用户名: 密码: 验证码:
毛竹/杨木复合材料界面胶合性能及其影响因素研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着我国木材资源供需矛盾不断加大,政府出台了一系列提倡木材节约代用的政策。竹木复合材料能够充分发挥竹材和人工林木材优势,利用我国丰富的人工林资源,提高了人工林木材附加值。目前竹木复合材料研究多以产品研发、工艺性能为主,而对于其界面性能的研究较少。因此,本论文主要以漂白毛竹、碳化毛竹(Phyllostachys pubescens Mazel ex H.de Lehaie)和杨木单板(Populus deltoids Bartr. CL.‘zhonghan 17’)为原料,以双组分异氰酸酯乳液型胶粘剂(EPI)和三聚氰胺改性脲醛树脂(UF)为胶粘剂,探讨复合材料制备工艺、温湿度环境对界面力学性能及其复合材料胶合强度和尺寸稳定性的影响。具体研究内容和结果如下:
     1)研究了主要工艺参数对毛竹/杨木单板复合材料胶合性能的影响,并探讨了单元材料表面性能以及复合材料界面胶粘剂渗透性能与复合材料胶合性能的关系。
     研究结果表明,以EPI为胶粘剂的毛竹/杨木复合材料,较优涂胶量为250g/m2,压板压力为1.6MPa;以UF为胶粘剂的毛竹/杨木复合材料,较优涂胶量为300g/m2,压板压力为1.2MPa,面粉添加量为0%。UF胶合竹木复合材料的胶合性能略高于EPI,但两者差异不显著。几种复合材料胶合强度大小依次为:漂白竹材/漂白竹材>碳化竹材/碳化竹材>漂白竹材/杨木单板>碳化竹材/杨木单板>杨木单板。
     分别采用接触角测定仪、X射线光电子能谱(XPS)和红外光谱仪测定了单元材料表面润湿性能、表面活性和表面化学成份;通过荧光显微镜观察了两种胶粘剂在毛竹/杨木复合材料界面的渗透性能。研究结果表明材料表面润湿性能和胶粘剂在材料表面渗透性能对材料胶合性能的提高有一定作用,其中EPI在杨木单板表面的渗透性能和UF在竹材表面的渗透性能与胶合强度关系更为密切。
     2)通过数字散斑相关法和有限元方法研究了毛竹/杨木复合界面微观应力应变分布情况,并探讨与宏观胶合性能间的关系。
     研究结果表明,相对于EPI,UF胶合界面剪切应变和剥离应变较小,相应剪切应力和剥离应力较大,与UF弹性模量大有关。不同基材复合材料最大应力应变为:杨木单板/杨木单板>碳化竹材/碳化竹材>漂白竹材/漂白竹材,其中漂白竹材/杨木单板胶合试件各项最大应力应变介于漂白竹材/漂白竹材和杨木单板/杨木单板之间,说明提高基材弹性模量可以降低界面各项应变应力值。
     3)探讨了水分和湿度对毛竹/杨木单板复合材料尺寸稳定性和胶合性能的影响。
     在温度80℃,相对湿度分别为40%和90%的周期湿度变化条件下,单元材料的尺寸变化以弹性变形为主。漂白竹材与杨木单板的尺寸变化幅度更为接近,碳化竹材的尺寸变化幅度较大;周期湿度变化条件下,漂白竹材/杨木单板和碳化竹材/杨木单板尺寸与单元材料中的竹材变化程度接近。EPI胶合材料三个方向尺寸变化大于UF胶合材料。漂白竹材/杨木单板的胶合强度大于碳化竹材/杨木单板。UF胶合竹材/杨木单板胶合强度随周期湿度增加呈降低趋势; EPI胶合两种竹材/杨木湿状拉伸强度随着处理周期增加变化不大,甚至略有增加。
     4)研究了温度在80℃和室温之间周期变化对毛竹/杨木复合材料及其单元材料尺寸变化和胶合强度的影响。
     研究结果表明周期温度变化条件下单元材料径向尺寸>弦向>顺纹方向。单元尺寸稳定性杨木单板>碳化竹材>漂白竹材。复合材料在顺纹方向和径向上的尺寸整体呈降低趋势,弦向的尺寸在开始两个热处理周期中变化较大,后面三个周期中基本不变。EPI胶合复合材料顺纹方向尺寸变化小于UF胶合材料,径向和弦向的尺寸变化大于UF胶合材料。复合材料湿状拉伸强度受温度影响均有不同程度的降低,但温度周期对胶合强度影响差异不显著。
     5)采用有限元法模拟了碳化竹材/杨木单板复合材料在瞬态非等温加热条件下温度、应力应变变化情况。
     研究结果表明,在非等温条件下,复合材料从加热面到非加热面温度逐渐降低。复合材料的剥离应变大于剪切应变,最大剥离应力大于剪切应力。各项应变和应力均随温度的传递以某一值为中心呈阶段性振荡变化。非等温加热条件导致材料产生沿顺纹方向的瓦弯;最大剥离应力和剪切应力均位于复合材料的端部。碳化竹材/碳化竹材最大变形大于碳化竹材/杨木单板,最大应力应变也大于后者。
As the contradiction of wood demand and supply in China, a series of policies for wood saving and substitution have been released to ensure the sustainable development of wood industry. Developing bamboo/wood composites is one way to make full use of both advantages of bamboo and plantation wood.
     Lots of researches have been doing on bamboo/wood composites most of which focus on the product development, production process and so on. But there are few researches on the interface of bamboo/wood Composite. Therefore this paper focused on the relationship between mechanical properties of interface of bamboo/wood and bonding strength of bamboo/wood composite with different processing parameters, humidity condition and thermal condition. Three kinds of element materials which were bleached bamboo, carbonized bamboo and poplar veneer and two types of adhesives which were emulsion polymer isocynate (EPI) and urea formaldehyde (UF) were used in the experiment. Research methods and results were as follows:
