treatment Effect on the Development of Supramolecular Structures[J]. Biomacromolecules, 2004, 5(2): 397-406.
    [26] Teramoto Y., Nishio Y. Biodegradable Cellulose Diacetate-graft-poly(l-lactide)s: Enzymatic Hydrolysis Behavior and Surface Morphological Characterization [J]. Biomacromolecules 2004, 5(2): 407-414.
    [27] Teramoto Y., Nishio Y. Cellulose Diacetate-graft-poly(lactic acid)s: Synthesis of Wide-ranging Compositions and Their Thermal and Mechanical Properties [J]. Polymer, 2003, 44(9): 2701-2709.
    [28] Masaya O., Shigeyuki T., Hajime N., et al. Fatty Acid Cellulose Ester-thermoplastic Molding Material[P]. JP,60188401, 1985.
    [29] Shiraishi N., Yoshioka M., Koseki H., et al. Preparation of Bildegradable Hybrid Grafted Composition of Cellulose Derivative[P]. JP11255870, 1999.
    [30] Nagahiko Y., Susumu K., Hironori H. Modified Cellulose Derivative [P]. JP63221101, 1988.
    [31] Rolf M., Joachim S., Holger W. Plasticized Cellulose Acetate, Process for its Production and its Use for Producing Filaments[P]. US5480922, 1996.
    [32] Yoshioka M., Hagiwara N., Shiraishi N. Thermoplasticization of Cellulose Acetates by Grafting of Cyclic Esters[J]. Cellulose,1999,6(3):193-212.
    [33] Yoshioka M., Takabe K., Sugiyama J., et al. Newly Developed Nanocomposites from Cellulose Acetate/Layered Silicate/Poly(ε-caprolactone) : Synthesis and Morphological Characerization[J]. J. Wood Sci. , 2006,52(2): 121-127.
    [34]殷敬华,莫志深.现代高分子物理学[M].北京:科学出版社, 2001, 393-395.
    [35]王昆华,罗传秋,周啸.聚合物近现代仪器分析[M].第2版,北京:清华大学出版社,2001, 1.
    [36] Bianka V., Szilvia K., Be′la P. External and Internal Plasticization of Cellulose Acetate with Caprolactone: Structure and Properties[J]. J. Polym. Sci.: Part B: Polym. Phys., 2007. 45(8): 873–883.
    [37] Fukuzaki H., Yoshida M., Asano M. , et al. Synthesis of Copoly(d,l-lactic acid) with Relatively Low Molecular Weight and in Vitro Degradation[J]. Eur. Polym. J., 1989, 25(10) :1019.
    [38] Ajioka M., Enomoto T., Suzuki K. , et al. Basic Properties of Polylactic Acid Produced by the Direct Condensation Polymerization of Lactic Acid [J]. Bull. Chem. Soc. Jpn., 1995, 68(8): 2125-2131.
    [39] Anders R.J., Cerveny J.G., Milkowski A.L. Method for Delaying Clostridium Botulinum Growth in Fish and Poultry[P]. US 4 888 191, 1989.
    [40] Anders R.J., Cerveny J.G., Milkowski A.L., Packaged Foodstuff Containing a Lactate Salt[P]. US 5017391, 1991.
    [41] Lipinsky E.S., Sinclair R.G. Is Lactic Acid a Commodity Chemical[J]. Chem. Eng. Prog.,1986, 82:26–32.
    [42] Murdoch J.R., Loomis G.L. Polylactide Compositions[P]. US4766182, 1987.
    [43] Sinclair R.G. Copolymers of D,L-lactide and Epsilon Caprolactone[P]. US4057537, 1977.
    [44] Mark H., Whitby G.S. Collected Papers for Wallace Hume Carothers on High Polymeric Substances[C]. Interscience,1940, New York:142-144.
    [45] Lowe C.S. Preparation of High Molecular Weight Polyhydroxyacetic Ester[P]. US 2668162, 1954.
    [46] Shoko A., Misa O., Yoshitaka A. Thermoplastic Cellulose Acetate Composition[P]. JP 2003342416, 2003.
    [47] Teramoto Y., Nishio Y. Cellulose Diacetate-graft-poly(Lactic Acid)s: Synthesis of Wide-ranging Compositions and Their Thermal and Mechanical Properties[J]. Polymer, 2003,44(9):2701-2709.
    [48] Kawai F. Microbial Degradation of Polyethers[J]. Appl. Microbio. Biotech., 2002, 58(1): 30-38.
