用户名: 密码: 验证码:
玻色—爱因斯坦凝聚的混沌动力学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
玻色-爱因斯坦凝聚(BEC)是近几十年来被广泛关注的课题。它不仅提供了一个研究量子力学基本问题的宏观系统,而且在原子光学,量子计算等领域有着光明的应用前景。本文在平均场理论的框架下以Gross-Pitaevskii(G-P)方程为主要模型,讨论了双阱中的混沌、不稳二维环面、宏观量子自囚禁和运动光学晶格中混沌控制及同步。
     全文共分六章,各章研究内容如下。第一章简单介绍了光学混沌的研究进展,BEC中的混沌,光学混沌控制及反控制,原子光学,BEC及其性质,原子激光等的研究现状。
     第二章主要研究了在运动光学晶格中BEC的线性稳定性和时空演化性质,在这一章中重点讨论的是类Bloch解的时空混沌性质。当考虑到阻尼效应时,利用李雅普诺夫指数(Lyapunov exponent),给出了系统的混沌参数区域。同时通过数值分析我们研究了系统的暂态混沌特征,并模拟了由暂态混沌向定态混沌的转变过程。我们发现在这一过程中暂态混沌的最终吸引子经历了一系列的倍周期分岔。我们还数值模拟了粒子数密度的时间系列和功率谱,进一步阐明了BEC的混沌特性。
     第三章主要研究了对光学晶格中BEC空间混沌分布的控制和同步。提出了四种控制方法。第二节中的周期参数调制法控制BEC混沌,用正弦信号调制外加的激光光强,将运动光学晶格的BEC混沌行为控制到周期运动。数值模拟结果表明,选择不同的调制强度和调制频率,只要满足系统的最大Lyapunov指数小于零,即可实现混沌控制。在同样的调制频率下,不同的调制强度会出现不同的周期运动,或者在相同的调制强度下,不同的调制频率也会出现不同的周期运动。第三节中的周期信号驱动法控制BEC混沌。数值模拟结果表明,用小的周期信号控制系统混沌,选择各种共振条件,采用恰当的信号相位和强度,使系统从混沌运动转变成周期运动。第四节中的线性反馈法控制BEC混沌。利用原子反射镜,将运动光学晶格中BEC混沌行为控制到周期运动。数值模拟结果表明,选择恰当的系数来反馈单一系统变量,只要满足系统的最大Lyapunov指数小于零,即可实现混沌控制。第五节中的调s-波散射长度控制BEC混沌。通过feshbach共振调节s-波散射长度,能够将BEC混沌控制到周期运动。数值模拟结果表明,只要最大Lyapunov指数小于零,不同的s-波散射长度对应不同的周期轨道。第六节是研究BEC混沌同步。对光学晶格中BEC空间混沌分布的控制和同步的研究都是利用李雅普诺夫指数来讨论的。
     第四章主要研究了对光学晶格中BEC空间混沌分布的反控制。提出了两种反控制方法。第一节中混沌反控制的方法-周期参数调制法,通过调制外加激光的光强,使BEC从周期运动转化为混沌态。数值模拟结果表明,选择不同的调制强度和调制角频率,只要满足系统的最大Lyapunov指数大于零,即可实现不同的混沌轨道重构。第二节中提出了另一种实现BEC混沌反控制的方法-外部周期信号驱动法,数值模拟结果表明,用小的周期信号控制系统,采用恰当的调制相位和强度,只要满足系统的最大Lyapunov指数大于零,即可使周期运动进入混沌状态。调制相位在混沌轨道重构中起了很重要的作用。
     第五章主要研究了在三体相互作用下BEC的混沌、不稳二维环面特征和自囚禁现象。利用Lyapunov指数研究了三体相互作用下的BEC相对粒子数布居的时间演化。数值分析了混沌运动的各种吸引子及相应的时间变化图和功率谱,本章从理论上和数值模拟上来研究BEC的混沌和不稳二维环面性质。当BEC气体原子是相互吸引的相互作用时,系统受到三体复合损失和外部非凝聚热云对凝聚体的补充。相应的在G-P方程中加入虚的相互作用项-五次方项。第二节研究了三体相互作用下BEC中的混沌特性。第三节讨论了三体相互作用下BEC中不稳二维环面的行为。双势阱模型是一个非常基本的简单物理模型,人们可以用它来研究BEC原子的量子隧穿和量子相干等相关特性。最近人们在实验上观测到双势阱中许多有趣的物理现象,其中之一是自囚禁(self-trapping)现象,第四节讨论了三体相互作用下BEC中的自囚禁现象。
     最后,在第六章对本文做了简单的总结,并对该领域前景做了一点展望。本文中,作者的研究主要集中在第三、四、五章。
Bose-Einstein condensates (BEC) have been attractive subjects in recent decades. They not only offer the perfect macroscopic quantum systems to investigate many fundamental problems in quantum mechanics but also have extensively application foregrounds such as in atom laser and quantum computation. In the framework of mean-field theory, the BEC is governed by the Gross-Pitaevskii equation. Based on the Gross-Pitaevskii equation we shall study the chaos, unstable cycle in double-well and chaos control, synchronism in an optical lattice.
     Our paper is organized as the following six parts. In the first part we shall give a simple introduction to development of optical chaos, chaos in BEC, controlling chaos, anti-control of chaos ,atomic optical, BEC and properties, atomic laser and so on.
     In part two, we studied the space-time evolution properties of the BEC held in a traveling optical lattice. In this chapter, the dynamic equation of the BEC is deeply investigated and the stability of its stable solution is analyzed. We focus on the features of spatiotemporal chaos of the Bloch-like solution of the system. When the damping is our considerations, we use Lyapunov exponent to present the chaotic region in parametrical space. Features of the transient chaos are studied through numerical method. The transition procession from transient chaos to stationary one has been numerically simulated. In this procession, we find that the final attractors of the transient chaos undergo a series of period-doubling bifurcations. We also simulate the time-series and power spectra.
     In part three, chaos control and synchronism in BEC are investigated by four methods. Firstly, we suggest a method for eliminating chaos by modulating periodic signals to convert the chaotic state into regular state. As a function of modulation intensity and modulation frequency the maximal Lyapunov exponent is calculated respectively, and the periodic orbits associated with the negative Lyapunov exponent. Secondly, BEC chaos is controlled with the outer period signal parameter modulation. Numerical simulation shows that the chaotic behavior can be well controlled to enter into periodicity by choosing condition of resonance and the best phase matching or intensity. Thirdly, a method of chaos control with linear feedback is presented. By using the method, we propose a scheme of controlling chaotic behavior in a BEC with atomic mirror. The results of the computer simulation show that the chaos into the stables could be realized by adjusting the coefficient of feedback only if the maximal Lyapunov exponent of the system is negative. Fourth, through changing s-wave scattering length by using feshbach resonance, the chaotic behavior can be well controlled to enter into periodicity. Numerical simulation shows that there are different periodic orbits according to different s-wave scattering length only if the maximal Lyapunov exponent of the system is negative. Finally, chaotic synchronization in BEC is investigated.
     The fourth chapter anti-control of chaos in BEC is put forward by two methods. We suggest a method for generating chaos in BEC by modulating periodic signals to convert the regular states. As a function of modulation intensity and modulation, frequency the maximal Lyapunov exponent is calculated respectively and the chaotic orbits associated with the positive Lyapunov exponent. Finally, we present a method anti-control of chaos in BEC by applying outer periodic signals to convert the periodic state into chaotic state. The periodicity can be well-controlled to enter into chaotic behavior by choosing condition of resonance and best phase matching or intensity phase. Numerical simulation shows that there are chaotic orbits corresponding to different phase matching or intensity only if the maximal Lyapunov exponent is positive.