     1) Key processing parameters for bamboo/poplar veneer composite processing had been studied, and the relationship of surface properties of elements and glue penetration in composite interface and the bonding strength of composite had been studied.
     Results showed that the optimum glue spreading and pressure for composites glued by EPI were 250g/m2 and 1.6MPa, respectively; the optimum glue spreading, pressure and filler content for composites glued by UF were 300g/m2, 1.2MPa and 0%, respectively. Bonding strength of composites glued by UF was little high than that of EPI. Bonding strength of composites composed by different elements was as follows: bleached bamboo/bleached bamboo > carbonized bamboo/carbonized bamboo > bleached bamboo/poplar veneer > carbonized bamboo/poplar veneer > poplar veneer/poplar veneer.
     Wettability, surface activity and surface chemical constituents were studied by contact angle meters, x-ray photoelectron spectroscopy (XPS) and fourier transform infrared (FTIR), respectively. And penetrability of adhesive on the surface of bleached bamboo, carbonized bamboo and poplar veneer was studied by fluorescence microscope. Result showed that surface wettability and penetration of adhesives on the surface of elements played some roles on the improvement of bonding strength of composite, and the effect of penetration, especially the penetration of EPI on the surface of poplar veneer and UF on the surface of bamboos, was bigger than the wettability of elements.
     2) Strain distribution in the interface of composites studied by digital speckle correlation method (DSCM) and finite element method (FEM).
     Results showed that the maximum shear strain was at the end of glueline. Composite glue by UF had lower shear strain and peel strain, but higher shear stress and peel stress, compared with composite glued with EPI. Strains and stresses in the interface were symmetric and the maximum stresses and strains were both at the end corner of glueline contacting with substrates, when composite was composed by substrates with same MOE, otherwise strains and stresses in the interface were asymmetric and the maximum shear stress and peel stress were at the end corner of glueline contacting with poplar veneer and bamboo, respectively; strains close to poplar veneer were higher than that to bamboo. The maximum stresses and strains of composites were as follows: poplar veneer/poplar veneer > bleached bamboo/poplar veneer > carbonized bamboo/carbonized bamboo > bleached bamboo/bleached bamboo, which means composite composed by substrates with higher MOE had lower maximum strains and stresses.