    [49] Huimin M., Robert H.D., Christopher N.B. Principal Factors Affecting Sequential Photoinduced Graft Polymerization[J]. Polymer, 2001, 42(20): 8333-8338.
    [50] Guoxiang C., Tiezhu W., Qiang Z., et al. Preparation of Cellulose Acetate Butyrate and Poly(ethylene glycol) Copolymer to Blend with Poly(3-hydroxybutyrate)[J]. J. Appl. Polym. Sci., 2006, 100(2): 1471– 1478.
    [51]姜勇,丁恩勇,黎国康.聚乙二醇/二醋酸纤维素相变材料的组成与储能性能间的关系[J].高分子学报, 2000,(6): 681-687.
    [52]游天彪,谭英,唐青,等.二醋酸纤维素与聚乙二醇接枝共聚物的制备与表征[J].应用化学, 2006, 23(3): 346-348.
    [53]王东山,黄勇,沈家瑞.二醋酸纤维素与聚乙二醇单甲醚接枝反应的正交实验研究[J].高分子材料科学与工程,2002, 18(6):66-69.
    [54]王东山,黄勇,沈家瑞.二醋酸纤维素与聚乙二醇单甲醚接枝共聚物的合成与表征[J].纤维素科学与技术,2001, 9(3): 19-26.
    [55]王东山,黄勇,沈家瑞.二醋酸纤维素与聚乙二醇单甲醚接枝物的表征[J].华南理工大学学报(自然科学版),2001,29(12):26-30.
    [56] Glasser W.G., McCartney B.K., Samaranayake G. Cellulose Derivatives with Low Degree of Substitution. 3. The Biodegradability of Cellulose Esters Using a Simple Enzyme Assay[J]. Biotechnology Progress, 1994, 10(2): 214-219.
    [57] Heinze T.J., Glasser W.G. Cellulose Derivatives Modification, Characterization and Nanostructures[M]. ACS Symposium Series: 38-60. 1998.
    [58] Wang P., Tao B.Y. Synthesis of Cellulose-fatty Acid Esters for Use as Biodegradable Plastics[J]. J. Environ. Polym. Degrad. , 1995,3(2):115-119.
    [59]宋镠毅,马凤国,邵自强,等.合成纤维素高级脂肪酸酯的研究进展[J].高分子材料科学与工程,2002,18(2): 11-15.
    [60] Edgar K. J., Buchanan C.M., Debenham J.S., et al. Advances in Cellulose Ester Performance and Application[J]. Progr. Polym. Sci., 2001, 26(9): 1605-1688.
    [61]高洁,汤烈贵.纤维素科学[M].北京:科学出版社,1999, 89.
    [62] Maim C.J., Mench J.W., Kendall D.L., et al. Aliphatic Acid Esters of Cellulose. Preparation by Acid-Chloride-Pyridine Procedure[J]. Industrial & Engineering Chemistry, 1951, 43 (3):684 ~688.
    [63] Wang P., Tao B.Y. Synthesis and Characterization of Long-Chain Fatty Acid Cellulose Esters(FACE)[J]. J. Appl. Polym. Sci., 1994, 52 (6):755-761.
    [64] Morooka T., Norimoto M., Yamada T., et al. Dielectric Properties of Cellulose Acylates [J]. J. Appl. Polym. Sci., 1984,29(12): 3981-3990.
    [65] Jandura P., Kokta B.V., Riedl B. Fibrous Long-chain Organic Acid Cellulose Esters and Their Characterization by Diffuse Reflectance FTIR Spectroscopy, Solid-state CP/MAS 13C-NMR, and X-ray Diffraction[J]. J. Appl. Polym. Sci., 2000, 78(7): 1354-1365.
    [66] Vaca-Garcia C., Borredon M.E. Solvent-free Fatty Acylation of Cellulose and Lignocellulosic Wastes. Part 2: Reactions with Fatty Acids[J]. Bioresource Technology, 1999,70(2):135-142.
    [67] Matsumura H., Sugiyama J., Glasser W.G. Cellulosic Nanocomposites. I. Thermally Deformable Cellulose Hexanoates from Heterogeneous Reaction[J]. J. Appl. Polym. Sci., 2000,78(13): 2242-2253.
    [68] Matsumura H., Glasser W.G. Cellulosic Nanocomposites. II. Studies by Atomic Force Microscopy[J]. J. Appl. Polym. Sci., 2000, 78(13): 2254-2261.