     In part five, by using Lyapunov exponent, chaotic time evolutions and the macroscopic quantum self-trapping in BEC are investigated for the particle number density of BEC with three-body interaction. Chaotic attractors, the time series and power spectra are simulated numerically. Properties of chaos are revealed theoretically and numerically in this part. Firstly, we study the chaotic properties in BEC. In the second part, unstable cycle in BEC with three-body interaction is investigated by using Lyapunov exponent. Finally, we study the macroscopic quantum self-trapping in BEC. Double-well trapping in BEC is a simple model. People use it to study many phenomenons.
     Finally, we briefly summarize our contributions and discuss future work in the last chapter. Here, our main works are involved in chapter's three, four and five.
引文
[1]S.N.Bose.Bose-Einstein condensation.Z.Phys,1924,26:178-180.
    [2]A.Einstein.Wave turbulence in Bose-Einstein condensates.Preuss.Akad.Wiss,1924,261-266.
    [3]F.London.On the Bose-Einstein condensation.Phys.Rev,A,1938,54:947-954.
    [4]M.H.Anderson,J.R.Ensher,M.R.Matthews,et al.Observation of Bose-Einstein condensation in a dilute atomic vapor.Science,1995,269:198-201.
    [5]K.B.Davis,M.O.Mewes,M.R.Andrews,et al.Bose-Einstein condensation in a gas of sodium atoms.Phys.Rev.Lett,1995,75:3969-3973.
    [6]L.L.Jia and J.P.Wolfe.Bose-Einstein condensation of paraexcitons in stressed Cu_2O.Phys.Rev.Lett,1993,71:1222-1225.
    [7]B.Borca,J.W.Dun,V.Kokoouline,et al.Atom-molecule laser fed by stimulated three-body recombination.Phys.Rev.Lett,2003,91:070404-070407.
    [8]S.A.Haine,J.J.Hope,N.P.Robins,et al.Stability of continuously pumped atom lasers.Phys.Rev.Lett,2002,88:170403-170406.
    [9]G.Cennini,G.Ritt,C.Geckeler,et al.All-Optical realization of an atom laser.Phys.Rev.Lett,2003,91:240408-240411.
    [10]J.K.Pachaos and P.L.Knight.Quantum computation with a one-dimensional optical lattice.Phys.Rev.Lett,2003,91:107902-107905.
    [11]R.Ionicioiu and P.Zanardi.Testing bell's inequality with ballistic electrons in semiconductors.Phys.Rev.A,2001,63:050101-050104.
    [12]Q.Chen,J.Stajic,S.Tan,et al.Heat capacity of a strongly-interacting fermi gas.Science,2005,307:1296-1299.
    [13]F.Dalfovo,S.Giorgini,L.P.Pitaevskii,et al.Theory of Bose-Einstein condensation in trapped gases.Rev.Mod.Phys,1999,71:463-512.
    [14]S.Inouye,M.R.Anderson,J.Stenger,et al.Observation of Feshbach resonances in a Bose-Einstein condensate.Nature,1998,392:151-154.
    [15]G.Karapetrov,M.Lavarone,W.K.Kwok,et al.Scanning tunneling spectroscopy in MgB_2.Phys.Rev.Lett,2001,86:4374-4377.
    [16]E.P.Gross and J.Math.SU(4) assignments for the vector resonances.Phys.Rev.Lett,1963,11:447-448.
    [17]卢侃,孙建华编译.混沌学传奇.上海:上海翻译出版公司,1991,12-23.
    [18]J.F.Donoghue and V.R.Holstein.Chiral symmetry,nonleptonic hyperon decay,and the Feinberg-Kabir-Weinberg theorem.Phys.Rev.D,1986,33:2717-2719.
    [19]王光瑞.于熙龄,陈式刚.混沌的控制与应用.北京:国防工业出版社,2001:24-27.
    [20]胡岗.萧井华,郑志刚等.混沌控制.上海:上海科技教育出版社,1999:45-47.
    [21]沈柯.光学中的混沌.长春:东北师范大学出版社,1999:7-26
    [22]方锦清.物理学进展. 1996, 16: 137-145.
    [23]E. N. Lorenz. Deterministic nonperiodic flow. J.Atmos.Sci, 1963, 20: 130-134.
    [24]D. Auelle and F.Takens. Physical Review 100 years collection. Comm. Math.Phys, 1971, 20: 167-170.
    [25]R. May. Myelodysplastic syndromes: pathogenesis, functional abnormalities, and clinical implications. Nature, 1976,262: 68-70.
    [26]K. Katsumata and M. Kobayashi. Experimental phase diagram of a random mixture of two anisotropic antiferromagnets. Phys.Rev.B, 1979, 19: 2700-2703.
    [27]P. Coullet, J. Tresser and C. R. Acad. Smooth transformations of intervals. Sci. 1978, 287A: 577-580.
    [28]H. Haken. Chaos in light. Phys.Lett A, 1975, 53: 77-81.
    [29]L. W. Casperson. Spontaneous coherent pulsations in ring-laser oscillators. IEEE J.Quanturm,Electron, 1978, 14: 756.
    [30]T. Yamada and Graham. Chaos in a laser system under a modulated external field. Phys.Rev.Lett, 1980, 45:1322-1324.
    [31]K. Ikeda. Nonlinear optical fiber loop mirror with feedback.Opts.Comm, 1979, 30: 257-261.
    [32]F. T. Arecohi and R. Meucci. Experimental evidence of subharmonic bifurcations, multistability, and turbulence in a g-Switched gas laser. Phys.Rev.Lett, 1982,49: 1217-1220.
    [33]C. O. Weiss, A. Godlafsson and A. Olafssion. Relativistic quantum-defect theory. General formulation. Phys.Rev.A,1983,23:592-603.
    [34]R. S. Gioggia and N. Babraham. Routes to chaotic output from a single-mode, dc-excited laser. Phys.Rev.Lett, 1983,51:650-653.
    [35]C. O. Weiss and W. Klische. Insight to be gained from the transient and sustained dynamics of a laserapos;s phase and frequency .Opt.Comm, 1985, 52: 405-407.
    [36]P. Guate. Electric-field-induced frequency shift. Opt. Comm, 1985, 55: 210-214.
    [37]W. Koolikask. Electro-optic detection of terahertz radiation. J.Opt. Soc.Am.B, 1990. 7: 1204-1212.
    [38]G. Jams and E. M. Horoll. Calculations of high-order harmonic-generation processes in xenon at 1064 nm.Phys.Rev.A, 1992, 46: 2778-2790.
    [39]M. Belic and A. Ljuboje. Chaos in phase conjugation: physical vs numerical instabilities. Opt. And Quant. Electron,1992,24:745-753.
    [40]D. J. Gauthier. Formation of a magmatic-hydrothermal ore deposit: Insights with LA-ICPMS analysis of fluid inclusions Science, 1998,279:456-459.
    [41]E. Ott, C. Grebogi and J.A.Yorke. Controlling chaos. Phys. Rev.Lett, 1990, 64: 1196-1199.
    [42]G Nitsclie and V. Dressier. Applied physics. Physica D, 1992, 58: 153-164.
    [43]F. J. Romliras, C. Grebogi, E. Ott, et al. Taming chaotic systems with dithers. Physica D, 1992, 58: 165-192.
    [44]S. Bielawske, M. Bouazaoui, D. Derozier, et al. Experimental characterization of unstable periodic orbits by controlling chaos. Phys.Rev.A, 1993, 47: R2492- R2495.
    [45]C. A. Holmes. ID-disordered conductor with loops immersed in a magnetic field. Phys.Lett.A, 1994, 190: 206-212.
    [46]Z. Gills, C. Jwata, R. Roy, et al. Tracking unstable steady states: Extending the stability regime of a multimode laser system.Phys.Rev.Lett,1992,69:3169-3172.
