用户名: 密码: 验证码:
高强度开采煤体采动裂隙场演化及其与瓦斯流动场耦合作用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国是世界上煤与瓦斯突出最为严重的国家之一。近年来的瓦斯相关事故的共同特点是发生事故工作面的煤层条件大部分为厚及特厚煤层,所采用的采煤方法大部分为综采放顶煤、大采高综采等高强度开采方法。
     然而,目前在瓦斯灾害以及煤与瓦斯突出的形成机理,瓦斯事故的预警、防治、应急救援等方面基础研究还很不够。在相关研究中对瓦斯爆炸的间接原因如具有爆炸危险的瓦斯是如何流动与涌出的研究不够深入,同时对煤体采动裂隙对瓦斯流动影响的研究关注也还不够。
     鉴于此,论文以高强度开采采动煤体为研究对象,采用现场实测与实验室实验相结合、理论分析与数值分析相结合的研究方法,利用采矿工程、岩石力学、渗流力学、等多学科交叉方法,研究了煤体采动裂隙场演化及其与瓦斯流动场耦合作用。论文的的结构见论文结构图,论文主要研究内容及成果有:
     (1)为了获取煤体内部及表面采动裂隙,进行了钻孔窥视、测线法和测窗法相结合煤体采动裂隙场的现场实测研究;在分析煤体采动应力分布特征的基础上,提出了工作面前方煤体采动裂隙场及其分区的概念,并对分区的分布特征和影响因素进行了分析。
     (2)为了模拟煤体裂隙及其演化,通过适当的数学方法对煤体的非均匀性进行了表征。具体做法是利用Monte Carlo方法生成伪随机数,对单元进行随机赋值;同时对FLAC~(3D)自带Mohr-Coulomb模型进行了修改,利用VS2005开发了更适合煤体的基于弹脆塑性本构模型Fracture.dll。最后将现场煤体采动裂隙观测结果作为初始状态,利用FLAC~(3D)调用Fracture.dll实现了煤体采动裂隙演化的模拟。
     (3)进行了一系列煤体渗透率应力敏感性的实验,模拟高强度开采对瓦斯渗流的影响。主要包括单/三轴渗透率应力敏感性实验、不同尺度下的煤样渗透率应力敏感性实验、不同孔隙压力下煤样渗透率应力敏感性实验、煤样渗透率应力敏感性并联实验。主要结论为:
     ①煤样渗透率与所加应力的关系满足负指数关系数学表达式;不同的加载形式,对渗透率的影响程度不同,围压对渗透率的影响比轴压大;
     ②随着煤体尺寸的增大,煤样渗透率与围压应力敏感性曲线斜率绝对值渐渐变小。当煤样尺寸增大至d=100 cm后,较低围压对煤样渗透率的影响已经不再明显;尺寸相同的情况下,较高的初始渗透率,煤体的渗流通道较大,更容易压缩。
     ③对于低渗透率煤体,在较低的孔隙压力和流速下煤体内瓦斯流动存在滑脱效应。在较低的孔隙压力下,煤体渗透率相对较高,这与砂岩油、气藏储层的特性类似。
     ④随着煤体受力状况发生变化,不同的煤层渗透能力将发生变化,主要渗流方向和流量的贡献率随之发生变化;
     (4)在上述研究基础上,分析了采动裂隙场演化过程中煤体渗透性的变化,建立了渗流—应力耦合方程。通过不同方案的数值模拟研究,进行瓦斯流动过程分析。
     (5)以天地王坡煤业有限公司3207工作面的瓦斯抽放为背景,利用研究成果,结合COMSOL Multiphysics软件进行了采动裂隙场对瓦斯抽放影响的数值模拟研究。研究表明裂隙的方位和走向对瓦斯流场分布起主要作用。
The coal-gas bursts are serious in china. Most of accents are accrued at high and extra-high seams under conditions of high-strength mining method, such as fully mechanized mining with top coal caving and with large mining height.
     However, the mechanism, forewarning and preventaion of coal-gas burst and gas disaster are inadequate research. Especially, the research is insufficient to the evolution of mining-induced fracture and its effect on gas seepage.