    [69] Kwatra H.S., Caruthers J.M., Tao B.Y. Synthesis of Long-chain Fatty Acids Esterified onto Cellulose via the Vacuum-acid Chloride Process[J]. Industrial & Engineering Chemistry Research, 1992,31(12): 2647-2651.
    [70] Thiebaud S., Borredon M.E. Solvent-free Wood Esterification with Fatty Acid Chlorides[J]. Bioresource Technology,1995,52(2): 169-173.
    [71] Thiebaud S., Borredon M.E., Baziard G., et al. Properties of Wood Esterified by Fatty-acid Chlorides. Bioresource Technology, 1997, 59(2-3): 103-107.
    [72] Edgar K.J., Bogan R.T. Direct Process for the Production of Cellulose Esters[P], US5750677,1998.
    [73] Edgar K.J., Bogan R.T. Direct Process for the Production of Cellulose Esters[P]. US5929229,1999.
    [74] Freire C.S.R., Silvestre A.J.D., Neto C. P., et al. Controlled Heterogeneous Modification of Cellulose Fibers with Fatty Acids: Effect of Reaction Conditions on the Extent of Esterification and Fiber Properties[J]. J. Appl. Polym. Sci., 2006, 100(2): 1093-1102.
    [75] Turbak A.F., ElKafrawy A., Snyder F.W., et al. Solvent System for Cellulose[P]. US4302252, 1981.
    [76] McCormick C.L.Novel Cellulose Solution[P]. US4278790, 1981.
    [77] McCormick C.L., Chen T.S. Cellulose Dissolution and Derivatization in Lithium Chloride/N,N-dimethylacetamide Solutions[C]. In: Symor RB, Stahl GA, editors. Macromolecular Solutions, Solvent-property Ealationships in Polymers. New York: Pergamon Press, 1982:101.
    [78] Isogai A., Ishizu A., Nakano J. Preparation of Tri-o-benzyl Cellulose by the Use of Nonaqueous Cellulose solvents[J]. J. Appl. Polym. Sci., 1984, 29(6): 2097-2109.
    [79] McCormick C.L., Calliais P.A., Hutchinson B.H. Solution Studies of Cellulose in Lithium Chloride and N,N-dimethylacetamide[J]. Macromolecules, 1985,18(12):2394-2401.
    [80] McCormick C.L. Callais P.A. Derivatization of Cellulose in Lithium Chloride and N,N-dimethylacetamide Solutions[J]. Polymer, 1987,28(13): 2317-2323.
    [81] Dawsey T.R., McCormick C.L. Lithium Chloride/Dimethylacetamide Solvent for Cellulose. A Literature Review[J]. Journal of Macromolecular Science-Reviews in Macromolecular Chemistry and Physics, 1990,C30 (3&4): 405-440.
    [82] McCormick C.L., Dawsey T.R., Preparation of Cellulose Derivatives via Ring-opening Reaction with Cyclic Reagents in Lithium Chloride/N,N-dimethylacetamide [J]. Macromolecules, 1990, 23 (15): 3606-3610.
    [83] Rahn K., Diamantoglou M., Klemm D., et al. Homogeneous Synthesis of Cellulose p-toluenesulfonates in N,N-dimethylacetamide/LiCl Solvent Syntem[J]. Die Angewandte Makromolekulare Chemie, 1996, 238:143-16.
    [84] Liu H., Zhang L., Minoda M., et al. Phase Transition of 2,3-O-methylcellulose[J]. Polymer Bulletin, 1998, 40 (6): 741-747.
    [85] Sj?holm E., Gustafsson K., Eriksson B., et al. Aggregation of Cellulose in Lithium Chloride/N,N-dimethylacetamide[J].Carbohydrate Polymers, 2000, 41(2):153-161.
    [86] Samaranayake G., Glasser W.G. Cellulose Derivatives with Low DS. I. A Novel Acylation System[J]. Carbohydrate Polymers, 1993, 22(1): 1-7.
    [87] Glasser W.G., Samaranayake G., Sealey-II J.E. Cellulose Derivatives with a Low Degree of Substitution[P]. US5523398, 1996.
    [88] Sealey J.E., Samaranayake G., Todd J.G., et al. Novel Cellulose Derivatives. IV. Preparation and Thermal Analysis of Waxy Esters of Cellulose[J]. J. Polym. Sci., Part B:Polym. Phys., 1996, 34(9):1613-1620.