    [47]S.Liu and J.Ohtsubo.Experimental control of chaos in a laser-diode interferometer with delayedfeedback.Opt.Lett,1994,19(7):448-450.
    [48]G.Cliin,L.R.Senesal,W.E.Blass,et al.Science.Serum biomarkers of hepatitis B virus infected liver and methods for detection there.1996,274:1498-1502.
    [49]K.Pgragus.Continuous control of chaos by self-controlling feedback.Phys.Lett.A,1992,170:421-428.
    [50]K.Pyragus and A.Tamasevicius.Experimetal control of chaos by dela yed self-controlling feedback.Phys.Lett.A,1993,180:99-102.
    [51]C.Simmendinger and O.Hess.Controlling delay-induced chaotic behavior of a semiconductor laser with optical feedback.Phys.Lett.A,1996,216:97-105.
    [52]R.Dykstra,D.Y.Tang and N.R.Heckonberg.Experimental control of single-mode laser chaos by using continuous,time-delayed feedback.Phys.Rev.E,1998,57:6596-6598.
    [53]C.Liithje,S.Wolff and G.Pfister.Control of chaotic taylor-couette flow with time-delayed feedback.Phys.Rev.Lett,2001,86:1745-1748.
    [54]Y.Lui,L.C.Barbosa and J.R.Riosleite.Curriculo do sistema de curriculos lares.Phys.Lett.A,1994,19:259-262.
    [55]D.Pieraus,P.Mandel and K.Otsuka.Cooling effects induced by stimulated emission in the discharge of CO2 lasers.Opt.Comm.1994,105:58-62.
    [56]顾春明,沈柯.全光学型延时反馈法控制外腔式半导体激光器的混沌.物理学报,1998,47:732-736.
    [57]P.Kapitza.Going with the flow—superfluidity observed.Nature,1938,141:74-75.
    [58]R.Meucci,M.Ciofini and R.Abbate.Controlling chaos by negative feedback of subharmonic components.Phys.Rev.E,1996,56:2829-2834.
    [59]T.W.Carr and I.B.Schwartz.Controlling high-dimensional unstable steady states using delay,duration and feedback.Physica D,1996,96:17-25.
    [60]郑植仁,李进斌,张英等.光学学报.1998,18:663-668.
    [61]王荣,沈柯.延时线性反馈法控制双环掺铒光纤激光器混沌.物理学报.2001,50:1024-1027.
    [62]C.Simmendinger,O.Hess and A.Wunderliu.Analytical treatment of delayed feedback control.Phys.Lett.A,1998,245:253-258.
    [63]M.De and A.J.Lichtenberg.Controlling chaos using nonlinear feedback with delay.Phys.Rev.E,1996,54:1200-1207.
    [64]S.Biolanski,P.Derozior and P.Glorienx.Stabilization and characterization of unstable steady states in a laser.Phys.Rev.A,1993,47:3276-3279.
    [65]E.R.Hunt.Stabilizing high-period orbits in a chaotic system:The diode resonator.Phys.Rev.Lett,1991,67:1953-1955.
    [66]M.H.Anderson,J.R.Enshews,C.E.Wieman,et al.Observation of Bose-Einstein condensation in a dilute atomic vapor.Science,1995,269:198-201.
    [67]K.B.Davis,M.O.Mewes,M.R.Andrews,et al.Bose-Einstein condensation in a gas of sodium atoms. Phys.Rev.Lett,1995,75:3969-3973.
    [68]S.Boccaletti and A.Farini.Adaptive targeting of chaos.Phys.Rev.E,1987,55:4845-4848.
    [69]李智,韩崇昭.一类含参数不确定性混沌系统的自适应控制.物理学报.2001,50:847-850.
    [70]R.Lima.Suppression of chaos by resonant parametric perturbations.Phys.Rev.A,1990,41:726-733.
    [71]Y.Braimall.Taming chaotic dynamics with weak periodic perturbations.Phys.Rev.Lett,1991,66:2545-2548.
    [72]M.Greiner,C.A.Regal and D.S.Jin.Emergence of a molecular Bose-Einstein condensate from a Fermi gas.Nature,2003,426:537-540.
    [73]张胜海,掺铒光纤激光器超混沌控制与同步及光学时空斑图研究:[博士学位论文].长春:长春理工大学光学工程系.2003.
    [74]王荣,掺铒光纤激光器混沌控制、同步及应用研究.[博士学位论文].长春:长春理工大学光学工程,2002;
    C.A.Regal,,M.Greiner and D.S.Jin.Observation of resonance condensation of fermionic atom pairs.Phys.Rev.Lett,2004,92:040403-040406.
    [75]M.Bartentein,A.Altmeyer,S.Riedl,et al.Crossover from a molecular Bose-Einstein condensate to a degenerate fermi gas.Phys.Rev.Lett,2004,92:120401-120404.
    [76]L.M.Pecora and T.L.Carroll.Synchronization in chaotic systems.Phys,Rev,Lett,1990,64:821-824.
    [77]H.D.Abarbanel and M.B.Kennel.Phys.Rev.Lett,1998,80:3153-3156.Synchronizing High-Dimensional Chaotic Optical Ring Dynamics
    [78]Y.Gu.Quantum Chaos.Shanghai Scientific and Technological Education Publishong House,Shanghai,1995:83-87
    [79]J.Ford.What is chaos,edited by Paul Davies(Cambridge,London),1989.
    [80]S.A.Gardiner,D.Jaksch,R.Dum,et al.Nonlinear matter wave dynamics with a chaotic potential.Phys.Rev.A,2000,62:023612-023632.
    [81]A.Smerzi,S.Fantoni,S.Giovanazzi et al.Quantum coherent atomic tunneling between two trapped Bose-Einstein condensates.Phys.Rev.Lett,1997,79:4950-4953.
    [82]A.Trombettoni and A.Smerzi.Discrete solitons and breathers with dilute Bose-Einstein condensates.Phys.Rev.Lett,2001,86:2353-2356.
    [83]F.K.Abdullaev and R.A.Kraenkel.Coherent atomic oscillations and resonances between coupled Bose-Einstein condensates with time-dependent trapping potential.Phys.Rev.A,2000,62:023613-023621.
    [84]F.K.Abdullaev and R.A.Kraenkel.Macroscopic quantum tunneling and resonances in coupled Bose-Einstein condensates with oscillating atomic scattering length.Phys.Rev.A,2000:61-64.
    [85]C.Lee,W.Hai,L.Shi,et al.Chaotic and frequency-locked atomic population oscillations between two coupled Bose-Einstein condensates.Phys.Rev.A,2001,64:053604-053613.
    [86]W.Hal,C.Lee,G.Chong,et al.Chaotic probability density in two periodically driven and weakly coupled Bose-Einstein condensates.Phys.Rev.E,2002,66:026202-026208.
    [87]Y.Kagan.Collapse and Bose-Einstein condensation in a trapped Bose gas with negative scattering length.Phys.Rev.Lett,1998,81:933-937.
    [88]P.Coullet and Vandenberghe.Chaotic self-trapping of a weakly irreversible double Bose condensate.Phys.Rev.E, 2001,64:25202-25205.
    [89]P. Buonsaute, R. Franzosi and V. Peuna. Dynamical instability in a trimeric chain of interacting Bose-Einstein condensates. Phys.Rev.Lett, 2003, 90: 050404-050407.
    [90]R. Franzosi and V. Penna. Chaotic behavior, collective modes, and self-trapping in the dynamics of three coupled Bose-Einstein condensates. Phys.Rev.E, 2003, 67: 046227-046242.
    [91]F. Barra, P. Gaspard and S. Rica. Nonlinear Schrfldinger flow in a periodic potential. Phys.Rev.E, 2000, 61: 5852-5863.