     By taking coal mass of high-strength underground mining as the research object, the combination method of laboratory experiment and experiment on site theoretical analysis and numerical analysis are used, multi-disciplinary research of crossing which combines mining engineer. The main aspects can be seen as the following:
     (1) The method of borehole camera, single scan line method and sampling window method were used to study the mining-induced fractures field. Based on the analysis of mine-induced stress distribution, the concept of "mining-induced fractures field" and its zoning were proposed.
     (2) For to simulate coal mass fractures and their's evolution, proper method was adopted to characterize the heterogeneity. The concrete method is that pseudo-random number generation by using the Monte Carlo method to random assign material parameters. After modified Mohr-Coulomb model of FLAC~(3D), the Fracture. dll of elasto-brittle-plasticity was complied by using the software VS2005. Takes field observation data as initial state, the mining-induced fractures extension and cross was simulated. And the gas flow was researched in this process.
     (3) For to find out the effect of high-strength underground mining to gas seepage, Series of research on coal samples permeability sensibility were experimentized, which mainly included that uniaxial (triaxial) compression test, scale effects test of permeability sensibility, pore pressure test of permeability sensibility and parallel test of permeability sensibility.
     ①It is shown that the permeability of coal samples with pressure can be fitted by negative exponential law. Axial compression had more influence for the permeability than confining pressure.
     ②With the scale of coal samples increase , the absolute value of the slope of the K—p predicted curves under load-on statutes turns to smaller. With K_0 increases, the absolute value of the slope of K—p predicted curves under load-on statutes turn larger.
     ③To low-permeability coal mass, the gas seepage is affected by the slippage effect with the low pore pressure and seepage velocity.
     ④With the force condition change of coal mass, the transmission capacity will change. And the main seepage direction and flow contribution will also change.
     (4) After these researches, the permeability variation was analyzed with evolution of mining-induced fractures field. The coupling equation of seepage-stress is achieved. By numerical simulation research of different scheme, the gas flow progress was analyzed.
     (5) The numerical simulation of gas drainage at 3207 workface in Wangpo. Mine was achieved by using the COMSOL Multiphysics software. Fracture orientation and strike made the main function during gas seepage.
引文
[1]姚建国,耿德庸,邹正立.对推动我国煤炭地下开采技术进步的思考[J].地下开采现代技术技术理论与实践新进展[C].北京:煤炭工业出版社.2007,38-49.
    [2]李毅中.在全国煤矿瓦斯先抽后采经验交流会上的讲话.互联网:http://www.chinasafety.gov.cn/2007.4.
    [3]煤层气(煤矿瓦斯)开发利用“十一五”规划.互联网:http://www.ces.cn/html/2006-6/2006671100101.shtml2006.6
    [4]王剑光.采煤法现状及发展趋势[J].煤矿安全,2004(6):28-30.
    [5]孔祥言.高等渗流力学[M].合肥:中国科学技术大学出版社,1999,1-6.
    [6]李凤明.采矿引发的地质灾害及工程治理实践[J].煤炭科学技术,2001,(29)3:16-19.
    [7]Goodman R.E.,S hiG.H.Block.Theory and Its Application in Rock Engineering.Prentice Hall.Englewood Clifs,1985
    [8]Cundall P.A.The Measure ment and Analysis of Acceleration in Rock Slope.Ph.D.Dissertation,University of London,1971.
    [9]Shi G.H.Discontinuous Deformation Analysis.Berkly,1991.
    [10]孙建生,永井哲夫.一个新的节理岩体力学分析模型及其应用[J].岩石力学与工程学报,1994,(13).3:200-205.
    [11]谢和平,陈忠辉.岩石力学[M].北京:科学出版社,2004,176-183.
    [12]尹双增.断裂·损伤理论及应用[M].北京:清华大学出版社,1992,1-2.
    [13]吴智敏,徐世,王金来.基于虚拟裂缝模型的混凝土双K断裂参数[J].水利学报,1999,7:12-16.
    [14]徐道远,俞建荣.粘聚裂纹模型及其在混凝土开裂中的应用[J].水利学报,1989,9:18-24.
