用户名: 密码: 验证码:
六盘山叠叠沟小流域坡面植被水文影响与模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文在处于典型半干旱区的六盘山北段西侧的叠叠沟小流域研究了植被和地形与土壤的坡面水文影响。研究内容包括流域内土壤特性空间分布、植被冠层截留特征、枯落物水文功能、典型乔木和灌木的蒸腾特征、土壤水分入渗、样地土壤水分动态变化、样地水分平衡及流域径流特征,并应用生态水文模型BROOK90进行了多种情景模拟。所得研究成果如下:
     1 .流域内土壤特性的空间分布规律
     流域内土壤厚度的空间变异程度属于中等变异。阴坡和半阴坡的土壤厚度均大于阳坡和半阳坡。不同坡位间土厚平均值(cm)差异较大:坡顶(34.8)<上坡(47.7)<中上坡(75.9)<中坡(83.4)<下坡(131.2)<坡底(286.4)。在现有植被中,灌丛多位于土层较薄地段,乔木林地和退耕地多位于土层较厚地段。
     对流域内93个土壤物理性质测点所得结果统计分析后发现,93个样点所有土层中石砾体积含量平均为5.96%。粒径在2~4mm和4~6mm的总量占总石砾体积的62.39%。表层(0-20cm)土壤石砾体积含量(%)在不同坡向上为:阳坡(3.07)>阴坡(2.89)>半阴半阳坡(1.99);在不同坡位上:下部(3.46)>中上部(3.05)>坡顶(2.46)>中部(2.20)>上部(2.08)。土壤石砾体积含量随土层深度的变化基本呈S型曲线特征。
     2.植被冠层截留降雨特征
     在2008年华北落叶松生长季(4月~10月),降水量为389mm,对应的平均截留率为20.03%,5月份的截留率最大,平均为23.73%;9月份最小,仅为18.12%。叶面积指数的空间分布在一定程度上能影响树冠穿透降雨的空间分布。2008年生长季18场降雨的华北落叶松茎流量平均为0.09mm,占每次降雨林外降水量的0.46%。
     研究期间,虎榛子灌丛穿透雨量变化在1.1~42.4mm,平均穿透率为58.6%;沙棘灌丛穿透雨量变化在0.7~45.0mm,平均穿透率为53.0%。利用大于5mm的降雨场次测定的穿透雨与林外雨数据推得沙棘灌丛的冠层容量为1.58mm,虎榛子灌丛为0.54mm。51.6mm的降雨后各草本植物单位叶面积的截持降水率平均为0.02g/cm2,通过样地地上生物量换算成持水水深为0.85mm,占降水总量的1.64%。
     3.枯落物水文功能
     流域内4种植被类型的枯落物最大持水率大小依次为:华北落叶松(332.2%)>沙棘灌丛(288.6%)>虎榛子灌丛(220.6%)>半阳坡草地(219.5%);通过浸水法测定4种植被类型枯落物最大持水深大小依次为:华北落叶松(2.2mm)>虎榛子灌丛(1.3mm)>沙棘灌丛(0.9mm)>半阳坡草地(0.6mm)。
     利用一场连续降雨事件中测定的华北落叶松枯落物含水量得到了野外降雨条件下枯落物的吸水过程。测得的枯落物最大持水率变动在159.9%~246.6%,平均为219.4%,最大持水量为16.01 t.hm-2,约为浸泡所得枯落物最大持水量的74.3%。
     枯落物蒸发速率与含水率基本呈现对数关系,蒸发速率随含水率的增加而逐增大并无限逼近所处环境条件下的水面蒸发速率。2008年6月底到10月底华北落叶松林分样地内枯落物持水率的变化在6.0%~192.3%之间。
     4.华北落叶松和沙棘的蒸腾特征
     华北落叶松树干液流速率在晴天呈现明显的昼夜变化规律,为典型的“单峰型”。阴天峰型出现较多的无规律波动。降雨发生时,树干液流速率降低到同时期晴天夜间水平甚至更低,并使其出现多峰性。雨后晴天树干液流速率的峰值和日均值都高于雨前晴天,且降雨量越大,降雨前后树干液流速率差值也越大,表明蒸腾受土壤水分限制。在连续干旱条件下,树干液流速率峰值呈降低趋势。华北落叶松树干日液流通量季节变化显著,2008年生长季月平均液流通量为:5月>6月>7月>8月>9月>10月。
     沙棘液流通量日变化曲线具单峰型特征,观察中发现的“双峰”或“多峰”曲线由当时天气晴阴变化决定。沙棘在夜间有液流存在,约为白天的17.78%,而且干旱时期夜间蒸腾占白天或全天蒸腾的百分比大于较湿润时期的值。
     5.土壤水分入渗
     采用小区漫流法测得流域内不同植被类型的土壤稳渗速率(mm?min-1)平均值分别为:天然草地(5.33)、虎榛子灌丛(5.13)、沙棘灌丛(4.29)和华北落叶松林地(3.81)。在水分限制性的植被恢复区,坡向通过影响植被生长状况来影响土壤稳渗速率,以天然草地为重点研究了不同坡向的稳渗速率,依次为阴坡(5.40)>半阴坡(5.23)>阳坡(5.12),不同坡位依次为中坡位(5.92)>下坡位(5.36)>上坡位(4.96)。
     6.样地土壤水分动态
     华北落叶松林内土壤水分的时空差异极其显著,依据在2008年观测的土壤水分时间动态可划分为土壤水分的相对湿润期(5月4日~5月21日)、持续消耗期(5月22日~9月7日)和快速恢复期(9月8日~11月1日);依据水分利用特征可将垂直土层划分为土壤水分的微弱利用层(0-20cm)、利用层(20-60cm)和水分调节层(60cm以下)。
