用户名: 密码: 验证码:
六方介孔硅HMS的合成、改性及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
六方介孔硅HMS由于优良的特性成为近年来材料学领域研究的热点。目前,对于介孔结构形成的机理,影响介孔结构和性质等的因素,以及材料的骨架改性与应用研究方面还有待进一步深化。
     本论文对HMS材料的合成、机理、结构及性能等进行了探讨,并对铜、银、铁骨架改性的HMS材料的合成、结构、性能及应用进行了重点研究。结果表明HMS介孔结构的形成遵从SoIo分子组装机理,材料结构稳定,介孔性能优良,并且脱模的方式、方法对合成材料的介孔结构及热稳定性等有重大影响;铜、银、铜银双元金属及铁改性的HMS材料均具有良好的介孔结构,但这些材料的结构、性质、形貌和脱模的热化学变化过程等已发生了显著变化。在抗菌实验中,铜、银改性材料表现出较好的抗菌性能。铜改性的材料用量为200 mg/L,24?72 h内对大肠杆菌、金黄色葡萄球菌及枯草杆菌即可起到稳定持久的杀菌效果;银改性的材料用量为1.00 mg/L, 12 h后即可彻底杀灭枯草杆菌和大肠杆菌;铜银双元金属共改性的材料用量为100 mg/L, 6 h后对枯草杆菌具有长效的杀菌效果,36 h后可杀死芽孢杆菌。在苯酚羟基化反应中,铁改性的HMS催化剂表现出良好的催化性能,反应中苯酚的转化率为46.9 %。
The research of hexagonal mesoporous silica(HMS) has become a hot point in the field of materials in recent years because of its excellent characteristics. At present, the formation mechanism of mesoporous structure, effects of mesoporous structure and properties, as well as modification of material skeleton and application should be investigated further.
     The synthesis, structure, mechanism and performance of HMS material were discussed in this dissertation. Furthermore, the synthesis, structures, properties and applications of modified HMS with copper, silver and iron in the framework were also studied. The results showed that the formation of mesoporous structure of HMS complied with SoIo molecular assembly mechanism. The material has stable structure and excellent mesoporous properties, and the methods of demoulding have great effects on mesoporous structure and stability. HMS modified with copper, silver, copper-silver and iron have high-quality mesoporous structure. However, the structures, properties, morphologys, thermo-chemical changing processes of demoulding, and some other aspects of modification materials have changed dramatically. In antibacterial experiments, copper, silver modified materials showed good antibacterial properties. The dosage of 200 mg/L of copper modification material can maintain a long-lasting bactericidal effect on E. coli, S. aureus and B. subtilis within 24?72 h, 1.00 mg/L of silver?modified material can kill B. subtilis and E. coli completely in 12 h, 100 mg/L of Cu and Ag modification material also shows a long-lasting bactericidal effect on B. subtilis in 6 h and it can completely kills G. bacillus in 36 h. Meanwhile, the outstanding catalytic performance of iron-modified HMS and the 46.9% conversion rate of phenol have been shown in the reaction of phenol hydroxylation.
引文
[1]张立德,牟季美.纳米结构和纳米材料[M].北京:科学出版社, 2002, 5.
    [2]白春礼.分子科学前沿[M].北京:科学出版社, 2007, 9.
    [3]李恒德,马春来.材料科学与工程国际前沿[M].济南:山东科学技术出版社, 2003, 2.
    [4]Davis M E. Ordered porous materials for emerging applications[J]. Nature, 2002, 417: 813-821.
    [5]徐如人,庞文琴,于吉红,等.分子筛与多孔材料化学[M].北京:科学技术出版社, 2005, 1.
    [6]中国科学院大连化学物理研究所分子筛组.沸石分子筛[M].北京:科学出版社, 1978, 11.
    [7]Barrer R M. Hydrothermal chemistry of zeolites[M]. Academic press, 1982.
    [8]Flanigen E M. Molecular sieve zeolite technology-the first twenty-five years[C]. Proc. of the fifth Intl. Conf. on zeolites, Heyden, Rees L. V. C.(Ed.). 1980: 760-780.
    [9] Wilson S T, Lok B M, Flanigen E M. U. S. 1982, patent 4: 310, 440.
    [10]Flanigen E M, Lok B M, Patton R L, et al. Aluminophosphate molecular sieves and the periodic table[C]. Proc. of the 7th Intl. zeolite conf. Kodansha-Elsevier, Murakam Y, Lijima A, Ward J W(Eds). 1986: 103-112.
    [11]Baerlocher Ch, Meier W M, Olson D H. Atlas of zeolite framework types[M], Elsevier(5th Ed), 2001.
    [12]Yu J H, Xu R R. Rich structure chemistry in the aluminophosphate family[J]. Acc. Chem. Res., 2003, 36: 481-490.
    [13]Velev O D, Jede T A, Lobo R F, et al. Microstructured porous silica obained via colloidal crystal template[J]. Chem. Mater., 1998, 10: 3597-3602.
    [14]Davis S A, Burkett S L, Mendelson N H, et al. Bacterial templating of ordered macrostructures in silica and silica-surfactant mesoporous[J]. Nature, 1997, 385: 420-423.
    [15]Imhof A, Pine D J. Ordered macroporous materials by emulsion templating[J]. Nature, 1997, 389: 948-951.
    [16]Kresge C T, Leonowicz M E, Roth W J, et al. Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism[J]. Nature, 1992, 359: 710-712.
    [17]Beck J S, Vartuli J C, Roth W J, et al. A new family of mesoporous molecular sieves prepared with liquid crystal templats[J]. J Am. Chem. Soc., 1992, 114: 10834-10843.
    [18]Monnier A, Schuth F, Huo Q S, et al. Cooperative formation of inorganic-organic interfaces in the synthesis of silicate mesostructures[J]. Science, 1993, 261: 1299-1303.
    [19]Zhao D Y, Feng J L, Huo Q S, et al. Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores[J]. Science, 1998, 279: 548-552.
    [20]Huo Q S, Margolese D I, Ciesla U, et al. Generalized synthesis of periodic surfactant/inorganic composite materials[J]. Nature, 1994, 368: 317-321.
    [21]Direnzo F, Cambon H, Dutartre R. A 28-year-old synthesis of micelle-templated mesoporous silica[J]. Microporous Mater., 1997, 10: 283-286.
    [22]Yanggisawa T, Shimizu T, Kuroda K, et al. The preparation of alkyltrimethylammonium-kanemitecomplexes and their conversion to microporous materials[J]. Bul.l Chem. Soc Jpn., 1990, 63: 988-992.
    [23]Kim S S, Pauly T R, Pinnavaia T J. Non-ionic surfactant assembly of wormhole silica molecular sieves from water soluble silicates[J]. Chem. Commun., 2000, 835-836.
    [24]Tanev P T, Pinnavaia T J. A neutral templating route to mesoporous molecular sieves[J]. Science, 1995, 267: 865-867.
    [25]Ryoo R, Kim J M, Ko C H, et al. Disordered molecular sieve with branched mesoporous channel network[J]. J Phys. Chem., 1996, 402: 867-871.
    [26]许宁,吴通好,王东阳,等.层状分子筛MCM-56的合成及表征[J].高等学校化学学报, 2001, 22(11): 1898-1900.