    [15]杨庆生,杨卫.断裂过程的有限元模拟[J].计算力学学报,1997,14(4):407-412.
    [16]Bazant,Z.P.,Oh,B-H.Crack band model for concrete.Material and Structures,1983,Vol.16:155-177.
    [17]Shen B.Stephansson O.,Numerical analysis of mined mode Ⅰ and mode Ⅱ fracure propagation,Int.J.Rock Mech.Min.Sci.& Geomech.Abstr.,1993,30(7):861-867.
    [18]Weibull,W.A statistical distribution functions of wide applicability.J.Appl.Mech.1951:293-297.
    [19]Curran D.R.,Seaman L.,Shockey D.A.,Dynamic failure of solids,Phys.Rep.,1987,147:253-388.
    [20]黄炳香.坚硬煤体水力致裂裂缝扩展特征研究[D].西安科技大学硕士学位论文,2004.
    [21]M.Prudencio,M.Van Sint Jan,Strength and failure modes of rock mass models with non-persistent joints,International Journal of Rock Mechanics & Mining Sciences,2007,44:890-902.
    [22]吴汉辉,杨转运,刘会.在卸荷产生拉剪情况下裂隙岩体的力学行为[J].岩土工程技术,2005.19:237-240.
    [23]夏蒙棼,韩闻生,柯孚久,等.统计细观损伤力学和损伤演化诱致突变(Ⅰ)[J].力学进展,1995,25(1):1-40.
    [24]夏蒙棼,韩闻生,柯孚久,等.统计细观损伤力学和损伤演化诱致突变(Ⅱ)[J].力学进展,1995,25(2):145-173.
    [25]Hoke E,B.E.T.,岩石地下工程[M].北京:冶金工业出版社,1986.
    [26]凌建明.压缩荷载条件下岩石细观损伤特征的研究[J].同济大学学报,1993,21(2):219-226.
    [27]张永波,李荣华,刘秀英.采动岩体分形裂隙网络演化规律的实验研究[J].工程勘察,2004,(02):12-16.
    [28]贾剑青.采煤工作面采动裂隙带的确定方法[J].中国矿业,2004,13(11):45-47.
    [29]李宁,陈文玲,张平.动荷作用下非贯通裂隙介质的强度性质[J].自然科学进展,2000.10(11):1029-1034.
    [30]Bruno Lombard,Lombard,Jo(?)Piraux,Modeling 1-D elastic P-waves in a fractured rock with hyperbolic jump conditions.Journal of Computational and Applied Mathematics.2007,204:292-305.
    [31].D.Achenbach,Wave Propagation in Elastic Solids,North-Holland,Amsterdam,1973.
    [32]S.C.Bandis,A.C.Lumsden,N.R.Barton,Fundamentals of rock fracture deformation,Intemat.J.Rock Mech.Min.Sci.Geomech.Abstr.20(6)(1983)249-268.
    [33]M.Crouzeix,A.L.Mignot,Analyse num(?)rique des(?)quations diff(?)rentielles,Masson,1992.
    [34]姜福兴,XUN Luo,杨淑华.采场覆岩空间破裂与采动应力场的微震探测研究[J].岩土工程学报,2003,25(1):23-25.
    [35]程学丰,刘盛东,刘登宪.煤层采后围岩破坏规律的声波CT探测[J].煤炭学报,2001,26(2):153-155.
    [36]杨思舜,方潮杰.利用测井方法研究采区离层裂隙带变化规律[J].矿业技术与管理,2006,(28):55-56.
    [37]C.A.Tang,H.Liu,P.K.K.Lee,Y Tsui,L.G.Tham,Numerical studies of theinfluence of microstructure on rock failure in uniaxial compression-PartⅠ:effect of heterogeneity,Int.J.Rock Mech.Min.Sci.,2000,37(4):555-569.
    [38]C.A.Tang,H.Liu,E K.K.Lee,Y Tsui,L.G.Tham,Numerical studies of the influence of microstructure on rock failure inuniaxial compression-PartⅡ:constraint,slenderness,and size effect,Int.J.Rock Mech.Min.Sci.,2000,37(4):571-583.