     3) The dimensional change and bonding strength of bamboo/poplar veneer under humidity cycle was studied.
     The humidity cycled between 40% and 90% under 80℃. Results showed that the dimensional change of bleached bamboo was closed to that of poplar veneer, and lower than that of carbonized bamboo. The dimensional changes of bamboo/poplar veneer were close to those of bamboo elements. Composite glued with EPI had larger dimensional change than that of glued with UF, which related to the MOE of adhesives.
     Bleached bamboo/poplar veneer had higher bonding strength than carbonized bamboo/poplar veneer, which because the big differential dimensional change between carbonized bamboo and poplar veneer in the humidity cycle. There was a decrease in bonding strength of composite glued with UF, while even a few of increase in that of composite glue with EPI as the increase of humidity cycle.
     4) The dimensional change and bonding strength of bamboo/poplar veneer under thermal cycle was studied.
     The thermal was cycled between 80℃and room temperature. Results showed that thermal cycle had the biggest effect on the elemental dimension in radical direction, followed by tangential direction and longitudinal direction. Poplar veneer had the largest dimensional change, followed by carbonized bamboo and bleached bamboo. As the increase of thermal cycle, the composite dimension in longitudinal direction and radical direction was decreased; while decreased at the first two cycles and after that it changed little in tangential direction. The dimensional change of composite glued with EPI was lower than that of glued with UF in longitudinal direction, and higher than that of glue with UF in radical and tangential direction. 5) Temperature, strain and stress distribution in carbonized bamboo/poplar veneer under nonisothermal condition was studied with finite element method.
     Results showed that temperature was gradually decreased from heating side to non-heating side. And it increased in nonlinear form at first and then turn to linear form as a function of time. The maximum stresses were located at the end of the glueline. Peel strain and stress was higher than shear strain and stress in the composite. As the increase of temperature, the maximum stress and strain in the composite were oscillated around a certain value.
     Composite warped up under the nonisothermal condition. Carbonized bamboo/carbonized bamboo had larger deformation than carbonized bamboo/poplar veneer, and also higher strain and stress in the interface.
引文
[1]彭镇华江泽慧.长江中下游低丘滩地综合治理与开发研究.北京:中国林业出版社,1996.
    [2]江泽慧,王戈,费本华等.竹木复合材料的研究及发展.林业科学研究. 2002, 15(6): 712-718.
    [3]乔永平.发展人工林:解决我国木材供需矛盾的长远战略选择.林业经济问题. 2006, 26(3):269-273.
    [4]关明杰.竹木复合材料湿热效应研究.南京林业大学博士论文, 2006.
    [5] Xu Heng , Chiaki Tanaka , Tetsuya Nakao. Mechanical properties of plywood reinforced by bamboo and jute. Forest Products Journal. 1998, 48(1) :81-85.
    [6] Matsuda T. Manufacture of medium density fiberboard from Malaysian fast growing tree species and bamboo. Bulletin of FFPRI, Ibaraki, 1995. 369-373.
    [7] Lee A W C, Bai X S. Bangi A P. Flexural properties of bamboo2reinforced southern pine OSB beam. Forest Products Journal. 1997 ,47 (6) :74 -78.
    [8]王思群,华毓坤,董士琴.竹木复合定向刨花板强度性能的研究.木材工业. 1991, 5 (3): 6-10.
    [9]吴章康,张宏健,黄素永.竹木复合中密度纤维板工艺条件的研究.木材工业. 2000, 14(3):7~10.
    [10]张齐生,孙丰文.竹木复合集装箱底板的研究.林业科学. 1997, 33(6): 546-554.