    [27]Cai Q, Lin W Y, Xiao F S, et al. The preparation of highly ordered MCM-41 with extremely low surfactant concentration[J]. Microporous Mesoporous Mater., 1999, 32: 1-15.
    [28]Inagaki S, Fukushima Y, Kuroda K. Synthesis of highly ordered mesoporous materials from a layered polysilicate[J]. J Chem. Soc. Chem. Commun., 1993, 680-682.
    [29]Huo Q S, Margolese D I, Ciesla U, et al. Organization of organic molecules with inorganic molecular species into nanocomposite biphase arrays[J]. Chem. Mater., 1994, 6: 1176-1191.
    [30]Ryoo R, Ko C H, Kruk M, et al. Block-copolymer-templated ordered mesoporous silica: array of uniform mesopores or mesopore-micropore network?[J]. J Phys. Chem. B., 2000, 104: 11465-11471.
    [31]Ruthstein S, Frydman V, Kababya S, et al. Study of the formation of the mesoporous material SBA-15 by EPR spectroscopy[J]. J Phys. Chem. B., 2003, 107: 1739-1748.
    [32]Zhao D Y, Huo Q S, Feng J L, et al. Novel mesoporous silicates with two-dimensional mesostructure direction using rigid bolaform surfactants[J]. Chem. Mater., 1999, 11: 2668-2672.
    [33]Kimura T, Kamata T, Fuziwara M, et al. Formation of novel ordered mesoporous silicas with square channels and their direct observation by transmission electron microscopy[J]. Angew. Chem. Int. Edit., 2000, 39: 3855.
    [34]Pantazis C C, Pomonis P J. Mesostructure design via poly(acrylic acid)-C(n)TAB complexes: A new route for SBA-1 mesoporous silica[J]. Chem. Mater., 2003, 15: 2299-2300.
    [35]Sakamoto Y H, Kaneta M, Terasaki O, et al. Direct imaging of the pores and cages of three-dimensional mesoporous materials[J]. Nature, 2000, 408: 449-453.
    [36]余承忠,范杰,赵东元.利用嵌段共聚物及无机盐合成高质量的立方相、大孔径介孔氧化硅球[J].化学学报, 2002, 60: 1357-1369.
    [37]沈绍典,李裕绮,武芳卉,等.三头季铵盐表面活性剂导向合成新型立方相介孔二氧化硅[J].高等学校化学学报, 2002, 23: 358-360.
    [38]Fan J, Yu C Z, Gao F, et al. Cubic Mesoporous silica with large controllable entrance sizes and advanced adsorption properties[J]. Angew. Chem. Int Edit.., 2003, 42: 3146-3150.
    [39]Kim J M, Stucky G D. Synthesis of highly ordered mesoporous silica materials using sodium silicate and amphiphilic block copolymers[J]. Chem. Commun., 2000, 1159-1160.
    [40]Zhou W Z, Hunter H M A, Wright P A, et al. Imaging the pore structure and polytypic intergrowths in mesoporous silica[J]. J Phys. Chem. B., 1998, 102: 6933-6936.
    [41]Li H C, Sakamoto Y, Li Y S, et al. Synthesis of carbon replicas of SBA-1 and SBA-7 mesoporous silicas[J]. Microporous Mesoporous Mater., 2006, 95: 193-199.
    [42]Sakamoto Y, Diaz I, Terasaki O, et al. Three-dimensional cubic mesoporous structure of SBA-12 and related materials by electron crystallography[J]. J Phys. Chem. B., 2002, 106: 3118-3123.
    [43]Yu C Z, Yu Y H, Zhao D Y. Highly ordered large caged cubic mesoporous silica structures template by triblock PEO-PBO-PEO copolymer[J]. Chem. Commun., 2000, 575-576.
    [44]Carlsson A, Kaneda M, Sakamoto Y, et al. The structure of MCM-48 determined by electron crystallography[J]. J Electron. Microsc., 1999, 48: 795-798.
    [45]Chan Y T, Lin H P, Mou C Y, et al. Ia3d cubic mesoporous silicas using EO(17)MA(23) diblock copolymers made from ATRP[J]. Chem. Commun., 2002, 2878-2879.
    [46]马玉荣,齐利民,马季铭.中孔氧化硅的超分子模板合成及其结构与形貌的调控[J].化学进展, 2003, 15(6): 477-486.
    [47]潘晖华,何鸣元,宋家庆.分子筛材料研究及其在催化裂化过程中的应用前景[J].化学进展, 2006, 18(4): 501-506.
    [48]李亮,施剑林.介孔与介孔主客体材料在催化领域的应用[J].催化学报, 2005, 26(2): 159-170.
    [49]乐红英,马臻,华伟明,等.二氧化钛介孔分子筛的合成和表征[J].化学学报, 2000, 58(7): 777-780.
    [50]程虎民,马玉荣,廖复辉,等.水热均匀沉淀法合成中孔氧化锆[J].物理化学学报, 2003, 19(4):326-328
    [51]Vaudry F, Khodabandeh S, Davis ME. Synthesis of pure alumina mesoporous materials[J]. Chem. Mater., 1996, 8: 1451-1464.
    [52]Yada M, Takanaka H, Machida M, et al. Mesostructured gallium oxides templated by dodecylsulfate assemblies[J]. J Chem. Soc. Dalton Trans., 1998, 1547-1550.
    [53]Tian Z R, Tong W, Wang J, et al. Manganese oxide mesoporous structures: mixed-valent semiconducting catalysts[J]. Science, 1997, 276: 926-930.
    [54]Hammond W, Prouzet Eric, Mahanti S D, et al. Structure factor for the periodic walls of mesoporous MCM-41 molecular sieves[J]. Microporous Mesoporous Mater., 1999, 27(1): 19-25.
    [55]陈君华,王飞,丁志杰,等.六方中孔硅分子筛的合成与表征[J].南京林业大学学报(自然科学版), 2008, 32(6): 13-18.
    [56]温树林,马希骋,刘茜,等.材料科学与微观结构[M].北京:科学出版社, 2007, 7.
    [57]Gallis K W, Landry C C. Synthesis of MCM-48 by a phase transformation process[J]. Chem. Mater., 1997, 9: 2035-2038.
    [58]Wu C G, Bein T. Microwave synthesis of molecular sieve MCM-41[J]. Chem. Commun., 1996, 925-926.
    [59]Yang P D, Zhao D Y, Margolese D I, et al. Generalized synthesis of large-pore mesoporous metal oxides with semicrystalline frameworks[J]. Nature, 1998, 396: 152-155.
    [60]任黎雯,杨良准,华春芳,等.介孔二氧化钛微球的合成与表征[J].化学研究, 2008, 19(3): 1-4.
    [61]Lin W Y, Chen J S, Sun Y, et al. Bimodel mesopore distribution in a silica prepared by calcining a wet surfactant-containing silicate Gel[J]. J Chem. Soc. Chem. Commun., 1995, 2367-2368.
    [62]Maclachlan M J, Coombs N, Ozin G A. Non-aqueous supramolecular assembly of mesostructured metalgermainium sulphides from (Ge4S10)(4-) clusters[J]. Nature, 1999, 397: 681-684.
    [63]Firouzi A, Atef F, Oertli A G, et al. Alkaline lyotropic silicate-surfactant liquid crystals[J]. J Am. Chem. Soc., 1997, 119: 3596-3610.