    [39]S.C.Blair,N.G W Cook,Analysis of Compressive fracture in rock using statistical techniques:PartⅠ.A non-linear rule-based model,Int.J.Rock Mech.Min.Sci.,1998,35(7):837-848.
    [40]S.C.Blair,N.G W Cook,Analysis of Compressive fracture in rock using statistical techniques:PartⅡ.Effect of microscale heterogeneity on macroscopic deformation,Int.J.RockMech.Min.Sci.,1998,35(7):849-861.
    [41]钱鸣高,缪协兴.采场上覆岩层结构的形态与受力分析[J].岩石力学与工程学报,1995.14(2):97-106.
    [42]钱鸣高,许家林.覆岩采动裂隙分布的“O”形圈特征研究[J].煤炭学报,1998.23(5):466-469.
    [43]刘泽功.卸压瓦斯储集与采场围岩裂隙演化关系研究[D].中国科学技术大学博士学位论文,2004.
    [44]刘天泉,仲维林,焦传武,等.煤矿地表移动与覆岩破坏规律及应用[M].北京:煤炭工业出版社,1981.20-35
    [45]康永华,赵国玺.覆岩性质对“两带”高度的影响[J].煤矿开采,1998,1:52-54.
    [46]陈佩佩,刘鸿泉,朱在兴.等基于人工神经网络技术的综放导水断裂带高度预计[J].煤炭学报,2005,4:438-442.
    [47]丁德馨,王云刚,张志军.基于自适应神经模糊推理的导水裂缝带高度研究[J].采矿技术,2005,5(1):15-18.
    [48]张文艺,钟梅英,蔡建安,等.岩性与覆岩破坏高度关系的模糊聚类分析[J].陕西煤炭,2001,1:38-40.
    [49]李洋,李文平,刘登宪.潘谢矿区导水裂隙带发育高度与采厚关系回归分析[J].地球与环境,2005,33(增):66-69.
    [50]隋旺华.开采覆岩破坏工程地质预测的理论与实践.工程地质学报,1994,2(2):29-37.
    [51]李树刚.综放开采围岩活动影响下瓦斯运移规律及控制[D].中国矿业大学博士学位论文,1998.6.
    [52]刘建国,彭功勋,韩文峰.岩体裂隙网络的分形特征[J].兰州大学学报,2000,36(4):96-99.
    [53]张帆,贺振华,黄德济,等.预测裂隙发育带的构造应力场数值模拟技术[J].石油地球物理勘探,2000,35(2):154-163.
    [54]王水林,葛修润.流形元方法在模拟裂纹扩展中的应用[J].岩石力学与工程学报,1997,16(5):405-410.
    [55]王水林,葛修润,章光.受压状态下裂纹扩展的数值分析[J].岩石力学与工程学报,1999,18(6):671-675.
    [56]黄岩松,周维垣,胡云进.应用三维无单元伽辽金法追踪裂纹扩展[J].水利学报,2006,37(1):63-69.
    [57]张金才.采动岩体破坏与渗流特征研究[D].煤炭科学研究总院博士学位论文,1998.
    [58]王鲁明,赵坚,万德连.巷道裂隙围岩稳定性影响因素的数值分析[J].岩土力学,2005,26(10):1565-1569.
    [59]C.A.Tang,H.Liu,P.K.K.Lee,Y Tsui,L.G.Tham,Numerical studies of theinfluence of microstructure on rock failure in uniaxial compression PartⅠ:effect of heterogeneity,Int.J.Rock Mech.Min.Sci,2000,37(4):555-569.
    [60]C.A.Tang,H.Liu,P.K.K.Lee,Y Tsui,L.G.Tham,Numerical studies of the influence of microstructure on rock failure in uniaxial compression PartⅡ:constraint,slenderness,and size effect,Int.J.Rock Mech.Min.Sci.,2000,37(4):571-583.
    [61]任强,刘伟韬.覆岩采动裂隙带发育规律的数值模拟分析[J].安全与环境学报,2006,6(suppl.):75-78.