     2008年生长季期间各样地土壤有效水排序为沙棘灌丛>阳坡草地>半阳坡草地>虎榛子灌丛>陡坡华北落叶松林。陡坡华北落叶松样地和虎榛子灌丛的一些土层在6月至9月初出现无效水状态,阳坡草地、半阳坡草地和沙棘灌丛虽然未有无效水状态出现,但在6月至9月初有很多时候处于难效水状态。
     7.样地水量平衡及流域径流特征
     各样地的地表径流和壤中流占降水量比例很小,地表径流占0.5%左右,壤中流不到0.5%,所以在分析样地水分平衡时可将其忽略。样地水量平衡分析表明,蒸散量是样地水分平衡的最大分量。阳坡草地、半阳坡草地能向外部输出液态水资源,属输出型;而陡坡华北落叶松林、缓坡华北落叶松林及半阴坡沙棘灌丛需要消耗外部输入的坡面径流水分,为消耗型。流域径流年内分配不均匀,生长季初期以基流为主;进入8、9月份后由降水形成且容易由于暴雨而出现流量骤增的洪峰流量。
     8.应用BROOK90模型模拟分析植被的水文影响
     应用BROOK90模型的模拟结果表明,不同植被的生长季蒸散量均占到同期总降雨量的70%以上,3种植被类型下总蒸散量的大小排序为华北落叶松>沙棘灌丛>草地;坡面产流量大小排序为草地>沙棘灌丛>华北落叶松。在相同植被的条件下,阳坡蒸散高于阴坡,其坡面产流低于阴坡。坡面产流受坡向的影响程度以草地最大,沙棘灌丛次之,华北落叶松林最小。坡度较大时的样地产流明显多于坡度较小时的样地产流,随着坡度增加,蒸散各分量均呈下降趋势。
     土厚对蒸散分量的影响和植被类型有关,土厚主要影响草地的土壤蒸发,对于沙棘灌丛和华北落叶松林的影响主要体现在植被蒸腾上。土厚由20cm增至90cm,华北落叶松植被蒸腾量增加了37.1%,沙棘灌丛增加了26.3%。随着初始土壤水势的降低,蒸散量和样地产流量均呈降低趋势。在综合考虑植被类型、坡向和土壤厚度的坡面产流影响的角度,本研究探讨了适合于当地的植被恢复模式。
The effects of vegetation types, terrain and soil on hillslope hydrological process were studied in the small watershed of Diediegou at the northwest part of Liupan Moutains. The contents of the dissertation are comprised of analysis upon spatial investigation of soil hydraulic characteristics, vegetation canopy interception, the hydrological function of litter, transpiration of arbor and shrub, infiltration of soil water, soil water variation, water balance in permanent plots, the character of runoff in watershed and the applications of BROOK90 model for scenarios simulation. The main results are as follows:
     1. The spatial distribution of soil hydraulic characteristics in small watershed
     The special distribution of soil depth in watershed presented a middling degree of variation. The soil depth at shady and semi-shade slopes was much thicker than at the sunny and semi-sunny slopes. The soil depth (cm) in different slope positions showed an order as follows: the slope top (34.8) < the up-slope (47.7) < the middle-up slope (75.9) < the middle slope (83.4) < the down-slope (131.2) < the slope foot (286.4). In the small watershed, much of the shrubs were laid at sites with thin soil, while the arbor woodlands were basically laid at site with thick soil.