    [64]Chen X Y, Ding G Z, Chen H Y, et al. Formation at low surfactant concentration and characterization of mesoporous MCM-41[J]. Sci. China Ser. B-Chem., 1997, 40: 278-285.
    [65]Seddon J M, Robin J, Gulik-Krzywicki T, et al. Inverse micellar phase of phospholipids and glycolipids[J]. Phys. Chem. Chem. Phys., 2000, 2: 4485-4493.
    [66]Huo Q S, Margolese D I, Stucky G D. Surfactant control of phase in the synthesis of mesoporous silica-based materials[J]. Chem. Mater., 1996, 8: 1147-1160.
    [67]Kipkemboi P, Fogden A, Alfredsson V, et al. Triblock copolymer as templates in mesoporous silica formation: structural dependence on polymer chain length and synthesis temperature[J]. Langmuir, 2001, 17: 5398-5402.
    [68]Kim J M, Sakamoto Y, Hwang Y K, et al. Structural design of mesoporous silica by micelle-packing control using blends of amphiphilic block copolymers[J]. J Phys. Chem. B., 2002, 106: 2552-2558.
    [69]Clark J H, Macquarrie D J. Catalysis of liquid phase organic reactions using chemically modified mesoporous inorganic solids[J]. Chem. Commun., 1998, 853-860.
    [70]Huo Q S, Leon R, Petroff P M, et al. Mesostructure design with gemini surfactants-supercage formation in a 3-dimensional hexagonal array[J]. Science, 1995, 268: 1324-1327.
    [71]Tanev P T, Liang Y, Pinnavaia T J. Assembly of mesoporous lamellar silicas with hierarchical particle architectures[J]. J Am. Chem. Soc., 1997, 119: 8616-8624.
    [72]Sims S D, Walsh D, Mann S. Morphosynthesis of macroporous silica frameworks in bicontinuous microemulsions[J]. Adv Mater., 1998, 10: 151-154.
    [73]McGrath K M, Dabbs D M, Yao N, et al. Foemation of a silicate L-3 phase with continuously adjustable pore sizes[J]. Science, 1997, 277: 552-556.
    [74]Imhof A, Pine D J. Ordered macroporous materials by emulsion templating[J]. Nature, 1997, 389: 948-951.
    [75]Goltner C G, Antonietti M. Mesoporous materials by templating of liquid crystalline phase[J]. Adv. Mater., 1997, 9: 431.
    [76]Vartuli J C, Schmitt K D, Kresge C T, et al. Development of a formation mechanism for M41S materials[J]. Zeolites and Related Microporous Mater.: State of the Art., 1994, 53-60.
    [77]Vartuli J C, Kresge C T, Leonowicz M E, et al. Synthesis of mesoporous materials: liquid-crystal templating versus intercalation of layered silicates[J]. Chem. Mater., 1994, 6: 2070-2077.
    [78]Chen C Y, Li H X, Davis ME. Studies on mesoporous materials. I. Synthesis and characterization of MCM-41[J]. Microporous Mater., 1993, 2: 17-26.
    [79]Chen C Y, Burkett S L, Li H X, et al. Studies on mesoporous materials.Ⅱ. Synthesis mechanism of MCM-41[J]. Microporous Mater., 1993, 2: 27-34.
    [80]Stucky G D, Huo Q, Firouzi A, et al. Directed synthesis of organic/inorganic composite structures[J]. Progress in Zeolite and Microporous Mater., 1997, 3-28.
    [81]Xu J Q, Chu W, Luo S Z. Synthesis and characterization of mesoporous V-MCM-41 molecular sieves with good hydrothermal and thermal stability[J]. J Mole. Cata.l A: Chem.., 2006, 256(1-2): 48-56.
    [82]Floquet N, Coulomb J P, Weber G, et al. Structural signatures of typeⅣisotherm steps: Sorption of trichloroethene, tetrachloroethene, and benzene in silicalite-I[J]. J Phys. Chem. B., 2003, 107: 685-693.
    [83]Bauer F, Geidel E, Peuker C, et al. Vibrational spectra of 18O-exchanged NaZSM-5 and HZSM-5[J]. Zeolites, 1996, 17: 278-282.
    [84]刘红,王志刚,李浩. Fe-MSU-1介孔分子筛的合成及其催化苯酚羟基化性能[J].催化学报, 2007, 28 (3): 222-228.
    [85]Jansen K. Characterization of Zeolites by SEM, Verified syntheses of zeolitic materials[M](2nd Revised Edition). Amsterdam: Elsevier, 2001.
    [86]宗宪波,汪晓东,李冀闽,等.介孔ZnO/SiO2复合材料的合成与性能表征[J].化学通报, 2008, 71(3): 216-219.
    [87]Buchholz A, Wang W, Arnold A, et al. Successive step of hydration and dehydration of silico- aluminophosphates H-SAPO-34 and H-SAPO-37 investigated by in situ CF MAS NMR spectroscopy[J]. Microporous Mesoporous Mater., 2003, 57: 157-168.
    [88]孙汉文.原子光谱与痕量分析研究[M].保定:河北大学出版社, 2001.
    [89]De Saldarriaga L S, Saldarriaga C, Davis ME. Investigations into the nature of a silicoaluminophosphate with the faujasite structure[J]. J Am. Chem. Soc., 1987, 109: 2686-2691.
    [90]Kruk M, Jaroniec M. Gas Adsorption characterization of ordered organic-inorganic nanocomposite materials[J]. Chem. Mater., 2001, 13: 3169-3183.
    [91]Kruk M, Antochshuk V, Jaroniec M, et al. New approach to evaluate pore size distributions and surface areas for hydrophobic mesoporous solids[J]. J Phys. Chem. B., 1999, 103: 10670-10678.
    [92]Groen J C, Peffer L A A, Perez-Ramirez J. Pore size determination in modified micro- and mesoporous materials. pitfalls and limitations in gas adsorption data analysis[J]. Microporous Mesoporous Mater., 2003, 60: 1-17.
    [93]薛松.有机结构分析[M].合肥:中国科学技术大学出版社, 2005, 9.
    [94]Tismaneanu R, Ray B, Khalfin R, et al. Synthesis, characterization and catalytic activity of actinide Th-MCM-41 and U-MCM-41 hexagonal packed mesoporous molecular sieves[J]. J Mole. Catal. A: Chem., 2001, 171(1-2): 229-241.
    [95]陈君华,王飞,丁志杰,等.银改性六方介孔硅的合成及抗菌性能研究[J].南京林业大学学报(自然科学版), 2009, 33(2): 117-122.
    [96]金长子,李钢,王祥生,等. Ti-HMS和TS-1分子筛结构和催化性能的对比研究[J].催化学报, 2007, 28(2): 170-174.
    [97]丁士文,高兰,王萍.纳米TiO2-SnO2介孔材料的制备及其对含氰废水的光催化降解性能[J].化学研究, 2007, 18(1): 31-33.
    [98]魏庆玲,申东明,谭涓,等. Ti-MCM-41分子筛的合成、表征及其催化作用[J].石油化工, 2006, 35(8): 725-729.
    [99]俞卫华,周春晖,倪哲明,等. Ti-HMS合成、表征及其催化氧化性能研究[J].高校化学工程学报,2007, 21(5): 779-783.