    [11]张方文,于文吉,张亚梅.不同单元形态木材增强重组竹结构材料抗弯性能的研究.林产工业.2008, 35(3): 17-19.
    [12]于文吉.竹材表面性能及力学性能变异规律的研究.博士论文, 2001.
    [13]王戈.毛竹/杉木层积复合材料及其性能.博士论文, 2003.
    [14] Brady, D.E. and Kamke, F.A. Effects of hot-pressing parameters on resin penetration. Forest Products Journal, 1988. 38(11-12): p. 63-68.
    [15] Marra, A. A. Technology of wood bonding: principles in practice. Van Nostrand Reinhold, New York, 1992.
    [16] Milan Sernek. Comparative analysis of inactived wood surfaces.博士论文,2002.
    [17]江泽慧,于文吉,余养伦.竹材表面润性研究.竹子研究汇刊. 2005, 24 (4): 31-38.
    [18]张洋.麦秸表面的润湿性能.木材工业. 2001, 15(2):6-8.
    [19] Hse, C.Y., Properties of phenolic adhesives as related to bond quality in southern pine plywood. Forest products journal, 1971. 21(1): p. 44-52.
    [20] Vázquez, G., et al., Effect of veneer side wettability on bonding quality of Eucalyptus globulus plywoods prepared using a tannin–phenol–formaldehyde adhesive. Bioresource Technology, 2003. 87(3): p. 349-353.
    [21]程瑞香,顾继友.落叶松、桦木和柞木木材表面的润湿性能.东北林业大学学报. 2002, 30(3):29-31.
    [22] Collett, B.M., A review of surface and interfacial adhesion in wood science and related fields. Wood Science and Technology, 1972. 6(1): p. 1-42.
    [23] Jakal, L., Effect of the penetration of adhesive on the strength of adhesive. Faipar, 1984. 34(2): p. 59-60.
    [24] Gindl, W., Sretenovic, A., Vincenti, A. et al., Direct measurement of strain distribution along a wood bond line. Part 2: Effects of adhesive penetration on strain distribution. Holzforschung, 2005. 59(3): p. 307-310.
    [25] White, M.S., Influence of Resin Penetration on the Fracture Toughness of Wood-adhesive Bonds. 1975, Virginia Polytechnic Institute and State University.
    [26] Gindl, W., Sch?berl, T. and Jeronimidis, G. The interphase in phenol–formaldehyde and polymeric methylene di-phenyl-di-isocyanate glue lines in wood. International Journal of Adhesion and Adhesives, 2004. 24(4): p. 279-286.
    [27] Singh, A. P., Anderson, C. R., Warnes, J. M. et al.. The effect of planning on the microscopic structure of Pinus radiata wood cells in relation to penetration of PVA glue. Holz als Roh-und Werkstoff, 2002. 60(5): p. 333-341.
    [28] Groom L, So C, Elder T, et al. effect of refining pressure and resin viscosity on resin flow, distribution and penetration of MDF fibers [C]. The 7th Pacific Rim Bio-based Composites Symposium. Nanjing,China,2004.
    [29] Frederick A. Kamke, Jong N. Lee. Adhesive penetration in wood- a review. Wood and fiber science. 2007, 39(2): 205-220.
    [30] Wallstr?m, L., Lindberg, K.A.H. The diffusion, size and location of added silver grains in the cell walls of Swedish pine, Pinus sylvestris. Wood Sci. Technol. 2000. 34, 403–415.
    [31]刘元.热处理对水与木材接触角的影响.中南林学院学报. 1993, 13(2): 136-140.
    [32] Hua L., Flodin P., R?nnhult T. Celluose fiber-polyester composites with reduced water sensitivity. 2. Surface analysis. Polym Compos. 1987, (8): 203-207.
    [33] Troughton G. E., Chow S. Z. Evidence for covalent bongding between melamine-formaldehyde glue and wood. Part I. Bond degradation. J Inst Wood Science. 1968, 21: 29-33.