    [92]V. S. Filho, Gammal T, Fredercio, et al Chaos in collapsing Bose-condensed gas. Phys.Rev.A, 2000, 62:033605-033609.
    [93]C. Zhang, M. G. Raizen and Q. Niu. Transition to instability in a kicked Bose-Einstein condensate. Phys.Rev.Lett,2004,92:054101-054104.
    [94]C. Zhang, M. Gaizen and Q. Niu. An integral observation of the black hole transient 4U 1630-47 and the norma region of the galaxy. 2004, 0404420-0404424.
    [95]A.Smerzi. Evolution and global collapse of trapped Bose Condensates under variations of the scattering length. Phys.Rev.Lett, 1997, 79: 2604-2607.
    [96]C. J. Milburn. Quantum dynamics of an atomic Bose-Einstein condensate in a double-well potential. Phys.Rev.A , 1997,55:4318-4324.
    [97]L. M. Kuang and Z. W. Yang. Macroscopic quantum self-trapping and atomic tunneling in two-species Bose-Einstein condensates. Phys.Rev.A, 2000,61: 023604-023703.
    [98]F. K. Abdullaev and R. A. Kraenkel. Coherent atomic oscillations and resonances between coupled Bose-Einstein condensates with time-dependent trapping potential. Phys.Rev.A, 2000, 62: 023613-023621.
    [99]C. H. Lee, W. H. Hai, L. Shi, et al. Chaotic and frequency-locked atomic population oscillations between two coupled Bose-Einstein condensates. Phys.Rev.A, 2001, 64: 053604-053611.
    [100]C. Lee. Quasispin model for macroscopic quantum tunneling between two coupled Bose-Einstein condensates. Phys.Rev.A, 2003, 68: 053614-053621.
    [101]T. Miyakawa, T. Suzuki and H. Yabu. Induced instability for boson-fermion mixed condensates of alkali-metal atoms due to the attractive boson-fermion interaction. Phys.Rev.A, 2004,64:033611-033616.
    [102]W. H. Hai, C. H. Lee, G S. Chong, et al. Chaotic probability density in two periodically driven and weakly coupled Bose-Einstein condensates. Phys.Rev.E, 2002,66: 026202-026208.
    [103]G. Chomg, W. Hai and Q. Xie. Quantum entanglement and chaos in kicked two-component Bose -Einstein condensate. Chaos, 2004, 14: 217-220.
    [104]Q. Xie, W. Hai and G Chong. Stability and chaos of two coupled Bose-Einstein condensate. Chaos, 2003, 13: 801-804.
    [105]J. E. Williams. Optimal conditions for observing Josephson oscillations in a double-well Bose-Einstein condensate. Phys.Rev.A, 2001, 64: 013610-013616.
    [106]P. Coullet and N.Vandenberghe. Chaotic self-trapping of a weakly irreversible double Bose condensate. Phys.Rev.E, 2001,64:025202-025205.
    [107]M. Alblez. Modulational instabilities in Josephson oscillations of elongated coupled condensates. Eur.Phys.J.D,2005, 35:147-154.
    [108]C. C. Bradley, C. A. Sackett and R. G Hulet. Bose-Einstein condensation of lithium: observation of limited condensate number. Phys.Rev.Lett, 1997, 78: 985-989.
    [109]M. R. Andrews. Science celebrates the 2001 nobel physics laureates. Science, 1996, 273: 84-87.
    [110]M. O. Mevvesl. Rotation induced prolate spheroid above the critical temperature. Phys.Rev.Lett, 1996, 77: 416-419.
    [111]D. G Fried. Bose-Einstein condensation of atomic hydrogen. Phys.Rev.Lett, 1998, 81: 3811-3814.
    [112]K. B. Davis. Bose-Einstein condensation in agas of sodium atoms. Phys.Rev.Lett, 1995, 75: 3969-3973.
    [113]M. Edwards and K. Burnett. Numerical solution of the nonlinear Schrodinger equation for small samples of trapped neutral atoms. Phys.Rev.A, 1995, 51: 1382-1386.
    [114]P. A. Ruprecht, M. J. Holland and K. Burnett. Time-dependent solution of the nonlinear Schrodinger equation for Bose-condensed trapped neutral atoms. Phys.Rev.A, 1995, 51: 4704-4711.
    [115]G. Baym and C. J. Pethick. Ground-State properties of magnetically trapped Bose-Condensed rubidium gas. Phys.Rev.Lett, 1996,76:6-9.
    [116]Y. Kagan, G. V. Shlyapnikov and T. M. Walraven. Bose-Einstein condensation in trapped atomic gases. Phys.Rev.Lett, 1996 ,76: 2670-2673.
    [ 117]N. Akhmediev, M. P. Das and A. V. Vagov. Art in our time. New York:Nova, 1997,17-19.
    [118]A. Gammal, T. Frederico and L.Tomio. Dephasing in metals by two-Level systems in the 2-channel-kondo regime.World Scientific, 1999, 25-28.
    [119]B. D. Esry. Fundamental processes of atomic dynamics. J.Phys.B:Mol.Opt.Phys, 1996, 29: L51-L55.
    [120]C. Josserand and S. Rica. Coalescence and droplets in the subcritical nonlinear schr(?)dinger equation. Phys.Rev.Lett,1997,78:1215-1218.
    [121]S. L. Cornish. Stable ~(85)Rb Bose-Einstein condensates with widely tunable interactions. Phys.Rev.Lett, 2000, 85:1795-1798.
    [122]E. A. Donley. Physica portal-research highlights-state of collapse. Nature, 412: 295-299.
    [123]C. A. Sackett, H. T. C. Stoof and R. G Hulet. Growth and collapse of a Bose-Einstein condensate with attractive interactions. Phys.Rev.Lett, 1998, 80: 2031-2034.
    [124]Y. Kagan, A. E. Muryshev and G V. Shlyapnikov. Collapse and Bose-Einstein condensation in a trapped Bose gas with negative scattering length. Phys.Rev.Lett, 1998, 81:933-937.
    [125]Y. Kagan, E. L. Surkov and G V. Shlyapnikov. Evolution and global collapse of trapped Bose condensates under variations of the scattering length. Phys.Rev.Lett, 1997, 79: 2604-2607.
    [126]B. D. Esry. Recombination of three atoms in the ultracold limit. Phys.Rev.Lett, 1999, 83:1751-1754.
    [127]P. O. Fedichcv, M. W. Reynolds and C.V. Shlyaonikov. Three-Body recombination of ultracold atoms to a weakly bound s level. Phys.Rev.Lett, 1996, 77: 2921-2924.
    [128]P. F. Bedaque, E. Braaten and H. W. Hammer. Three-body recombination in Bose gases with large scattering length. Phys.Rev.Lett,2000,85:908-911.
    [129]H.Saito and M.Ueda.Intermittent implosion and pattern formation of trapped Bose-Einstein condensates with an attractive interaction.Phys.Rev.Lett,2001,86:1406-1409.
    [130]P.Buonsante,R.Franzosi and V.Penna.Dynamical instability in a trimeric chain of interacting Bose-Einstein condensates.Phys.Rev.Lett,2003,90:050404-050407.
    [131]R.Franzosil and V.Penna.Chaotic behavior,collective modes,and self-trapping in the dynamics of three coupled Bose-Einstein condensates.Phys.Rev.E,2003,67:046227-046242.
    [132]V.S.Filho.Chaos in collapsing Bose-condensed gas.Phys.Rev.A,2000,62:033605-033608.
    [133]R Muruganandan and S.K.Adhikari.Chaotic oscillation in an attractive Bose-Einstein condensate under an impulsive force.Phys.Rev.A,2002,65:043608-043611.