    [100]周峰,李翔,王安杰,等. CoNiMo/MCM-41催化的二苯并噻吩加氢脱硫反应[J].石油学报, 2008, 24(5): 491-495.
    [101]师进文,郭烈锦. Cr或V掺杂的HMS在甲酸溶液中的光催化产氢性能研究[J].化学学报, 2007, 65(4): 323-328.
    [102]肖益鸿,沈小女,郑瑛,等. Pt /Ce-Ni-SBA-15介孔分子筛的合成及性能研究[J].功能材料, 2007, 38(10): 1702-1705.
    [103]张定国,李发亮,刘芬,等.纳米Ce-WO3-TiO2光催化剂的制备及性能[J].化学反应工程与工艺, 2008, 24(1): 45-49.
    [104]朱祖福,沈锦德,许志义,等.电子显微镜[M].北京:机械工业出版社, 1984.
    [105]陈铁红,孙平川,孙世伟,等. HZSM-5分子筛焙烧后吸附水作用的1H MAS NMR研究[J].国际网上化学学报, 2000, 2: 55.
    [106]王虹苏,吴淑杰,邵艳秋,等.一种新型有机-无机杂化介孔碱性催化材料的合成与表征[J].高等学校化学学报, 2007, 28(8): 1528-1531.
    [107]陈铁红, Wouters B H, Grobet P J. SAPO-37分子筛高温焙烧下骨架破坏的固体核磁共振研究[J].国际网上化学学报, 2001, 3: 2.
    [108]Kovalakova M, Wouters B H, Grobet P J. 13C-MAS NMR of Organic Templates in Zeolites[J]. Microporous Mesoporous Mater., 1998, 22: 193-201.
    [109]田宇宏,刘恺,邬旭然,等.低含量多元素物质的快速全反射X荧光分析[J].光谱实验室, 1999, 16: 243.
    [110]刘彩华,王雯娟,程文萍,等.含稳定骨架铁的Fe-MCM-41介孔分子筛的合成与表征[J].无机材料学报, 2008, 23(1): 171-174.
    [111]王蓉.电子衍射物理教程[M].北京:冶金工业出版社, 2002.
    [112]Agger J R, Hanif N, Cundy C S, et al. Silicalite crystal growth investigated by atomic force microscopy, J Am. Chem. Soc., 2003, 125: 830-839.
    [113]白春礼.扫描隧道显微术及其应用[M].上海:上海科技出版社, 1992.
    [114]厉淑贞,李真,黄彦君,等.穆斯堡尔谱研究坡缕石中铁的占位[J].核技术, 2007, 30(4): 302-305.
    [115]Che S, Liu Z, Ohsuna T, et al. Synthesis and characterization of mesoporous silica with chiral structure[J]. Nature, 2004, 429: 281-284.
    [116]Stein A, Melde B J, Schroden R C. Hybrid inorganic-organic mesoporous silicates-nanoscopic reactors coming of age[J]. Adv. Mater., 2000, 12: 1403-1419.
    [117]Silva A R, Wilson K, Clark J H. et al. Covalent attachment of chiral manganese(III) salen complexes onto functionalised hexagonal mesoporous silica and application to the asymmetric epoxidation of alkenes[J]. Microporous Mesoporous Mater., 2006, 91(3): 128-138.
    [118]Yadav G D, Lande S V. Selective claisen rearrangement of allyl-2,4-di-tert-butylphenyl ether to 6-allyl-2,4-di-tert-butylphenol catalysed by heteropolyacid supported on hexagonal mesoporous silica[J]. J Mole. Catal. A: Chem., 2006, 243(1): 31-39.
    [119]Chen C, Zhou L P, Zhang Q H, et al. Design of bifunctionalized hexagonal mesoporous silicas forselective oxidation of cyclohexane[J]. Nanotechnology, 2007, 18(21): 215603.
    [120]Ecormier M A, Lee A F, Wilson K. High activity, templated mesoporous SO42--ZrO2/HMS catalysts with controlled acid site density forα-pinene isomerisation[J]. Microporous Mesoporous Mater., 2005, 80(1-3): 301-310.
    [121]Zhou R, Cao Y, Yan S R, et al. Rare earth (Y, La, Ce)-promoted V-HMS mesoporous catalysts for oxidative dehydrogenation of propane[J]. Applied Catal. A: Gen., 2002, 236(1-2): 103-111.
    [122]祝翠梅,魏长平,彭春佳,等.有机-无机杂化材料Eu( BA) 3-MCM -41的制备及光学性质[J].发光学报, 2007, 28(6): 935-939.
    [123]Zepeda T A, Pawelec B, Fierro J L G, et al. Removal of refractory S-containing compounds from liquid fuels on novel bifunctional CoMo/HMS catalysts modified with Ti[J]. Applied Catal. B: Envir., 2007, 71(3-4): 223-236.
    [124]Shi Y F, Wan Y, Liu R L, et al. Synthesis of highly ordered mesoporous crystalline WS2 and MoS2 via a high-temperature reductive sulfuration route[J]. J Am. Chem. Soc., 2007, 129(30): 9522-9531.
    [125]Selvaraj M, Kawi S. Direct synthesis of mesoporous Cr-SBA-15 catalyst and its high activity and selectivity for oxidation of anthracene[J]. Microporous Mesoporous Mater., 2007, 101(1-2): 240-249.
    [126]吕先富,于世涛,李露,等.纳米Pd组装介孔分子筛MCM- 41催化松香加氢反应[J].林产化学与工业, 2007, 27(6): 51-55.
    [127]金国新,张道.介孔分子筛SBA-15负载的双亚胺镍催化剂的合成及乙烯聚合[J].科学通报, 2003, 48(24): 2519-2523.
    [128]Gunnewegh E A, Gopie S S, Vanbekkum H. MCM-41 type molecular sieves as catalysts for the friedel-crafts acylation of 2-methoxynaphthalene[J]. J Mole. Catal.Chem., 1996, 106: 151-158.
    [129]Thanabodeekij N, Tanglumlert W, Gulari E, et al. Synthesis of Ti-MCM-41 directly from silatrane and titanium glycolate and its catalytic activity[J]. Applied Organometallic Chem., 2005, 19(9): 1047-1054.
    [130]王炎,郑旭翰,赵敏.漆酶在介孔分子筛MCM-41上的固定化研究[J].高校化学工程学报, 2008, 22(1): 83-87.
    [131]Coma A, Navarro M T, Pariente J P. Synthesis of an ultralarge pore titanium silicate isomorphous to MCM-41 and its application as a catalyst for selective oxidation of hydrocarbons[J]. J Chem. Soc. Chem. Commun., 1994, 147-148.
    [132]Tanev P T, Chibwe M, Pinnavaia T J. Titanium-containing mesoporous molecular sieves for catalytic-oxidation of aromatic-compounds[J]. Nature, 1994, 368: 321-323.
    [133]Raimondo M, Perez G, Sinibaldi N, et al. Mesoporous M41S materials in capillary gas chromatography[J]. Chem. Commun., 1997, 1343-1344.
    [134]李晓芬,何静,马润宇,等.青霉素酰化酶在介孔分了筛MCM-41上的固定化研究[J].化学学报, 2000, 58: 167-171.