    [34] Troughton G. E..Accelerated aging of glue-wood bonds. Wood science. 1969, (1):172-176.
    [35] Gindl, W. and H.S. Gupta, Cell-wall hardness and Young's modulus of melamine-modified spruce wood by nano-indentation. Composites Part A, 2002. 33(8): p. 1141-1145.
    [36] Drzal, L.T., M.J. Rich, and P.F. Lloyd, Adhesion of Graphite Fibers to Epoxy Matrices: I. The Role of Fiber Surface Treatment. The Journal of Adhesion, 1983. 16(1): p. 1-30.
    [37]戴棣,乔新.复合材料层合板的非同步固化翘曲变形分析.南京航空航天大学学报. 2000, 42(1): 63-68.
    [38] Gindl, W. and U. Müller, Shear strain distribution in PRF and PUR bonded 3–ply wood sheets by means of electronic laser speckle interferometry. Wood Science and Technology, 2006. 40(5): p. 351-357.
    [39] Serrano, E. and B. Enquist, Contact-free measurement and non-linear finite element analyses of strain distribution along wood adhesive bonds. Holzforschung, 2005. 59(6): p. 641-646.
    [40] Meyer, M.R., et al., Long-term durability of the interface in FRP composites after. Journal of Biomedical Materials Research, 1994. 28: p. 1221-1231.
    [41] Abdel Wahab, M.M., Crocombe, A. D., Beevers, A. et al. Coupled stress-diffusion analysis for durability study in adhesively bonded joints. International Journal of Adhesion and Adhesives, 2002. 22(1): p. 61-73.
    [42] Brewis, D.M., J. Comyn, and C. Phanopoulos, Effect of water on some wood adhesives. International Journal of Adhesion and Adhesives, 1987. 7(1): p. 43-48.
    [43] Blanchet, P., et al., Numerical prediction of engineered wood flooring deformation. Wood and Fiber Science, 2005. 37(3): p. 484-496.
    [44]李凯夫,高振忠.刨花板热应力的研究.华南农业大学学报, 2001. 22(1): p. 81-84.
    [45]王淑娟,鹿振友,徐曼琼等.,单板层积材热效应的表征.北京林业大学学报, 2002. 24 (3): p. 10-13.
    [46]赵若飞,周晓东.纤维增强聚合物基复合材料界面残余热应力研究.玻璃钢/复合材料, 2000(4): p. 25-28.
    [47]蒋长顺,谢扩军,许海峰等.封装中的界面热应力分析.电子与封装. 2006, 6(8):23-26.
    [48] Apalak, M.K. and R. Gunes, On non-linear thermal stresses in an adhesively bonded single lap joint. Computers and Structures, 2002. 80(1): p. 85-98.
    [49] Müller, U., Sretenovic, A., Vincenti, A. et al. Direct measurement of strain distribution along a wood bond line. Part 1: Shear strain concentration in a lap joint specimen by means of electronic speckle pattern interferometry. Holzforschung, 2005. 59(3): p. 300-306.
    [50] Peralta, P.N. and C. Skaar, Experiments on steady-state nonisothermal moisture movement in wood. Wood and Fiber Science, 1993. 25(2): p. 124-135.
    [51] Chen, C.M., Effect of extractive removal on adhesion and wettability of some tropical woods. For. Prod. J, 1970. 20(1): p. 36–41.
    [52] Jordan, D.L. and J.D. Wellons, Wettability of dipterocarp veneers. Wood Sci, 1977. 10(1): 22-27.
    [53] Hemingway, R.W., Thermal instability of fats relative to surface wettability of yellow birchwood (Betula lutea). Tappi, 1969. 52(11): p. 2149-2155.
    [54] Sernek. Comparative analysis of inactived wood surface. America: Virginia Polytechnic Institute andState University, 2002.
    [55] Li, X.B., T.F. Shupe, and C.Y. Hse, Wettability of three Honduran bamboo species. Journal of Bamboo and Rattan, 2004. 3(2): p. 159-167.