    [62]黄志安,张英华,李示波,等.FLAC在确定沙曲矿裂隙带上下界中的应用[J].矿业研究与开发,2006,26:20-22.
    [63]向晓辉,王俐.三峡库区高阳段库岸岩体裂隙网络模拟研究[J].矿业研究与开发,2006,26(2):31-34.
    [64]涂敏.综放开采顶板离层裂隙变化研究[J].煤炭科学技术,2004.,32(4):44-47.
    [65]赵阳升,文再明,冯增朝.岩体裂隙面数量的三维分形分布仿真理论与技术[J].岩石力学与工程学报,2005,24(6):994-998.
    [66]柴贺军,黄地龙,黄润秋,等.岩体结构三维可视化及其工程应用研究[J].岩土工程学报,2001,23(2):217-220.
    [67]Smyth M,Buckley M J.Statistical analysis of the microlithotype sequences in the Bulli Seam,Australia,and relevance to permeability for coal gas.Int J.Coal Geol.1993,22:167-187.
    [68]Clarkson R M.Bustin R M.Varition in permeability with lithotype and maceral composition of Cretaceous coals of the Canadian Cordillera.Int..Coal Geol.,1997,33:135-151
    [69]Tien J.Longwall caving in thick seams.Coal Age,1998;103(4):52-61.
    [70]Jha SN,Karmakar S.Thick seam mining-some experience and exaltation.In:Singh TN,Dhar BB editors.Proceedings of the international symposium on thick seam mining.India,Dhanbad:Central Mining Research Station,1992:191-202.
    [71]N.E.Yasitli.B.Unver,3D numerical modeling of longwall mining with top-coal cavingInternational Journal of Rock Mechanics & Mining Sciences,2005,219-235.
    [72]靳钟铭,宋选民,薛亚东,等.顶煤压裂的实验研究.[J]煤炭学报,1999,24(1):29-33.
    [73]闫少宏,吴健,孟金锁.放顶煤开采顶煤分区的力学方法[J].综合机械化放顶煤开采论文集,徐州:中国矿业大学出版社,1995.
    [74]苏现波.煤层气储集层的孔隙特征[J].焦作工学院学报,1998,17(1):6-11.
    [75]程国明,黄侃,王思敬.综放开采顶煤裂隙及其对渗透性研究的意义[J].煤田地质与勘探,2002,.30(6):19-21.
    [76]程国明,马凤山,王思敬,等.基于几何测量法的裂隙岩体渗透性研究[J].岩石力学与工程学报,2004,23(21):3595-3599.
    [77]李胜利.煤体压裂机理及应用研究[D].太原理工大学硕士学位论文,2000.
    [78]靳钟铭,魏锦平,靳文学.综放工作面煤体裂隙演化规律研究[J].煤炭学报,2000,25:43-45.
    [79]魏锦平,张建平,靳钟铭.裂隙煤体压裂机理的分形研究[J].矿山压力与顶板管理2005,2:112-113.
    [80]石强,潘一山.煤体内部裂隙和流体通道分析的核磁共振成像方法研究[J].煤矿开采,2005,10(6):6-10.
    [81]周世宁,孙辑正.煤层瓦斯流动理论及其应用[J].煤炭学报,1965,2(1):24-36.
    [82]周世宁.瓦斯在煤层中流动的机理[J]煤炭学报,1990,15(1):61-67.
    [83]郭勇义.煤层瓦斯一维流场流动规律的完全解[J]中国矿业学院学报,1984,2(2):19-28.
    [84]孙培德.煤层瓦斯流动理论及其应用[A]中国煤炭学会1988年学术年会论文集[M].北京:煤炭工业出版社,1988.
    [85]孙培德.煤层瓦斯动力学及其应用的研究[J]山西矿业学院学报,1989,7(2):126-135.
    [86]孙培德.瓦斯动力学模型的研究[J]煤田地质与勘探,1993,21(1):32-40.
    [87]孙培德.煤层瓦斯流动方程补正[J]煤田地质与勘探,1993,21(5):61-62.
    [88]孙培德.煤层气越流的固气耦合理论及其计算机模拟研究[D].重庆大学博士学位论文,1998.