    [135]高波,朱广山,傅学奇,等.介孔分子筛SBA-15中α-胰凝乳蛋白酶组装及催化活性研究[J].高等学校化学学报, 2003, 24: 1100-1102.
    [136]Ren Q Z, Zhu Z A, Huang J W, et al. Hydroxylation of cyclohexane with molecular oxygen catalyzed by o/o type iron (Ⅲ) -metal-free porphyr in dimers[J]. J Mole. Catal.(China), 2000, 18(14): 303-306.
    [137]赵萌,邵荣光.生物信息学方法在基因芯片数据功能分析中的应用[J].现代生物医学进展, 2009, 9(2): 382-385.
    [138]生秀梅,黄新祥,茅凌翔,等.伤寒沙门菌基因组DNA芯片的制备与基因表达谱分析应用[J].生物化学与生物物理进展, 2009, 36(2): 206-212.
    [139]王炎,郑旭翰,姜兆华.有序介孔材料在生物医药领域中的应用[J].化学进展, 2006, 18(10): 1345-1351.
    [140]范晓星,于涛,邹志刚.介孔TiO2的材料合成及其在光催化领域的应用[J].功能材料, 2006, 37(1): 6-9.
    [141]谢芳菲,刘福胜,解从霞,等.中孔分子筛Al-MCM-41的制备及催化聚乙烯裂解反应[J].青岛科技大学学报, 2007, 28(1): 34-38.
    [142]王月娟,王雪俐,谢冠群,等. CuO/ SBA-15催化剂上巴豆醛选择性加氢[J].催化学报, 2008, 29(5): 482-488.
    [143]刘红,王志刚,李浩. Fe-MSU-1介孔分子筛的合成及其催化苯酚羟基化性能[J].催化学报, 2007, 28(3): 222-228.
    [144]Samanta S, Laha S C, Mal N K, et al. Co(III)-containing mesoporous silica as an efficient catalyst in selective dihydroxylation of cyclohexene[J]. J Mole. Catal. A: Chem., 2004, 222(1-2): 235-241.
    [145]Shylesh S, Singh A P. Vanadium-containing ethane-silica hybrid periodic mesoporous organosilicas: Synthesis, structural characterization and catalytic applications[J]. Microporous Mesoporous Mater., 2006, 94(1-3): 127-138.
    [146]曹磊.汽车尾气净化催化剂的研究进展[J].污染防治技术, 2008, 21(3): 70-72.
    [147]Bore M T, Ward T L, Fukuoka A, et al. Synthesis of Pt nanowires inside aerosol derived spherical mesoporous silica particles[J]. Catal. Lett., 2004, 98(4): 167-172.
    [148]陶琪,许昭怡,郑寿荣,等.胺基官能基化的HMS吸附水体中的腐殖酸[J].环境科学, 2008, 29(5): 1197-1202.
    [149]徐应明,李军幸,戴晓华,等.介孔分子筛表面功能膜的制备及对水中铅汞镉的去除作用[J].应用化学, 2002, 19: 941-945.
    [150]Zhang L X, Zhang W H, Shi J L, et al. A new thioether functionalized organic-inorganic mesoporous composite as a highly selective and capacious Hg2+ absorbed[J]. Chem. Commun., 2003, 210-211.
    [151]Lee S A, Hong S H, Kim D O, et al. A mesoporous composite template composed of self-assembled silica nanotube and multi-walled carbon nanotube[J]. Microporous Mesoporous Mater., 2008, 111(1-3): 292-299.
    [152]Chen H R, Shi J L, Yu J, et al. Synthesis of titanium-doped ordered porous zirconium oxide with high-surface-area[J]. Microporous Mesoporous Mater., 2000, 39: 171-176.
    [153]Yu J J, Lu S, Li J W, et al. Characterization of gold nanoparticles electrochemically deposited on amine-functioned mesoporous silica films and electrocatalytic oxidation of glucose[J]. J Solid State Electrochem., 2007, 11(9): 1211-1219.
    [154]Nishiyam Y, Ochi K, Nishiyama N, et al. Proton-conducting mesoporous silica/phosphate composite films prepared by vapor phase method[J]. Electrochem Solid State Lett., 2008, 11(1): 6-9.
    [155]吴玉程,李广海,张立德.纳米镍/介孔二氧化硅复合材料的组装及结构和性质(Ⅰ:纳米镍/介孔二氧化硅复合材料的制备及结构表征)[J].复合材料学报, 2005, 22(6): 21-26.
    [156]施奇惠,杨海峰,程岩,等.以介孔氧化硅薄膜为模板电沉积合成新型纳米结构[J].化学学报, 2004, 62(20): 2021-2024.
    [157]Lou Z S, Wang R H, Sun H, et al. Direct synthesis of highly ordered Co-SBA-15 mesoporous materials by the pH-adjusting approach[J]. Microporous Mesoporous Mater., 2008, 110(2-3): 347-354.
    [158]Zhang W H, Shi J L, Chen H R, et al. Synthesis and characterization of nanosized ZnS confined in ordered mesoporous silica[J]. Chem. Mater., 2001, 13: 648-654.
    [1]Kresge C T, Leonowicz M E, Roth W J, et al. Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism[J]. Nature, 1992, 359: 710-712.
    [2]祝淑芳,倪文,张铭金,等.介孔分子筛材料合成及应用研究的现状及进展[J].岩石矿物学杂志, 2006, 25(4): 327-334.
    [3]杜丽,刘军民,杨旭,等.中孔分子筛材料的研究进展[J].化工进展, 2007, 26(6): 778-781.
    [4]Tanev P T, Pinnavaia T J. A neutral templating route to mesoporous molecular sieves[J]. Science, 1995, 267: 865-867.
    [5]张立德,牟季美.纳米结构和纳米材料[M].北京:科学出版社, 2002, 5.
    [6]张兆荣,索继栓,张小明,等.介孔硅基分子筛研究新进展[J].化学进展, 1999, 11(1): 11-20.
    [7]陈逢喜,黄茜丹,李全芝.中孔分子筛研究进展[J].科学通报, 1999, 44(18): 1905-1919.
    [8]文建湘,倪忠斌,孙竹青,等.硅基介孔材料的制备与应用研究进展[J].化学世界, 2006, 47(9): 568-572.
    [9]伏再辉,陈君华,陈远道,等.含过渡金属HMS的合成和催化性能[J].物理化学学报, 2000, 16(5): 410-415.
    [10]Yanyong L, Kazuhisa M, Megumn I, et al. Syntheses of Ti- and Al-containing hexagonal mesoporous silicas for gas-phase epoxidation of propylene by molecular oxygen[J]. Applied Catal. A: Gen., 2006, 309: 91-105.
    [11]Iousheng K, Shiuhtzung L. Synthesis and catalysis of tungsten oxide in hexagonal mesoporous silicas[J]. Applied Catal. A: Gen., 2007, 317: 91-96.
    [12]王雪梅,杜新贞,李春兰,等.苯基改性的介孔分子筛SBA-15的合成与表征[J].环境科学与技术, 2008, 31(12): 17-20.
    [13]Muriel A E, Adam F L, Karaen W. High activity, templated mesoporous SO42-/ZrO2/HMS catalysts with controlled acid site density forα-pinene isomerisation[J]. Microporous Mesoporous Mater., 2005, 80: 301-310.