    [134]P.Coullet and N.Vandenberghe.Chaotic dynamics of a Bose-Einstein condensate in a double-well trap.J.Phys.B:At.Mol:Opt.Phys,2002,35:1593-1612.
    1135]李师群.超冷原子物理学与原子光学.物理与工程.2002,12:6-10.
    [136]张永梅,吸引两体相互原子在光学晶格中的量子相:[硕士学位论文].大连:大连理工大学光学系,2005.
    [137]L.E.Reichl(雷克)著.黄晙等译.统计物理现代教程(上册).北京:[北京大学出版社],1983:126-156.
    [138]王晓辉,李义民,王义(?).玻色-爱因斯坦凝聚的物理实现及其应用展望.物理,1998,273-185.
    [139]C.J.Pethick and H.Smith.Bose-Einstein condensation in dilute gases.NODITA,1997,3.
    [140]L.G.Luo,P.L.Chu,T.Whitbrtak,et al.Chaos synchronization.Opt.Commom,2000,176:213-217.
    [141]M.H.Anderson,J.R.Fisher,M.R.Matthew,et al.Observation of Bose-Einstein condensation in a dilute atomic vapor.Science,1995,269:198-201.
    [142]W.Ketterle,K.B.Davis,M.A.Joffe,et al.High densities of cold atoms in a dark spontaneous-force optical trap.Phys.Rev.Lett,1993,70:2253-2256.
    [143]W.Petrich,M.H.Anderson,J.R.Ensher,et al.Stable,tightly confining magnetic trap for evaporative cooling of neutral atoms,Phys.Rev.Lett,1995,74:3352-3355.
    [144]M.O.Mewes,M.R.Andrews,N.J.Vandruten,et al.Bose-Einstein condensation in a tightly confining dc magnetic trap.Phys.Rev.Lett,1996,77:416-419.
    [145]T.Bergeman,G.Erez and H.Metcalf.Magnetostatic trapping fields for neutral atoms.Phys.Rev.A,1987,35:1535-1546.
    [146]T.Esslinger,I.Bloch and T.W.Haensch.Stochastic path integrals and open quantum systems.Phys.Rev.A,1998,54:2664-2674.
    [147]C.J.Maytt,N.R.Newbury,R.W.Ghrist,et al.Multiply loaded magneto-optical trap.Opt.Lett,1996,21:209-211.
    [148]N.R.Newbury,C.J.Myatt,E.A.Cornell,et al.Gravitational sisyphus cooling of ~(87)Rb in a magnetic trap.Phys.Rev.Lett,1995,74:2196-2199.
    [149]U.Ernst,A.Martre,F.Schreck,et al.Bose-Einstein condensation in a pure Ioffe-Pritchard field configuration Euroohys.Lett,1998,41:1-6
    [150]J.Reichel,W.Hansel and T.W.Hansch.Atomic micromanipulation with magnetic surface traps.Phys.Rev.Lett, 1999,83:3398-3401.
    [151]W. Hansel, P. Hammel, T. W. Hansch, et al. nature physics portal-reserch collection-optical physics. Nature, 2001,413:498-501.
    [152]K. B. Davis, M. O. Mewes, M. R. Andrews, et al. Bose-Einstein condensation in a gas of sodium atoms. Phys.Rev.Lett, 1995, 75: 3969-3973.
    [153]C. C. Bradley, C. A. Sackett and R. G Hulet. Bose-Einstein condensation of lithium: observation of limited condensate number. Phys.Rev.Lett, 1997, 78: 985-989.
    [154]Y. Kagan, G. V. Shlyapnikov and J. T. Walraven. Bose-Einstein condensation in trapped atomic gases. Phys.Rev.Lett, 1996,76:2670-2673.
    [155]G. Modugno, G. Ferrari, G. Roati, et al. Bose-Einstein condensation of potassium atoms by sympathetic cooling. Science, 2001,294: 1320-1322.
    [156]I. Bloch, M. Greiner, O. Mandel, et al. Sympathetic cooling of ~(85)Rb and ~(87)Rb. Phys.Rev.A, 2001, 64: 021402-021405.
    [157]A. G. Truscott, K. E. Strecker, W. 1. Mealexander, et al. Pressure in a Gas of Trapped Atoms. Science , 2001, 291:2570-2573.
    [158]D. G. Fried, T. C. Killian, L.Willman, et al. Bose-Einstein condensation of atomic hydrogen. Phys.Rev.Lett, 1998, 81:3811-3814.
    [159]J. R. Ensher, D. S. Jin, M. R. Matthews, et al. Bose-Einstein condensation in a dilute gas: measurement of energy and ground-state occupation. Phys.Rev.Lett, 1996, 77: 4984-4987.
    [160]M. Edwards, R. J. Dodd, C. W. Clark, et al. Properties of a Bose-Einstein condensate in an anisotropic harmonic potential. Phys.Rev. A, 1996, 53: R1950- R1953.
    [161]J. Soding, D. Guery, P. Desbiolles, et al. quantum information processor. AppI.Phys. B, 1999,69: 257-260.
    [162]M. Holland and J. Cooper. Expansion of a Bose-Einstein condensate in a harmonic potential. Phys.Rev. A, 1996, 53:R1954-R1957.
    [163]U. Ernst, J. Schuster, F. Schreck, et al. perturbation analysis. AppI.Phys. B, 1998, 67: 719-722.
    [164]D. S. Jin, J. R. Ensher, M. R. Matthews, et al. Collective excitations of a Bose-Einstein condensate in a dilute gas.Phys.Rev.Lett, 1996, 77: 420-423.
    [165]M. O. Mewes, M. R. Andrews, N. J. Druten, et al. Temporally disordered bond percolation on the directed square lattice. Phys.Rev.Lett, 1996, 77: 4988-4991.
    [166]M. R. Andrews, C. G. Townsend, H. J. Miesner, et al. Novel analytical methods for association studies. Science, 1997, 175:637-639.
    [167]M. Kozuma, L. Deng, E. W. Hagley, et al. Coherent splitting of Bose-Einstein condensed atoms with optically induced bragg diffraction. Phys.Rev.Lett, 1998, 82: 871-875.
    [168]S. Inouye, T. Pfau, S. Gupta, et al. Phase-Coherent amplification of atomic matter waves. Nature, 1999, 402: 641-644.
    [169]M. Kozuma, Y. Suzuki, Y. Torii, et al. Phase-Coherent ampliation of matter waves. Science, 1999, 286: 2309-2312.
    【170】K.W.Madison,F.Chevy,W.Wohlleben,et al.Vortex formation in a stirred Bose-Einstein condensate.Phys.Rev.Lett,2000,84:806-809.
    [171]王义遒.原子的激光冷却与囚禁和稀薄气体玻色-爱因斯坦凝聚的实现.量子力学新进展(第三辑).北京:清华大学出版社,2005:134-154.
    [172]B.P.Anderson and M.A.Kasevich.Macroscopic quantum interference from atomic tunnel arrays.Science,1998,282:1686-1689.
    [173]S.Liu,H.Z.Xiong,G.Hung,et al.Pattern of Bose-condensed gas in a 2D optical lattice.J.Phys.B,2003,36:2083-2092.
    [174]S.Burger.Superfluid and dissipative dynamics of a Bose-Einstein condensate in a periodic optical potential.Phys.Rev.Lett,2001,86:4447-4450.
    [175]K.W.Madison,F.Chevy,V.Bretin,et al.Stationary states of a rotating Bose-Einstein condensate:routes to vortex nucleation.2001,86:4443-4446.
    [176]W.Hai,G.Chong,Q.Xie,et al.Rank-ordered multifractal spectrum for intermittent fluctuation.Eur.Phys.J.D,2004,28:267-271.
    [177]W.Hai,C.X.Lee and K.Gao.Laser controlling chaotic region of a two-component Bose-Einstein condensate.Physica A,2004,33:5445-5449.