    [89]鲜学福.地电场对煤层中瓦斯渗流影响的研究[A].国家自然科学基金资助项目研究总结报告,1993.
    [90]魏晓林.煤层瓦斯流动规律的实验和数值方法的研究[J]粤煤科技,1981,(2):35-41.
    [91]魏晓林.有钻孔煤层瓦斯流动方程及其应用[J].煤炭学报.1988,13(1):85-96.
    [92]杨其銮,王佑安.煤屑瓦斯扩散理论及其应用[J].煤炭学报,1986,11(3):62-70.
    [93]罗新荣.煤层瓦斯运移物理模型与理论分析[J]中国矿业大学学报,1991,20(3):36-42.
    [94]姚宇平.煤层瓦斯流动的达西定律与幂定律[J]山西矿业学院学报,1992,10(1):32-37.
    [95]Somerton W H,Soyletaezoglu I M,Dudley R C.Effect of stress on permeability of coal.Int.J.Rock Mech.Min.Sci.,1975,12:129-145.
    [96]Stoemont J C,Daemen J.J.K,Laboratory study of gas permeability changes in rock salt during deformation.Int.J.Rock Mech.Min.Sci.1992,29:323-342.
    [97]Harpalani,S.and Mopherson,M.J.The effect of gas evacuation on coal permeability test specimens[J].Int.J.Rock Mech.Min.Sci.& Geomech.Abstr.1984,21(3):361-364.
    [98]Louis C.Rock Hydraulics.In:Rock Mechaics.Muller Leds.1974.
    [99]Snow D T.Rock fracture specings,openings and porosities.J.Soil mech.Found.Div.Proc ASCE94,1968:73-79 rock,Int.J.Rock.Mech.Min.Sci.Geomech.Abstr.,1975,27:21-27.
    [100]Jones F.O.A laboratory study of the effects of confining pressure on fracture flow and storage capacity in carbonate
    [101]Kranz R.L.The permeability of whole and jointed barre granite,Int.J.Rock.Mech.Min.Sci.Geomech.Abstr.,1979,16(4):225-234.
    [102]Gale J.E.The effects of fracture tyoe(induced versus natural)on the stress-fracture closure permeability relationships.In:Proc.23th Symp.on Rock Mech.,Berkeley,California,1982.
    [103]Tsang Y.W.,Tsang C.F.Channel model of flow through fractured media.Water resources Research.1987,23(3):467-479.
    [104]S.Durucan and J.S.Edwards,The effects of stress and fracturing on permeability of coal,Mining Science and Technology 1986,3(3)205-216.
    [105]林柏泉,周世宁.含瓦斯煤体变形规律的实验研究[J].中国矿业学院学报,1986,15(3):67-72.
    [106]林伯泉,张仁贵.钻孔周围煤体中瓦斯流动的理论分析[J].煤炭工程师,1996,3:14-19.
    [107]何学秋,周世宁.煤和瓦斯突出机理的流变假说[J].中国矿业大学学报,1990,19(2):1-9.
    [108]傅雪海,秦勇,张万红.高煤级煤基质力学效应与煤储层渗透率耦合关系分析[J],高校地质学报,2003,9(3):373-377.
    [109]曹广祝,仵彦卿,丁卫华,等.低渗透压力条件下砂岩渗透性质的CT[J].实验煤田地质与勘探,2005,33(4):59-62.
    [110]唐巨鹏,潘一山,李成全,等.固流耦合作用下煤层气解吸渗流实验研究[J].中国矿业大学学报,2006,35(2):274-278.
    [111]梁冰,章梦涛.考虑时间效应煤何瓦斯突出的失稳破坏机理研究[J].阜新矿业学报,1997,16(2):129-133.
    [112]梁冰,章梦涛,王泳嘉.煤层瓦斯流与煤体变形的耦合数学模型及数值解法[J].岩石力学与工程学报,1996,15(2):135-142.
    [113]赵阳升.煤体-瓦斯耦合数学模型及数值解法[J].岩石力学与工程学报,1994,13(3):229-239.