    [56]鲍甫成,王正,郭文静.杨木和杉木木材表面性质的研究.林业科学. 2004, 40(1): 131-136.
    [57] Heng, J.Y.Y., et al., Methods to determine surface energies of natural fibres: a review. Composite Interfaces, 2007. 14(7): p. 581-604.
    [58] Shi, S.Q. and D.J. Gardner, Dynamic adhesive wettability of wood. Wood Fiber Sci, 2001. 33(1): p. 58-68.
    [59] Feipeng P. Liu, Douglas J. Gardener and Michael P. Wolcott. A model for the description of polymer surface dynamic behavior. 1. contact angle vs polymer surface properties. Langmuir. 1995, 11(7): 2674-2681.
    [60] W?linder M E P. Study of lewis acid-base properties of wood by contact angle analysis. Holzforschung, 2002, 56 (4): 363–371.
    [61]李坚.木材波谱学.科学出版社. 2003.
    [62] Wang X Q, Ren H Q. Surface deterioration of moso bamboo (phyllostachys pubescens) induced by exposure to artificial sunlight. J Wood Sci, 2009, 55(1): 47-52.
    [63]顾继友.胶接理论与胶接基础.科学出版社. 2003.
    [64]左宋林,江小华.磷酸催化竹材碳化的FT-IR分析.林产化学与工业, 2005, 25(4): 21-25.
    [65]李坚.木质材料耐候性的研究.林业科学. 1988, 24(3): 366-371.
    [66] Mononen K, J??skel?inen A, Alvila Let. al. Chemical changes in silver birch (Betula pendula Roth) woodcaused by hydrogen peroxide bleaching and monitored by color measurement (CIE Lab) and UV-Vis, FTIR and UVRR spectroscopy[J]. Holzforschung, 2005, 59(4): 381–388.
    [67] Tjeerdsma B F, militz H. chemical changes in hydrothermal treated wood: FTIR analysis of combined hydrothermal and dry heat-treated wood. Holz als Roh-und Werkstoff, 2005, 63(2): 102-111.
    [68]王晓峰,樊永明,高建民.刺槐木素受热变色的光谱分析.林业科技开发, 2008, 22(4): 67-69.
    [69]程瑞香,顾继友.采用H2O2溶液对落叶松表面进行活化处理的研究.林产工业, 2003, 30 (2): 19-26.
    [70] Hakkou M, Pétrissans M, Zoulalian P et. al. Investigation of wood wettability changes during heat treatment on the basis of chemical analysis[J]. Polymer Degradation and Stability, 2005, 89(1):1-5.
    [71] Ahmad M.. Analysis of Calcutta bamboo for structural composite materials. America: Virginia Polytechnic Institute and State University, 2000.
    [72] Donaldson L A, Lomax T D. Adhesive/fibre interaction in medium density fibreboard. Wood Science and Technology,1989, 23: 371-380.
    [73] Hua L, P Zadorecki, P Flodin. Cellulose fiber-polyester composites with reduced water sensitivity. 2. surface analysis [J]. Polym Compos,1987,8:1999-202.
    [74] Gindl, W. SEM and UV-microscopic investigation of glue lines in Parallam PSL. Holz als Roh-und Werkstoff, 2001. 59(3): p. 211-214.
    [75] Aydin, I., Activation of wood surfaces for glue bonds by mechanical pre-treatment and its effects on some properties of veneer surfaces and plywood panels. Applied Surface Science, 2004. 233(1-4): p. 268-274.
    [76] Vázquez G,González-álvarez J,López-Suevos F,et al. Effect of veneer side wettability on bonding quality of Eucalyptus globulus plywoods prepared using a tannin–phenol–formaldehyde adhesive. Bioresource Technology, 2003,87(3): 349-353.
    [77] Smith, L.A. Studies of penetration of phenol-formaldehyde resin into wood cell walls with the SEM and energy-dispersive X-ray analyser. Wood Fiber, 1971. 3: p.56–57.