    [178]C.A.Tuchman,L.Fenselau,M.Yasuda,et al.Squeezed states in a Bose-Einstein Condensatc.Science,2001,291:2386-2389.
    [179]K.Burnett,M.Edwards,C.W.Clark,et al.Ultracold atoms and Bose-Einstein condensates in optical lattice.J.Phys.B,2002,602:312-331.
    [180]D.I.Choi and Q.Niu.Bose-Einstein condensates in an optical lattice.Phys.Rev.Lett,1999,82:2022-2025.
    [181]J.P.Dowling and J.G.Banacloche.Electromagnetic trapping of cold atoms.Adv.At.Mol.Opt.Phys.1996,37:1-5.
    [182]R.Grimm,M.Weidemuller and Y.B.Ovchinnikov.Optical dipole traps for neutral atoms.Adv.At.Mol.Opt.Phys,2000,42:95-99.
    [183]R.A.Bernet,C.Keller,M,K.Oberthaler,et al.Higher-order mutual coherence of optical and matter waves.Phys.Rev.A,2000,62:023605-023612.
    [184]L.M.Duan,E.Demler and M.D.Lukin.Controlling spin exchange interactions of ultracold atoms in optical lattices.Phys.Rev.Lett,2003,91:090402-090405.
    [185]王裕民.原子激光.激光与光电子学进展.2000,8:2-6.
    [186]R.J.Cook and K.H.Richard.An electromagnetic mirror for neutral atoms.Opt.Commu,1982,43:258-260.
    [187]V.I.Balykin,V.S.Letokhov and Y.B.Ovchinnickov.Quantum-State-Selective mirror reflection of atoms by laser light.Phys.Rev.Lett,1998,60:2137-2140.
    [188]M.A.Kasevich,D.S.Weiss and S.Chu.Normal-incidence reflection of slow atoms from an optical evanescent wave.Opt.Lett,1990,15:607-619.
    [189]T.Esslinger,M.Weidemuller,A.Hemmerich,et al.Surface-plasmon mirror for atoms.Opt.Lett,1993,18:450-452.
    [190]W. Seifert, C. S. Adams, V. I. Balykin, et al. Reflection of metastable argon atoms from an evanescent wave. Phys.Rev. A, 1994, 49: 3814-4823.
    [191]C. R. Bennett, J. B. Kirk and M Babiker. Theory of evanescent mode atomic mirrors with a metallic layer. Phys.Rev. A, 2001,63:033405-033411.
    [192]W. Seifert and R. Kaiser. Optical reflection properties of natural surfaces. Opt.Commu, 1994, 111: 566-569.
    [193]G. Labeyrie, A. Landragin, J. V. Zanthier, et al. A high-finesse planar waveguide for evanescent wave atomic mirrors. Quantum Semiclass. Opt, 1996, 8: 603-627.
    [194]P. Zheng, W. J. Gao and J. P. Yin. Novel atomic mirror with a blue-detuned semi-gaussian beam. Chin. Phys. Lett, 2003,20: 370-382.
    [195]G I. Opat, S. J.Wark and A. Gimmino. Electric and magnetic mirrors and gratings for slowly moving neutral atoms and molecules. Appl.Phys. B, 1992, 54: 396-402.
    [196]T. M. Roach, H. Abele, M. G Boshier, et al. Realization of a magnetic mirror for cold atoms. Phys.Rev.Lett, 1995, 75: 629-632.
    [197]I. G Hughes, P. A. Barton, T. M. Roach, et al. Atom optics with magnetic surfaces: II. Microscopic analysis of the 'floppy disk' mirror. J. Phy. B:At. Mol. Opt. Phys, 1997, 30: 2119-2132.
    [198]I. G Hughes, P. A. Barton, T. M Roach, et al. Atom optics with magnetic surfaces: I. Storage of cold atoms in a curved 'floppy disk'. J. Phy. B:At. Mol. Opt. Phys, 1997, 30: 647-658.
    [199]C. V. Saba, P. A. Barton, M. G Boshier, et al. Reconstruction of a cold atom cloud by magnetic focusing. Phys.Rev.Lett, 1999, 82: 468-471.
    [200]P. Rosenbusch, B. V. Hall, I. G Hughes, et al. Manipulation of cold atoms using a corrugated magnetic reflector. Phys.Rev, A, 2000, 61: 031404-031407.
    [201]P. Rosenbusch, B. V. Hall, 1. G Hughes, et al. Manipulation of cold atoms by an adaptable magnetic reflector. Appl.Phys.B, 2000,70: 709-719.
    [202]B. Lev, Y. Lassailly, C. Lee, et al. Atom mirror etched from a hard drive. Appl.Phys. Lett, 2003, 83: 395-397.
    [203]A. I. Sidorov, R. J. Mclean, W. J. Rowlands, et al. Specular reflection of cold caesium atoms from a magnetostatic mirror. Quantum Semiclass. Opt, 1996, 8:713-725.
    [204]A. I. Sidorov, D. C. Lau, G I. Opat, et al. Magnetostatic optical elements for laser-cooled atoms. Laser Phys, 1998, 8: 642-645.
    [205]M. Drndic, K. S. Johnson, J. H. Thywissen, et al. Micro-electromagnets for atom manipulation. Appl.Phys. Lett, 1998,72:2906-2908.
    [206]M. Drndic, G Zabow, C. S. Lee, et al. Properties of microelectromagnet mirrors as reflectors of cold Rb atoms. Phys.Rev.A, 1999, 60: 4012-4015.
    [207]K. S. Johnson, M. Drndic, J. H. Thywissen, et al. Atomic deflection using an adaptive microelectromagnet mirror. Phys.Rev.Lett, 1998,81:1137-1141.
    [208]L. Cognet, V. Savalli, P. D. Featonby, et al. Smoothing a current-carrying atomic mirror. Europhys. Lett, 1999, 47: 538-544.
    [209]G Zabow, M. Drndic, J. H. Thywissen, et al. Improving the specularity of magnetic mirrors for atoms. Eur. Phy. J, 1999, D7:351-359.
    [210]D. C. Lau, A. I. Sidorov, G I. Opat, et al. Reflection of cold atoms from an array of current-carrying wires. Eur. Phy. J, 1999, D5:193-199.
    [211]夏勇,印建平.原子反射.镜及其应用.原子与分子物理学报.2005, 22: 203-210.
    [212]B. P. Anderson and M. A. Kasevich. Macroscopic quantum interference from atomic tunnel arrays. Science, 1998,282: 1686-1689.
    [213]S. Liu, H. Xing, Z. Xu, et al. Interference of Bose-Einstein condensates and entangled single-atom state in a spin-dependent optical lattice. J Phys. B, 2003, 36: 2083-2087.
    [214]S. Burger. F. S. Cataliotti, C. Fort, et al. Superfluid and dissipative dynamics of a Bose-Einstein condensate in a periodic optical potential. Phys.Rev.Lett, 2001, 86: 4447-4450.
    [215]W. Hai, G Chong, Q. Xie, et al. Toward a computational description of nitrile hydratase. Eur.Phys.J.D, 2004, 282: 67-70.
    [216]W. Hai, C. Lee, X. Fang, et al. Laser controlling chaotic region of a two-component Nose-Einstein condensate. Physica A, 2004, 335: 445-449.
    [217]C. Orzel, A. K. Tuchman, M. L. Fenselau, et al. Squeezed states in a Bose-Einstein condensate. Science, 2001, 291:2386-2389.
    [218]K. Burnett, M. Edwards, C. W. Clark, et al. The Bogoliubov approach to number squeezing of atoms in an optical lattice. J.Phys. B, 2002, 35: 1671-1677.