    [114]赵阳升,胡耀青,杨栋,等.三维应力下吸附作用对岩体气体渗流规律影响的实验研究[J].岩石力学与工程学报.1999,18(6):651-653.
    [115]程国明,马凤山,王思敬,等.基于几何测量法的裂隙岩体渗透性研究[J].岩石力学与工程学报,2004,23(21):3595-3599.
    [116]程国明,黄侃,王思敬.综放开采顶煤裂隙及其对渗透性研究的意义[J].煤田地质与勘探,2002,30(6):19-21.
    [117]刘程.综采放顶煤与瓦斯突出的耦合关系研究[J].焦作工学院学报,2004,23(4):155-159.
    [118]杨蕾,同登科.变形介质煤层气双渗流动压力分析[J].天然气地球科学,2006,17(3):429-433.
    [119]黄润秋.复杂岩体结构精细描述及其工程应用[M],北京:科学出版社,2004,5-25.
    [120]苏现波,冯艳丽,陈江峰.煤中裂隙的分类[J].煤田地质与勘探,2002,30(4):21-24.
    [121]苏波.煤岩体结构观测及对巷道围岩稳定性的影响研究[D]煤炭科学研究总院硕士学位论文,2007.
    [122]刘勇.电子窥视仪在煤矿中的应用[J].煤矿开采,2006,(11)1:54-55.
    [123]史元伟,宁宇,齐庆新.综采放顶煤工作面岩层控制与工艺参数优选[M].徐州:中国矿业大学出版社,2006.15-25.
    [124]彭苏萍,王金安.承压水体上安全采煤[M].北京:煤炭工业出版社,2001,40-60.
    [125]张有天.岩石水力学与工程[M].北京:中国水利水电出版社,2005,63-66.
    [126]王渭明,油新华.围岩裂隙网络的计算机模拟[J].化工矿山技术,1996,12-15.
    [127]蔡美峰.岩石力学与工程[M].北京:科学出版社,2002,12.
    [128]齐庆新,王永秀,毛德兵,等.对建立“煤力学”的探讨-由煤岩单轴直接拉伸实验想到的[J].第八次全国岩石力学与工程学术大会论文集,北京:科学出版社,2004,136-140.
    [129]唐春安,朱万成.混凝土损伤与断裂--数值试验[M].北京:科学出版社,2003,24.
    [130]陆万明,罗学富.弹性理论基础[M].北京:清华大学出版社,1990,104-107.
    [131]王仁,黄文彬,黄筑平.塑性力学引论[M].北京:北京大学出版社,1992,74-77.
    [132]徐秉业,刘信声.应用弹塑性力学[M].北京:清华大学出版社,2006,97-100.
    [133]沈新普.岩土工程弹脆塑性数值研究及材料参数识别反演方法[D]清华大学博士学位论文,1993.
    [134]Itasca Consulting Group,Inc.Theory and background in FLAC~(3D)[M],2004.
    [135]齐庆新,李宏艳,邓志刚,等.高强度采动含瓦斯煤体渗透率演化规律研究[C],2007中国(淮南)煤矿瓦斯治理技术国际会议论文集.徐州:中国矿业大学出版社,2007.
    [136]邓志刚,齐庆新,李宏艳,等.采动煤体渗透率示踪及演化规律[J].煤炭学报,2008,33(03):273-276.
    [137]余天庆,毛为民.张量分析及应用.北京:清华大学出版社,2006,70-82.
    [138]胡千庭.矿井瓦斯防治技术优选——煤与瓦斯突出和爆炸防治[M].徐州:中国矿业大学出版社,2008,277-285.
    [139]王魁军.矿井瓦斯防治技术优选——瓦斯涌出量预测与抽放[MJ.徐州:中国矿业大学出版社,2008,114-118.
    [140]Comsol AB.Comsol Multiphysics Quick Start and Reference[M].2007,203-250.
    [141]Comsol AB.Comsol Multiphysics Earth science module[M].2007,59-78.
    [142]Comsol AB.Comsol Multiphysics Structural mechanics module[M].2007,65-81.
    [143]范天吉.煤矿瓦斯综合治理技术手册(第一卷)[M].长春:吉林音像出版社,2003:264-268.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700