    [78] Bolton, A.J., J.M. Dinwoodie, and D.A. Davies, The validity of the use of SEM/EDAX as a tool for the detection of UF resin penetration into wood cell walls in particleboard. Wood Science and Technology, 1988. 22(4): p. 345-356.
    [79] Furuno T, Hse C-Y, Cote W A. Observation of microscopic factors affecting strength and dimensional properties of hardwood flakeboard. Proceedings 17th Washington State University International Particleboard/Composite Materials Series March 29-31, 1983, Pullman, WA: 293-312.
    [80] Grigsby W, Thumm A. Visualization of UF resin on MDF fibre by XPS imaging. Holz Roh Werkst, 2004, 62: 365-369.
    [81] Gindl, W., F. Zargar-Yaghubi, and R. Wimmer, Impregnation of softwood cell walls with melamine-formaldehyde resin. Bioresource Technology, 2003. 87(3): p. 325-330.
    [82]王逢瑚,刘志明.木质基材料界面研究进展.东北林业大学学报. 2001, 29(5): 84-87.
    [83] Broutman, L.J., Interfaces in Composites. ASTM STP, 1969. 452: p. 27.
    [84]李凯夫,陆仁书.刨花与胶黏剂界面结合强度的研究.林业科学. 2002, 38(5): 135-139.
    [85] Moaveni S.著,王崧,董春敏,金云平等译.有限元分析-ANSYS理论与应用.北京, 2005.
    [86] Mackerle, J., Finite element analyses in wood research: a bibliography. Wood Science and Technology, 2005. 39(7): p. 579-600.
    [87] Stehr, M., Laser Ablation of Machined Wood Surfaces. Holzforschung, 1999. 53(1): p. 93-103.
    [88] Wang, E. D., P. Yang, M. Zhang. et al. Analysis of the effects of density profile on the bending properties of particleboard using finite element method. Holz als Roh- und Werkstoff. 2003, 61: p.66-72.
    [89] Konnerth, J., et al., Measurement of strain distribution in timber finger joints. Wood Science and Technology, 2006. 40(8): p. 631-636.
    [90]江泽慧,费本华,张东升等.数字散斑相关方法在木材科学中的应用及展望.中国工程科学.2003, 5(11):1-7.
    [91]尹思慈.木材学.中国林业出版社. 1996,北京.
    [92] Konnerth J.,Gindl W.,Müller U..Elastic properties of adhesive polymers. I. polymer films by means of electronic speckle pattern interferometry. Journal of Applied Polymer Science. 2007,103(6):3936-3939.
    [93]徐曼琼,鹿振友.火炬松木材剪切弹性模量的测试研究.力学与实践.2003,25(5):57-60.
    [94] Divos F.,Tanaka T.,Hagao H.et.al. Determination of shear modulus on construction size timber. Wood Science and Technology. 1998, 32:392-402.
    [95] Chomcharn A., Skaar C. Dynamic sorption and hygroexpansion of wood wafers exposed to sinusoidally varying humidity. Wood Science Technology. 1983,17(4): 259-277.
    [96]王莉莉,于运花,杨小平等.抽油杆用CF/VE拉挤复合材料在盐溶液中的老化机理.北京化工大学学报. 2004, 31(2): 31-35.
    [97]吴智慧.木质材料干缩湿胀对表面装饰质量的影响.林产工业. 1994, 21(5):13-16.
    [98]孙照斌,田芸,曲保雪.龙竹竹材吸湿膨胀特性研究.林业机械与木工设备.2006,34(9):
    [99]琼斯著,朱颐龄等译.复合材料力学.上海科学技术出版社. 1981,上海.
    [100] Tremblay C., Cloutier A., Fortin Y.. Experimental determination of the convective heat and mass coefficients for wood dying. Wood Science and Technology. Wood Science and Technology. 2000, 34(3):253~273.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700