    [219]D. I. Choi and Q. Niu. Bose-Einstein condensates in an optical lattice. Phys.Rev.Lett, 1999, 82: 2022-2025.
    [220]J. K. Pachos and P. L. Knight. Quantum computation with a one-dimensional optical lattice. Phys.Rev.Lett, 2003,91:107902-107905.
    [221]R. lonicioiu and P. Zanardi. Quantum-information processing in bosonic lattices. Phys.Rev.A, 2002, 66:050301-050304.
    [222]D. V. Strekalov, A.Turlapov, A. Kumarakrishnan, et al. Periodic structures generated in a cloud of cold atoms.Phys.Rev.A, 2002, 66: 023601-023611.
    [223]M. Greiner, O. Mandel, T. Esslinger, et al. Detecting correlation functions of ultracold atoms through fourier sampling of time-of-flight images. Nature(London), 2002,41: 539-547.
    [224]D. V. Oosten, P. Straten and H. T. Stoof. Quantum phases in an optical lattice. Phys.Rev.A, 2001, 63: 053601-053612.
    [225]M. P. Fisher. Boson localization and the superfluid-insulator transition. Phys.Rev.B, 1989, 40: 546-570.
    [226]F. S. Cataliotti, S. Burger, C. Fort, et al. Josephson junction arrays with Bose-Einstein condensates. Science, 2001,293: 843-846.
    [227]A.Smerzi, S. Fanyoni, S. Giovanazzi, et al. Quantum coherent atomic tunneling between two trapped Bose-Einstein condensates. Phys.Rev.Lett, 1997, 79: 4950-4953.
    [228]F. Ohberg and S. Stenholm. One-atom mmser and on one-atom maser and one-atom laser-experimental platforms for cavity quantum electrodynamicse-atom laser-experimental platforms for cavity quantum electrodynamics.J.Phys.B,1999,32:1959-1965.
    [229]J.H.Denschlag.Multidimensional solitons in periodic potentials.J.Phys.B,2002,35:3095-3101.
    [230]L.Fallani,F.S.Cataliotti.J.Catani,et al.Optically induced lensing effect on a Bose-Einstein condensate expanding in a moving lattice.Phys.Rev.Lett,2003,91:240405-240408.
    [231]T.C.Bountis,C.R.Eminhizer and R.H.G.Helleman.In long-time prediction in dynamics,edited by C.W.Horton,Jr,L.E.Reichl and V.G.Szebehely(Wiley,New York),1983.
    [232]V.I.Arnold and A.Avez.Ergodic Problems of Classical Mechanics(Benjiamin,New York),1968.
    [233]G.Hu,J.Xiao,and Z.Zheng.ChaosControl(Shanghai Scientific and Technological Education)Shanghai,2000(in Chinese).
    [234]Z.Liu.Pertubation criteria for chaos(Shanghai Scientific and Technological Education) Shanghai:1994(in Chinese).
    [235]M.Bartucelli,P.L.Christiansen,N.F.Pedersen,et al.Chaos in Josephson junctions.Phys.Rev.B,1986,33:4686-4689.
    [236]G.W.Wei.Fourier-Bessel analysis of patterns in a circular domain.Physica D,2000,137:247-252.
    [237]A.H.Nayfeh and D.T.Mock.Nonlinear oscillations.Willey,New Yoke,1979.
    [238]崇桂书.玻色-爱因斯坦凝聚体中的混沌与孤子:[博士学位论文].湖南:湖南师范大学原子与分子物理系,2005;方见树.光学晶格中玻色-爱因斯坦凝聚体系的Melnikov混沌:[博士学位论文].湖南:湖南师范大学原子与分子物理系,2007;谢琼涛.超冷原子系统中的混沌、分叉与量子纠缠:[博士学位论文].湖南:湖南师范大学原子与分子物理系,2006.
    [239]刘秉正,彭建华.非线性动力学.北京:高等教育出版社,2003:134-154.
    [240]J.P.Eckmann and D.Ruelle.Ergodic theory of chaos and strange attractors.Rev.Mod.Phys,1985,57:617-656;Wolf.Low dimensional chaos from the group sunspot numbers.Physica D,1985,16:285-297.
    [241]J.Hoffnagle and R.G.Brewer.On the frequency-locked orbits of two particles in a paul trap.Science,1994,265:213-215.
    [242]J.L.Shen,H.W.Yin,J.H.Dai,et al.Dynamical behavior,transient chaos,and riddled basins of two charged particles in a Paul trap.Phys.Rev.A,1997,55:2159-2164.
    [243]J.H.Denschlag.Multidimensional solitons in periodic potentials.J.Phys.B,2002,35:3095-3101
    [244]G.Chong,W.H.Hai and Q.T.Xie.Controlling chaos in a weakly coupled array of Bose-Einstein condensates.Phys.Rev.E,2005,71:016202~016208;王志霞,沈柯.运动光学晶格中Bose-Einstein凝聚的混沌.原子与分子物理学报2007,24:137-139.
    [245]Z.X.Wang and K.Shen.Anti-control of chaos in Bose-Einstein Condensate.Cent.Eur.J.Phys,2008,6:402-406;Z.X.Wang,X.H.Zhang,and K.Shen.Controlling chaotic behavior in a Bose-Einstein condensate with linear feedback.Commun.Theor.Phys,2008,50:215-219.
    [246]Y.Castin and R.Dum.Low-temperature Bose-Einstein condensates in time-dependent traps:Beyond the U(1) symmetry-breaking approach. Phys.Rev.A, 1998,57: 3008-3021.
    [247]V. S. Filho, A. Gammal, T. Fredercio, et al. Chaos in collapsing Bose-condensed gas. Phys.Rev.A, 2000, 62: 033605-033608.
    [248]P. Coullet and N. Vandenberghe. Chaotic self-trapping of a weakly irreversible double Bose condensate. Phys.Rev.E, 2001, 64: 025202-025205.
    [249]E. Ott, C. Grebog. Controlling chaos. Phys.Rev.Lett, 1991,66: 1296-1299.
    [250]G Hu and K. He. Controlling chaos in systems described by partial differential equations. Phys.Rev.Lett, 1993, 71:3794-3797.
    [251]G Hu and Z. Qu. Controlling spatiotemporal chaos in coupled map lattice systems. Phys.Rev.Lett, 1994, 72: 68-71.
    [252]J. Xiao, G Hu, J. Yang, et al. Controlling turbulence in the complex ginzburg-landau equation. Phys.Rev.Lett, 1998,81:5552-5555.
    [253]J. Gong and P. Brumer. Phase control of nonadiabaticity-induced quantum chaos in an optical lattice. Phys.Rev.Lett,2002,88:203001-203004.
    [254]G Kociuba and N. R. Heckenberg. Controlling chaos in a Lorenz-like system using feedback. Phys.Rev.E, 2003, 88:066212-066219.
    [255]J. Starrett. Control of chaos by capture and release. Phys.Rev.E, 2003, 67: 056221-056225.
    [256]C. Wieland. Controlling chaos in higher dimensional maps with constant feedback: An analytical approach.Phys.Rev.E, 2002, 66: 016205-016212.
    [257]A. Garfinkel, M. L. Spano, W. L. Ditto, et al. Chaos and chaos control in biology. Weiss, 257, Issue, 5074:1230-1235.
    [258]R. Roy. The perfect lens would immaculately reproduce an image of an object. Nature, 2005,438:298-302.
    [259]A. Argyris, D. Syvridis, L. Larger, et al. Stable anticipation synchronization in mutually coupled vertical-cavity surface-emitting lasers system. Nature, 2005, 437: 343-346.
    [260]G R. Chen and D. Lai. Spatio-temporal complexity. Int.J.Bifur. Chaos, 1998, 8:1585-1588.