    [14]Ana R S, Karen W, James H C, et al. Covalent attachment of chirl manganese(Ⅲ) salen complexes onto functionalized hexagonal mesoporous silica and application to the asymmetric epoxidation of alkenes[J]. Microporous Mesoporous Mater., 2006, 91: 128-138.
    [15]Zhihui D, Songqin L, Huangxian J, et al. Direct electron transfer and enzymatic activity of hemoglobin in a hexagonal mesoporous silica matrix[J]. Biosensors and Bioelectron., 2004, 19: 861-867.
    [16]逢杰斌,丘坤元, WEI Yen,等.中孔材料的研究进展Ⅱ应用[J].无机材料学报, 2002, 17(4): 665-671.
    [17]Davis M E. Ordered porous materials for emerging applications[J]. Nature, 2002, 417: 813-821.
    [18]徐如人,庞文琴,于吉红,等.分子筛与多孔材料化学[M].北京:科学技术出版社, 2005, 1.
    [19]Ke I S, Liu S T. Synthesis and catalysis of tungsten oxide in hexagonal mesoporous silicas (W-HMS)[J]. Applied Catal. A: Gen., 2007, 317(1): 91-96.
    [20]梁敬魁.粉末衍射法测定晶体结构[M].北京:科学技术出版社, 2003.
    [21]李健生,顾娟,夏敏亚,等. SBA-15负载CeO2纳米晶的溶胶-凝胶一步合成[J].化学学报, 2008, 66(20): 2305-2308.
    [22]张珍容,张世英,万隆,等. Pd/Ce-HMS介孔材料的结构和表面化学态[J].化工学报, 2007, 58(3): 776-780.
    [23]Selvaraj M, Kawi S. Direct synthesis of mesoporous Cr-SBA-15 catalyst and its high activity and selectivity for oxidation of anthracene[J]. Microporous Mesoporous Mater., 2007, 101(1-2): 240-249.
    [24] Ana R S, Karen W, James H C, et al. Covalent attachment of chirl manganese(Ⅲ) salen complexes onto functionalized hexagonal mesoporous silica and application to the asymmetric epoxidation of alkenes[J]. Microporous Mesoporous Mater., 2006, 91: 128-138.
    [25]薛松.有机结构分析[M].合肥:中国科学技术大学出版社, 2005.
    [26]Bagshaw S,Prouzet A E,Pinnavaia T J. Templating of mesoporous molecular sieves by nonionic polyethylene oxide surfactants[J]. Science, 1995, 269: 1242-1244.
    [1]汤戈,王振家.无机抗菌材料的发展和应用[J].材料科学与工程, 2002, 20(2): 298-301.
    [2]杜丽,刘军民,杨旭,等.中孔分子筛材料的研究进展[J].化工进展, 2007, 26(6): 778-781.
    [3]张彬,唐晓宁,张皓东.铜、银双组分无机抗菌材料的制备和性能研究[J].化工新型材料, 2007, 35(2): 73-75.
    [4]Tanev P T, Pinnavaia T J. A neutral templating route to mesoporous molecular sieves[J]. Science, 1995, 267: 865-867.
    [5]Ana R S, Karen W, James H C, et al. Covalent attachment of chirl manganese(Ⅲ) salen complexes onto functionalized hexagonal mesoporous silica and application to the asymmetric epoxidation of alkenes[J]. Microporous Mesoporous Mater., 2006, 91: 128-138.
    [6]Ecormier M A, Lee A F, Wilson K. High activity, templated mesoporous SO42-/ZrO2/HMS catalysts with controlled acid site density forα-pinene isomerisation[J]. Microporous Mesoporous Mater., 2005, 80(1-3): 301-310.
    [7]Zhou R, Cao Y, Yan S R, et al. Rare earth (Y, La, Ce)-promoted V-HMS mesoporous catalysts for oxidative dehydrogenation of propane[J]. Applied Catal. A: Gen., 2002, 236(1-2): 103-111.
    [8]伏再辉,陈君华,陈远道,等.含过渡金属HMS的合成和催化性能[J].物理化学学报, 2000, 16(5): 410-415.
    [9]Yanyong L, Kazuhisa M, Megumn I, et al. Syntheses of Ti- and Al-containing hexagonal mesoporous silicas for gas-phase epoxidation of propylene by molecular oxygen[J]. Applied Catal. A: Gen., 2006, 309: 91-105.
    [10]Ke I S, Liu S T. Synthesis and catalysis of tungsten oxide in hexagonal mesoporous silicas (W-HMS)[J]. Applied Catal. A: Gen., 2007, 317(1): 91-96.
    [11]Zhou S Q, Fu Z H, Yin D L. The assembly of vanadium complex on HMS[J]. Acta Scientiarum Naturalium Universitatis Normalis Hunanensis, 2002, 25(1): 47-50.
    [12]赵娣芳,周杰,楼必君,等.铜改性坡缕石的结构特征与抗菌性能研究[J].矿物学报, 2006, 26(2): 219-23.
    [13]夏枚生,胡彩虹,赵文艳.载铜蒙脱石的抗菌机理研究[J].微生物学报, 2006, 46(3): 432-435.
    [14]马玉龙,郭彤.载铜蒙脱石及其杀灭大肠杆菌机制的研究[J].药学学报, 2007, 42(3): 318-322.
    [15]李吉东,李玉宝,左奕,等.载铜纳米羟基磷灰石的制备及抗菌性能评价[J].功能材料, 2006, 37(4): 635-638.
    [16]陈君华,王飞,丁志杰,等.六方中孔硅分子筛的合成与表征[J].南京林业大学学报(自然科学版), 2008, 32(6): 13-18.
    [17]李吉东,李玉宝,王学江,等.载铜锌纳米羟基磷灰石的抗菌性能及机理研究[J].无机材料学报, 2006, 21(1): 162-168.
    [18]Kresge C T, Leonowicz M E, Roth W J, et al. Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism[J]. Nature, 1992, 359: 710-712.
    [19]Duraczynska D, Serwicka E M, Waksmundzka G A, et al. Immobilization of a cationic ruthenium(II) complex containing the hemilabile phosphaallyl ligand in hexagonal mesoporous silica (HMS) and application of this material as hydrogenation catalyst[J]. J Organometallic Chem., 2008, 693(3): 510-518.
    [20]师进文,郭烈锦. Cr或V掺杂的HMS在甲酸溶液中的光催化产氢性能研究[J].化学学报, 2007, 65(4): 323-328.
    [21]徐华龙,杜俊明,黄静静,等.钠对苯甲醛加氢合成苯甲醇催化剂Cu/SiO2的修饰作用影响活性[J].化学学报, 2007, 65(10): 877-880.
    [22]梁敬魁.粉末衍射法测定晶体结构[M].北京:科学技术出版社, 2003.
    [23]徐如人,庞文琴,于吉红,等.分子筛与多孔材料化学[M].北京:科学出版社, 2004: 145-148, 179-180.
    [24]张珍容,张世英,万隆,等. Pd/Ce-HMS介孔材料的结构和表面化学态[J].化工学报, 2007, 58(3): 776-780.
    [25]蔡晓慧,朱广山,高波,等. Ag/SBA-15复合材料的制备及其抗菌性质[J].高等学校化学学报, 2006, 27(11): 2042-2044.