    [89] Edgar K.J., Pecorini T.J., Glasser W.G. Long-chain Cellulose Esters: Preparation, Properties, and Perspective. In: Heinze T., Glasser W.G., editors. Cellulose Derivatives: Modification, Characterization, and Nanostructures, ACS Symposium Series 688[C]. Washington D C: American Chemical Society, 1998: 38-60.
    [90] Satge C., Granet R., Verneuil B., et al. Synthesis and Properties of Biodegradable Plastic Films Obtained by Microwave-assisted Cellulose Acylation in Homogeneous Phase[J]. Comptes Rendus Chimie, 2004,7:135-142.
    [91] Joly N., Granet R., Branland P., et al. New Methods for Acylation of Pure and Sawdust-Extracted Cellulose by Fatty Acid Derivatives-Thermal and Mechanical Analyses of Cellulose-Based Plastic Films[J]. J. Appl. Polym. Sci., 2005, 97 (3):1266-1278.
    [92] Memmi A., Grant R., Gahbiche M.A., et al. Fatty Esters of Cellulose from Olive Pomace and Barley Bran: Improved Mechanical Properties by Metathesis Crosslinking[J]. J. Appl. Polym. Sci., 2006,101(1):751-755.
    [93] Buchanan C.M., Edgar K.J., Hyatt J.A., et al. Preparation of Cellulose [1-carbon-13]Acetates and Determination of Monomer Composition by NMR Spectroscopy[J]. Macromolecules 1991, 24(11): 3050-3059.
    [94] Samaranayake G., Glasser W.G. Cellulose Derivatives with Low DS. II. Analysis of Alkanoates Carbohydrate[J]. Polymers, 1993, 22(2): 79-86.
    [95] Gourson C., Benhaddou R., Granet R., et al. Valorization of Maize Bran to Obtain Biodegradable Plastic Films[J]. J. Appl. Polym. Sci., 1999, 74(13): 3040-3045.
    [96]魏玉萍.纤维素基高分子表面活性剂的合成及性能研究[D].天津大学博士学位论文,2005.
    [97] KOOLS W.F.C.,KONAGURTHU S.,GREENBERG A.R., et al.Use of Ultrasonic Time-domain Reflectometry for Real-time Measurement of Thickness Changes During Evaporative Casting of Polymeric Films[J]. J. Appl. Polym. Sci.,1998, 69(10):2013-2019.
    [98]唐爱民,梁文芷.纤维素预处理技术的发展[J].林产化学与工业, 1999,19(4):84-85.
    [99] SATGE C., GRANET R., VERNEUIL B., et al. Synthesis and Properties of Biodegradable Plastic Films Obtained by Microwave-assisted Cellulose Acylation in Homogeneous Phase[J]. C. R. Chimie 2004, 7(2):135-142.
    [100] SATGE C., VERNEUIL B., BRANLAND P., et al. Rapid Homogeneous Esterification of CelluloseInduced by Microwave Irradiation[J]. Carbohydr. Polym., 2002, 49(3): 373-376.
    [101] JOLY N., GRANET R., BRANLAND P., et al. New methods for acylation of pure and sawdust-extracted cellulose by fatty acid derivatives-thermal and mechanical analyses of cellulose-based plastic films[J]. J. Appl. Polym. Sci., 2005, 97(3):1266-1278.
    [102] POTTHAST A., ROSENA T., SARTORI J., et al. Hydrolytic Processes and Condensation Reactions in the Celllulose Solvent System N,N-dimethylacetamide/Lithium Chloride. Part 2: Degradation of Cellulose[J]. Polymer, 2003, 44(1):7-17.
    [103] El-Kafrawy A. Investigation of the Cellulose/LiCl/Dimethylacetamide and Cellulose/LiCl/N-methyl-2-pyrrolidinone Solutions by 13C NMR Spectroscopy[J]. J. Appl. Polym. Sci.,1982,27:2435.
    [104] McCormick C.L., Callais P.A., Hutchinson Jr B.H. Solution Studies of Cellulose in Lithium Chloride and N,N-dimethylacetamide[J]. Macromolecules 1985, 18:2394.
    [105] Striegel A.M. Theory and Applications of DMAC/LICL in the Analysis of Aolysaccharides[J] Carbohydr. Polym.,1997;34(4):267.