    [261]R. L. Devaney. An Introduction to Chaotic Dynamical Systems (Addison-Wesley), 1987, 985-988.
    [262]X. F. Wang and G R. Chen. The space of bounded homogeneous operators. Int.J.Bifur.Chaos, 1999,9: 1453-1456.
    [263]X. F. Wang and G R. Chen. Anticontrol of chaos in continuous-time systems via time-delay feedback. Chaos, 2000,10:771-775.
    [264]T. Y. Li and J. A. Yorke. Non-Linear oscillations and chaos. Am.Math.Monthly, 1975, 82: 481-485.
    [265]L. Yang, Z. R. Liu and G R. Chen. Chaotifying a continuous-time system via impulsive input. 2002,Int.J.Bifur.Chaos, 12: 1121-1125.
    [266]S. M. Yu. Fourth-order Colpitts chaotic oscillator. 2004, Acta Phys.Sin.53: 4111-4115(in Chinese)
    [267]X. Q. Feng and K. Shen. Anti-control of chaos on the degenerate optical parametric oscillator. 2004, SPIE,5646:126-129.
    [268]X. Q. Feng, K. Shen. Controlling hyperchaos and periodic synchronization in DOPO with parameter modulated by an external periodic signal. 2004, SPIE, 5646: 613-617.
    [269]A.Smerzi, S. Fanton, S.Giovanazzi, et al. Quantum coherent atomic tunneling between two trapped Bose-Einstein condensates. Phys.Rev.Lett, 1997, 79: 4950-4953.
    [270]S. Raghavan, A.Smerzi, S. Fantoni, et al. Coherent oscillations between two weakly coupled Bose-Einstein condensates: Josephson effects, π oscillations, and macroscopic quantum self-trapping. Phys.Rev.A, 1999, 59:620-633.
    [271]W. H. Hai, M. Feng, X. W. Zhu, et al. Energy gaps of a trapped ion interacting with a laser field. J.Phys.A:Math.Gen, 1999,32:8265-8273.
    [272]W. Hai. Alternative quantum perturbation theory without divergences. Phys.Rev.A, 2000, 61: 052105-052115.
    [273]H.Saito and M.Ueda. Dynamically stabilized bright solitons in a two-dimensional Bose-Einstein condensate. Phys.Rev.Lett, 2003, 90: 040403-040406.
    [274]F. K. Abdullaev, J. C. Bronski, and R. M. Galimzyanov. Switching dynamics of surface stabilized ferroelectric liquid crystal cells: Effects of anchoring energy asymmetry. Phys.D, 2003, 184: 333-351.
    [275JZ. X. Liang, Z. D. Zhang and W. M. Liu. Dynamics of a Bright Soliton in Bose-Einstein Condensates with Time-Dependent Atomic Scattering Length in an Expulsive Parabolic Potential. Phys.Rev.Lett, 2005, 94:050402-050406.
    [276]G Chong, W. Hai and Q. Xie. Band structure of a harmonically confined electron with an impenetrable boundary. Chin.Phys.Lett, 2003, 20: 2098-2104.
    [277]F. K. Abdullaev and R. A. Kraonkel. Stabilization of bright solitons and vortex solitons in a trapless three-dimensional Bose-Einstein condensate by temporal modulation of the scattering length. Phys.Rev.A, 2004, 69: 163613-063618.
    [278]A. Bulgac. Dilute quantum droplets. Phys.Rev.Lett, 2002, 89: 050402-050406.
    [279]M. Edward and K. Burbett. Numerical solution of the nonlinear Schrodinger equation for small samples of trapped neutral atoms. Phys.Rev.A, 1995, 51: 1382-1387.
    [280]P. A. Ruprecht, M. J. Holland and K. Burnett. Time-dependent solution of the nonlinear Schrodinger equation for Bose-condensed trapped neutral atoms. Phys.Rev.A, 1995, 51: 4704-4711.
    [281]F. London. On the Bose-Einstein condensation. Phys.Rev.A, 1938, 54: 947-954.
    [282]Y. Kagan, G V. Shlyapnikov and J. T. Walraven. Bose-Einstein condensation in trapped atomic gases. Phys.Rev.Lett, 1996,76:2670-2673.
    [283]D. Hulin, A. Mysyrowicz, C. Benoit, et al. Evidence for Bose-Einstein statistics in an exciton gas. Phys.Rev.Lett, 1980, 45:1970-1973.
    [284]C. C. Bradly, C. A. Sackrtt, J. J. Tollett, et al. Evidence of Bose-Einstein condensation in an atomic gas with attractive interactions. Phys.Rev.Lett, 1995,75: 1687-1690.
    [285]C. J. Milburm, J. Corney, E. M. Wriht. et al. Quantum dynamics of an atomic Bose-Einstein condensate in a double-well potential. Phys. Rev. A, 1997, 55(6): 4318-4324.
    [286]M. R. Andrews. Observation of Interference Between Two Bose Condensates. Science, 1997, 275: 637-641.
    [287]N. R. Thomas and A. C. Wilson. Double-well magnetic trap for Bose-Einstein condensates.Phys. Rev. A, 2002, 65:063406-063413.
    [288]T.G.Tiecke.Bose-Einstein condensation in a magnetic double-well potential.J.Opt B:Quantum Semiclass.2003,5:S119-S123.
    [289]A.Smerzi,S.Fantoni,S.Giovanozzi,et al.Quantum Coherent Atomic Tunneling between Two Trapped Bose-Einstein Condensates.Phys.Rev.Lett,1997,79:4950-4953.
    [290]L.M.Kuang and Z.W.Ouyang.Macroscopic quantum self-trapping and atomic tunning in two-species Bose-Einstein condensates.Phys.Rev.A,2000,61:023604-023613.
    [291]F.K.Abdullaev and R.A.Kraenkel.Coherent atomic oscillations and resonances between coupled Bose-Einstein condensates with time-dependent trapping potential.Phys.Rev.A,2000,62:023613-023621.
    [292]C.H.Lee,W.H.Hai,L.Shi,et al.Chaotic and frequency-loched atomic population oscillations between two coupled bose-Einstein condensates.Phys.Rev.A,2001,64:053604-053611.
    [293]C.Lee.Quasispin model for macropic quantum tunneling between two coupled Bose-Einstein Condensates.Phys.Rev.A,2003,68:053614~053621;
    李雅.双阱中玻色-爱因斯坦凝聚体的三体相互作用[硕士学位论文].湖南:湖南师范大学原子分子物理系,2006.
    [294]C.Lee.Phase-dependent spontaneous spin polarization and bifurcation delay in coupled two-component Bose-Einstein Condensates.Phys.Rev.A,2004,69:033611-033617.
    [295]W.H.Hai,C.H.Lee,G.S.Chong,et al.Chaotic Probability density in two periodically driven and weakly coupled Bose-Einstein Condensates.Phys.Rev.E,2002,66:026202-026208.
    [296]G.Chong,W.Hai and Q.Xie.Spatial chaos of trapped Bose-Einstein Condensate in one-dimensional weak optical lattice potential.Chaos,2004,14:217-223.
    [297]Q.Xie,W.Hai and G.Chong.Chaotic atomic tunneling between two periodically driven Bose-Einstein Condensates.Chaos,2003,13:801-805.
    [298]J.E.Williams.Opyimal conditions for observing Josephsons in a couple-well Bose-Einstein Condensates.Phys.Rev.A,2001,64:013610-013616.
    [299]P.Coullet and N.Vandenberghe.Chaotic self-trapping of a weakly irreversible double Bose condensate.Phys.Rev.E,2001,64:025202~025205;Z.X.Wang,X.H.Zhang and K.Shen.Unstable cycle of two coupled Bose-Einstein condensates with three-body interaction.J.Low.Temp.Phys,2008,152:136-146

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700