    [26]吴晓轩,郑文琛,刘虹刚. CuAlS2: Ni+晶体光谱和电子顺磁共振谱研究光谱学与光谱分析, 2007, 27(3): 417-419.
    [1]汤戈,王振家.无机抗菌材料的发展和应用[J].材料科学与工程, 2002, 20(2): 298-301.
    [2]张彬,唐晓宁,张皓东.铜、银双组分无机抗菌材料的制备和性能研究[J].化工新型材料, 2007, 35(2): 73-75.
    [3]霍细香,肖红雨,冯玲玲,等.无机抗菌材料抗病毒效果的实验室检测方法研究[J].中国卫生检验杂志, 2008, 18(3): 433-435.
    [4]梁凯,唐丽永,王大伟.非金属矿物载银抗菌材料的研究现状与发展趋势[J].矿产综合利用, 2006, 29 (6): 37-40.
    [5]李轩琦,孙康宁,卢志华,等.载银羟基磷灰石复合抗菌材料的研究[J].硅酸盐通报, 2008, 27(1): 12-16.
    [6]Ganapati D Y, Haresh G M. Novelties of synthesis of acetoveratrone using heteropoly acid supported on hexagonal mesoporous silica[J]. Microporous Mesoporous Mater., 2003, 63: 85-96.
    [7]Muriel A E, Adam F L, Karaen W. High activity, templated mesoporous SO42-/ZrO2/HMS catalysts with controlled acid site density forα-pinene isomerisation[J]. Microporous Mesoporous Mater., 2005, 80: 301-310.
    [8]Ana R S, Karen W, James H C, et al. Covalent attachment of chirl manganese(Ⅲ) salen complexes onto functionalized hexagonal mesoporous silica and application to the asymmetric epoxidation of alkenes[J]. Microporous Mesoporous Mater., 2006, 91: 128-138.
    [9]Tanev P T, Pinnavaia T J. A neutral templating route to mesoporous molecular sieves[J]. Science, 1995, 267: 865-867.
    [10]Yang R T, Pinnavaia T J, Li W, et al. Fe3+ exchanged mesoporous Al-HMS and Al-MCM-41 molecular sieves for selective catalytic reduction of NO with NH3[J]. J Catal., 1997, 172: 488-493.
    [11]Fu Z H, Chen J H, Chen Y D, et al. Highly effective Cu-HMS catalyst for hydroxylation of phenol[J]. Catal. Lett., 2000, 66: 105-108.
    [12]Liu Y Y, Kazuhisa M, Megumn I, et al. Syntheses of Ti- and Al-containing hexagonal mesoporous silicas for gas-phase epoxidation of propylene by molecular oxygen[J]. Applied catal. A: Gen., 2006, 309: 91-105.
    [13]李吉东,李玉宝,王学江,等.载铜锌纳米羟基磷灰石的抗菌性能及机理研究[J].无机材料学报, 2006, 21(1): 162-168.
    [14]徐华龙,杜俊明,黄静静,等.钠对苯甲醛加氢合成苯甲醇催化剂Cu/SiO2的修饰作用影响活性[J].化学学报, 2007, 65(10): 877-880.
    [15]罗淑文,陈彤,童东绅,等.杂原子介孔分子筛Me-HMS催化酯交换合成碳酸二苯酯[J].催化学报, 2007, 28(11): 973-939.
    [16]师进文,郭烈锦. Cr或V掺杂的HMS在甲酸溶液中的光催化产氢性能研究[J].化学学报, 2007, 65(4): 323-328.
    [17]徐如人,庞文琴,于吉红,等.分子筛与多孔材料化学[M].北京:科学出版社, 2004: 145-148,179-180.
    [18]Yang X L, Dai W L, Chen H, et al. Novel tungsten-containing mesoporous HMS material: Its synthesis, characterization and catalytic application in the selective oxidation of cyclopentene to glutaraldehyde by aqueous H2O2[J]. Applied Catal. A: Gen., 2005, 283 (1-2): 1-8.
    [19]李艳凤,喻铃,何震,等.双杂原子Ti-V-β沸石的合成、表征及催化性能研究[J].无机化学学报, 2008, 24 (1): 117-123.
    [20]胡军,汪建军,周丽绘,等. Ti-Si介孔分子筛的转晶与控制[J].物理化学学报, 2006, 22(6): 679-683.
    [21]张海娇,姚明恺,谢伟,等. TS-1分子筛的无机法合成及其催化苯酚羟基化性能[J].催化学报, 2007, 28 (10): 895-899.
    [22]刘红,王志刚,李浩. Fe-MSU-1介孔分子筛的合成及其催化苯酚羟基化性能[J].催化学报, 2007, 28(3): 222-228.
    [23]蔡晓慧,朱广山,高波,等. Ag/SBA-15复合材料的制备及其抗菌性质[J].高等学校化学学报, 2006, 27(11): 2042-2044.
    [1]孙剑,乔学亮,陈建国,等.无机抗菌剂的研究进展[J].材料导报, 2007, 21(S1): 344?348.
    [2]余国文,张高科,胡波.金属系无机抗菌材料研究进展[J].工业安全与环保, 2004, 30(4): 34?36.
    [3]叶瑛,周玉航,夏枚生,等.新型无机抗菌材料:载铜蒙脱石及其抗菌机理讨论[J].无机材料学报, 2003, 18(3): 569?574.
    [4]高向华,许并社,魏丽乔,等.银型沸石抗菌剂的制备与性能研究[J].太原理工大学学报, 2008, 39(5): 455?458.
    [5]Lu Y, Mei L h. Production of indigo by immobilization of E. coli BL21 (DE3) cells in calcium?alginate gel capsules[J]. Chin. J Chem. Eng., 2007, 15(3): 387?390.
    [6]Tanev P T, Pinnavaia T J. A neutral templating route to mesoporous molecular sieves[J]. Science, 1995, 267(5199): 865?867.
    [7]Ana R S, Karen W, James H C, et al. Covalent attachment of chirl manganese(Ⅲ) salen complexes onto functionalized hexagonal mesoporous silica and application to the asymmetric epoxidation of alkenes[J]. Microsopor Mesopor Mater., 2006, 91(1?3): 128?138.
    [8]Muriel A E, Adam F L, Karaen W. High activity, templated mesoporous SO42-/ZrO2/HMS catalysts with controlled acid site density forα-pinene isomerisation[J]. Microsopor Mesopor Mater., 2005, 80(1?3): 301? 310.
    [9]Liu Y Y, Kazuhisa M, Megumn I, et al. Synthesis of Ti?and Al?containing hexagonal mesoporous silicas for gas?phase epoxidation of propylene by molecular oxygen[J]. Applied Catal. A: Gen., 2006, 309(1): 91?105.
    [10]Yang X L, Dai W L, Chen H, et al. Novel tungsten-containing mesoporous HMS material: its synthesis, characterization and catalytic application in the selective oxidation of cyclopentene to glutaraldehyde by aqueous H2O2[J]. Applied Catal. A: Gen., 2005, 283(1?2): 1?8.
    [11]陈君华,伏再辉,尹笃林,等. Cu?HMS的合成与催化苯酚羟基化研究[J].燃料化学学报, 2000, 28(5): 410?414.