    [106] Spange S., Reuter A., Vilsmeier E., et al. Determination of Empirical Polarity Parameters of the Cellulose Solvent N,N-dimethylacetamide/LiCl by Means of the Solvatochromic Technique[J]. J.Polym.Sci., A, Polym. Chem., 1998,36(11):1945-1955.
    [107] Cai J., Zhang L. Rapid Dissolution of Cellulose in LiOH/Urea and NaOH/Urea Aqueous Solutions [J].Macromol Biosci, 2005, 5(6), 539.
    [108] Cai J., Zhang L. Unique Gelation Behavior of Cellulose in NaOH/Urea Aqueous Solution[J]. Biomacromolecules, 2006, 1(1), 183.
    [109]袁龙蔚.流变力学概论[M].北京:科学出版社,1986,330.
    [110] Klemm D., Heublein B., Fink H.P., et al. Cellulose: Fascinating Biopolymer and Sustainable Raw Material[J]. Angew Chem. Int. Ed., 2005, 44 (22): 3358-3393.
    [111] Heinze T., Liebert T.. Unconventional Methods in Cellulose Functionalization[J]. Prog. Polym. Sci., 2001, 26 (9):1689-1762.
    [112] Heinze T., Schaller J. New Water Soluble Cellulose Ester Synthesized by an Effective Acylation Procedure[J]. Macromol. Chem. Phys., 2000, 201 (12):1214-1218.
    [113] Heinze T., Liebert T., Pfeiffer K.S., et al. Unconventional Cellulose Ester: Synthesis, Characterization and Structure-property Relations[J]. Cellulose, 2003, 10(3):283-296.
    [114] Glasser W.G., Samaranayake G., Dumay M., et al. Novel Cellulose Derivatives. III. Thermal Analysis of Mixed Esters with Butyric and Hexanoic Acid[J]. J. Polym. Sci. Part B: Polym. Phys., 1995, 33(14): 2045-2054.
    [115] VaCa-Garcia C., Gozzelino G., Glasser W.G., et al. Dynamic Mechanical Thermal Analysis Transitions of Partially and Fully Substituted Cellulose Fatty Esters[J]. J. Polym. Sci. Part B: Polym. Phys. 2003; 41(3): 281–288.
    [116] Sealey J.E., Samaranayake G., Todd J G., et al. Novel Cellulose Derivatives. IV. Preparation and Thermal Analysis of Waxy Esters of Cellulose. J. Polym. Sci. Part B: Polym. Phys.,1996, 34(9): 1613-1620.
    [117]张俐娜.天然高分子改性材料及应用[M].北京:化学工业出版社, 2006,96.
    [118] Kavakami M,Iwanga H,Hara Y,et al.Gas permeabilities of cellulose nitrate/poly(ethylene glycol) blend membranes[J].J. Appl. Polym. Sci.,2003,27(7):2387-2393.
    [119] Li J T,Nagai K,Nakagawa T,et al.Preparation of polyethyleneglycol (PEG) and cellulose acetate (CA) blend membranes and their gas permeabilities[J].J. Appl. Polym. Sci.,2003,58(9):1455-1463.
    [120] Cheng G X,Wang T Z,Zhao Q,et al.Preparation of cellulose acetate butyrate and poly(ethylene glycol) copolymer to blend with poly(β-hydroxybutyrate)[J]. J. Appl. Polym. Sci.,2006,100(2):1471-1478.
    [121] Shen Q,Liu D S.Cellulose/poly(ethylene glycol) blend and its controllable drug release behaviors in vitro[J]. Carbohydr. Chem., 2007,69(2): 293-298.
    [122] Huda M. S.,Mohanty A. K., Drzal L.T., et al.“Green”composites from recycled cellulose and poly(lactic acid): Physico-mechanical and morphological properties evaluation[J].J. Mater. Sci.,2005,40(16):4221- 4229.
    [123]高勤卫,李明子,董晓.乙基纤维素共混改性聚乳酸的研究[J].南京林业大学学报:自然科学版,2006,30(1):37-40.
    [124] Whittaker,Robin N,Rose,et al..Beverage infusion packages and materials therefore [P].UP0013831,2004.
    [125] Gavel,Thierry,Middleton,et al.Labels[P].UP0197512,2004.
    [126] Oishi A , Zhang M , Nakayama K, et al. Synthesis of Poly(butylene succinate) and Poly(ethylene succinate) Including Diglycollate Moiety[J]. Polym. J., 2006, 38 (7): 710-715.