    [12]李吉东,李玉宝,王学江,等.载铜锌纳米羟基磷灰石的抗菌性能及机理研究[J].无机材料学报, 2006, 21(1): 162?168.
    [13]罗淑文,陈彤,童东绅,等.杂原子介孔分子筛Me?HMS催化酯交换合成碳酸二苯酯[J].催化学报, 2007, 28(11): 937?939.
    [14]徐华龙,杜俊明,黄静静,等.钠对苯甲醛加氢合成苯甲醇催化剂Cu/SiO2的修饰作用影响活性[J].化学学报, 2007, 65(10): 877?880.
    [15]徐如人,庞文琴,于吉红,等.分子筛与多孔材料化学[M].北京:科学出版社, 2004: 145?146; 179?180.
    [16]李艳凤,喻铃,何震,等.双杂原子Ti?V?β沸石的合成、表征及催化性能研究[J].无机化学学报, 2008, 24(1): 117?123.
    [17]胡军,汪建军,周丽绘,等. Ti?Si介孔分子筛的转晶与控制[J].物理化学学报, 2006, 22(6): 679?683.
    [18]丁志杰,陈君华,公旭中,等.酸的种类及浓度对SBA?15有序介孔分子筛结构与形貌的影响[J].硅酸盐学报, 2008, 36(7): 978?984.
    [19]蔡晓慧,朱广山,高波,等. Ag/SBA?15复合材料的制备及其抗菌性质[J].高等学校化学学报, 2006, 27(11): 2042?2044.
    [20]吴宏海,吴大清.石英矿物表面反应性的EPR谱学研究[J].光谱学与光谱分析, 2000, 20(3): 298? 301.
    [21]吴晓轩,郑文琛,刘虹刚. CuAlS2: Ni+晶体光谱和电子顺磁共振谱研究[J].光谱学与光谱分析, 2007, 27(3): 417?419.
    [1]顾晓利,乔旭,崔咪芬,等.苯酚羟基化制苯二酚的催化剂研究新进展[J].工业催化, 2005, 13(4): 48-53.
    [2]曹维良,庄绪霞,杨作银,等.苯酚羟基化制备苯二酚反应机理的理论研究[J].高等学校化学学报, 2005, 26(3): 489-492.
    [3]景晓辉,乔旭.苯酚羟基化制备苯二酚的研究[J].精细石油化工, 2005, 22(6): 32-35.
    [4]熊春荣,林衍华,卢文奎.过氧化氢苯酚羟基化合成苯二酚的研究进展[J].工业催化, 2003, 11(4): 7-11.
    [5]游贤德.过氧化物氧化法制取邻苯二酚与对苯二酚[J] .化学推进剂与高分子材料, 2003, 1(2): 33-35.
    [6]刘迎新,李新学,魏雄辉.对苯二酚合成方法的研究进展[J].化学通报, 2004, 67(12): 869-875.
    [7]杜亚平.苯二酚的开发与生产进展[J].上海化工, 2008, 33(3): 19-24.
    [8]郝向英,刘芳.过氧化氢氧化苯酚制备苯二酚的研究进展[J].内蒙古师范大学学报(自然科学汉文版), 2007, 36(5): 633-638.
    [9]张淳,张赋,曹贵平,等. H2O2直接氧化苯酚制邻苯二酚[J].精细石油化工, 2002, 19(9): 46-48.
    [10]张淳,隆仲华,熊春荣,等.铁酸镁催化剂催化苯酚羟化作用的研究[J].化学世界, 2000, 41(9): 483-487.
    [11]Karakhanov E A, Filippova T Yu, Martynova S A, et al. New catalytic system for selective oxidation of aromatic compounds by hydrogen peroxide [J]. Catal. Today, 1998, 44(1-4): 189-198.
    [12]刘红,卢冠忠,郭杨龙,等. TS-1分子筛对固定床中苯酚羟基化反应的催化性能[J].催化学报, 2004, 25(1): 49-54.
    [13]张信芳,陈晓东,张敬畅,等. Fe2Mg2O / C2Al2O3对苯酚羟基化制苯二酚催化作用的研究[J].宁夏大学学报(自然科学版), 2001, 22(6): 231-232.
    [14]李小晶,林深,颜桂炀.钇钼钒磷杂多配合物催化苯酚羟化的研究[J].宁夏大学学报(自然科学版), 2001, 22(2): 116-118.
    [15]刘持标,叶兴凯,吴越.八羟基喹啉铁(Ⅲ) / MCM-41对苯酚羟化的催化作用[J].催化学报, 1997, 18(2): 140-143.
    [16]Chavan S, Srinivas D, Ratnasamy P. St ructure and Catalytic Properties of Dimeric Copper (Ⅱ) Acetato Complexes Encap sulated in Zeolite-Y [J]. J Catal., 2000, 192(2): 286-295.
    [17]Aída L V, César A C, Consuelo M C. Cu- and Fe-ZSM-5 as catalyst s for phenol hydroxylation[J]. J Mole. Catal. A: Chem., 2005, 228(1-2): 233-240.
    [18]Wang J, Park J N, Wei X Y, et al. Room-temperature heterogeneous hydroxylation of phenol with hydro- gen peroxide over Fe2+、Co2+ ion-exchanged Naβzeolite[J]. Chem. Commun., 2003: 628-629.
    [19]Fu Z H, Chen J H, Yin D l, et al. Highly effective Cu-HMS catalyst for hydroxylation of phenol[J]. Catal Lett, 2000, 6(1-2): 105-108.
    [20]Izabela S, Maria Z, Monika R, et al. Cu state and behaviour in MCM-41 mesoporous molecular sievesmodified with copper during the synthesis comparison with copper exchanged materials[J]. Microporous and Mesoporous Mater., 2004, 74(1-3): 131-136.
    [21]Sun J, Meng X, Shi Y. A novel catalyst of Cu2Bi2V2O complex in phenol hydroxylation with hydrogen peroxide [J]. J catal., 2000, (7): 199-206.
    [22]石晓波,傅海萍,李春根,等. Bi2Mo3O12在苯酚-过氧化氢羟基化反应中的催化性能[J].江西师范大学学报(自然科学版), 2003, 27(1): 73-76.
    [23]Tanev P T, Pinnavaia T J. A neutral templating route to mesoporous molecular sieves[J]. Science, 1995, 267(5199): 865?867.
    [24]武宝萍,袁兴东,宋长生,等.介孔分子筛的研究[J].精细石油化工进展, 2005, 6(1): 47-53.
    [25]Pantazis C C, Trikalitis P N, Pomonis P J. Highly loaded and thermally stable Cu-containing mesoporous silica-active catalyst for the NO+CO reaction[J]. J Phy. Chem. B, 2005, 109(25): 12574-12581.
    [26]Bian W, Zhu Z Q, Lu Z H. Preparation and evaluation of W-HMS catalyst[J]. J East China Univer Sci Tech., 2006, 32(12): 1383-1387.
    [27]梁敬魁.粉末衍射法测定晶体结构[M].北京:科学技术出版社, 2003.
    [28]徐如人,庞文琴,于吉红,等.分子筛与多孔材料化学[M].北京:科学技术出版社, 2005.
    [29]刘红,王志刚,李浩. Fe-MSU-1介孔分子筛的合成及其催化苯酚羟基化性能[J].催化学报, 2007, 28(3): 222-228.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700