    [127] Wu L B , Liu Y M , Esker A R. Brewster Angle Microscopy Study of Poly(ε-caprolactone) CrystalGrowth in Langmuir Films at the Air/Water Interface [J]. Langmuir (Letter ) , 2006 , 22 (11) : 4902-4905.
    [128] Yamashita K, Kikkawa Y, Kurokawa K, et al . Enzymatic Degradation of Poly(l-lactide) Film by Proteinase K: Quartz Crystal Microbalance and Atomic Force Microscopy Study[J]. Biomacromolecules, 2005 , 6(2): 850-857.
    [129] Rizzarelli P , Puglisi C , Montaudo G. Soil burial and enzymatic degradation in solution of aliphatic co-polyesters[J]. Polym. Degrad. and Stab. , 2004 , 85(2): 855-863.
    [130] Modelli A , Rondinelli G, Scandola M , et al. Biodegradation of Chemically Modified Flax Fibers in Soil and in Vitro with Selected Bacteria. Biomacromolecules, 2004, 5(2): 596-602.
    [131] Nakayama K, Masuda T , Taguchi Y, et al . J P Patent : 200223788954.
    [132]王国全.聚合物共混改性原理与应用[M].北京:中国轻工业出版社,2008, 9.
    [133] Braganca F C,Rasa D S.Thermal, mechanical and morphological analysis of poly(ε-caprolactone), cellulose acetate and their blends[J].Polym. Adv. Technol.,2003,14(10):669-675.
    [134] Zhou X S,Huang Y.Formation and morphologies of ethylcyanoethyl cellulose/poly(ε-caprolactone) blending films[J].J. Appl. Polym. Sci.,2004,93(2):550-554.
    [135] Rosa D S,Guedes C G F,Bardi M A G.Evaluation of thermal, mechanical and morphological properties of PCL/CA and PCL/CA/PE-g-GMA blends[J]. Polym. Test.,2007,26(2):209-215.
    [136] Buchanan C M,Boggs C N,Dorschel D D,et al.Composting of miscible cellulose acetate propionate-aliphatic polyester blends[J].J. Polym. and the Environ., 1995,3(1):1-11.
    [137] Buchanan C M , Gedon S C , White A W , et al . Cellulose Acetate butyrate and poly(hydroxybutyrate-co-valerate) copolymer blends[J].Macromolecules,1992,25(26):7373-7381.
    [138] MA X.F., YU J.G., WANG N. Compatibility Characterization of Poly(lactic acid)/Poly(propylene carbonate) Blends[J]. J. Polym. Sci. Part B: Polym. Phys., 2006, 44(1): 94–101.
    [139] Peng, S. W.; Wang, X. Y.; Dong, L. S. Special interaction between poly (propylene carbonate) and corn starch [J]. Polym. Compos. 2005, 26(1), 37–41.
    [140] Kuo, S. W.; Huang, C. F.; Chang, F. C. J. Study of hydrogen-bonding strength in poly(-caprolactone) blends by DSC and FTIR[J]. J. Polym. Sci. Part B: Polym. Phys. 2001, 39(12), 1348–1359.
    [141] Allard, D.; Prudhomme, R. E. Miscibility of poly(caprolactone)/chlorinated polypropylene and poly(caprolactone)/poly(chlorostyrene) blends [J]. J. Appl. Polym. Sci. 1982, 27, 559–568.
    [142]杨万泰.聚合物材料表征与测试[M].北京:中国轻工业出版社,2008, 184.
    [143] Buchanan C M,Boggs C N,Dorschel D D,et al. Composting of miscible cellulose acetate propionate-aliphatic polyester blends [J]. J. Environ. Polym. Degrad.,1995,3:1-11.
    [144] Buchanan C M,Boggs C N,Dorschel D D,et al.The influence of degree of substitution on blend miscibility and biodegradation of cellulose acetate blends[J].J Environ. Polym. Degrad. 1996,4:179-195.
    [145] Gilmore D F , Fuller R C , Schneider B , et al . Biodegradability of blends of poly (3-hydroxybutyrate-co-3-hydroxyvalerate) with cellulose acetate esters in activated sludge.J. Polym. and the Environ.,1994,2(1):49-57.
    [146] Glasser W G, Mc Cartney B K, and Samaranayake G. Cellulose derivatives with low degree of substitution.3. The biodegradability of cellulose esters using a simple enzyme assay. Biotechno. Progr. , 1994,10: 214-219.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700