     The average of rock fragment content in all soil layers of all 93 soil plots investigated in this study was 5.96%, and the content in diameter range of 2-6mm occupied 62.39% of the gross rock fragment. The rock fragment content (%) in the surface layer (0~20 cm) at different slope aspects showed an order as follows: sunny slope (3.07) > shady slope (2.89)> semi-shady slope (1.99). The rock fragment content (%) in the surface layer at different slope positions showed an order as follows: down-slope (3.46) > middle-up slope (3.05) > slope top (2.46) > middle-slope (2.20) > up-slope (2.08). The rock fragment content increased with soil depth basically in an S-curve.
     2. The interception of vegetation canopy
     The averaged interception ratio in Larix principis-rupprechtti stand was 20.03% in growing period of 2008 (April to October) with a precipitation of 389mm. The averaged interception ratio in May (23.73%) was the highest and that in September (18.12%) was the lowest. The spatial distribution of throughfall ratio under tree canopy was influenced by the variation of leaf area index (LAI). The averaged stem-flow from 5 Larix principis-rupprechtti trees for 18 rainfall events was 0.09mm, accounting for 0.46% of the gross precipitation.
     In the research period, the throughfall ranged from 1.1 to 42.4mm in Ostryopsis davidiana community plot, and from 0.7mm to 45.0mm in Hippophae rhamnoides community plot. The canopy interception capacity of these 2 shrubs was obtained by using the statistical analysis between throghfall and open-field precipitation over 5mm. The canopy interception capacity was 0.54 mm for Ostryopsis davidiana, and 1.58 mm for Hippophae rhamnoides. The averaged interception ratio of herbage per unit LAI was 0.02 g/cm2 which was measured after one 51.6 mm rainfall event, accounting for 1.64% of the total rainfall depth.
     3. The hydrological function of litter
     By soaking the litters from 4 different vegetation type plots, the saturated water-holding ratio of litter was in the order as follows: Larix principis-rupprechtti (332.2%) > Hippophae rhamnoides (288.6%) > Ostryopsis davidiana (220.6%) > grassland at semi-sunny slope (219.5%), and saturated water-holding capacity of litter in depth was in the order as follows: Larix principis-rupprechtti (2.2mm) > Ostryopsis davidiana (1.3mm) > Hippophae rhamnoides (0.9mm) > grassland at semi-sunny slope (0.6mm).
     By the field measuring of the water-content variation process of litter in Larix principis-rupprechtti plot during one series of continuous rainfall events, it was obtained that the peak water-holding ratio of litter ranged from 159.9% to 246.6%, the average was 219.4% and the corresponding water-holding capacity of litter in open field was 16.01 t.hm-2, which equals only 74.3% of it obtained by soaking litter.
     The relation between litter evaporation rate and litter moisture is logarithm. The litter evaporation rate increased with increasing litter moisture, approaching the potential evaporation rate from free water surface. The litter moisture in the Larix principis-rupprechtti plot varied in the range from 6.0% to 192.3% in the research period from Jun. to Oct. in 2008.
     4. Transpiration of Larix principis-rupprechtti and Hippophae rhamnoides
     In sunny days, the daily variation of sap flow velocity (SFV) of sample trees of Larix principis-rupprechtti was a single-peak curve. The sap flow velocity fluctuated tunelessly in cloudy days. The SFV was dropped down to the night level in rain times and appeared complex curve with much peaks. The peak SFV and the daily averaged SFV in sunny days after rainfall events were higher than the sunny days before rainfall events, and the difference after and before rainfall increased with rising rainfall depth. The peak daily SFV was going to be reduced within continual drought days. The sap flux possesses a seasonal variation, the monthly averaged sap flux of Larix principis-rupprechtti in the growing period of 2008 showed an order as follows: May > June > July > August > September > October.
     The daily variation curve of sap flux for Hippophae rhamnoides is a single-peaked in sunny days, but double-peaked or complex-peaked in cloudy or rainy days. A night sap flow also existed in Hippophae rhamnoides. The night sap flow can amount to 17.78% of the diurnal volume and the percent in drought period is higher than in wet period.
     5. Infiltration of soil water
     A study on the final infiltration rate was carried out for 4 typical vegetation forms in the small watershed of Didiegou, by using a method of overflowing in slope plots. The final infiltration rate (mm/min) of different vegetation types were: natural grassland (5.33) > shrub of Ostryyopsis davidiana (5.13) > shrub of Hippophae rhamnoides (4.29) > plantation of Larix principis-rupprechtii (3.81). The final infiltration rate was influenced by landform and there was clear difference among slope aspects, slope positions. Taking grassland as an example, the final infiltration rate in different slope aspects showed an order as follows: shady slope (5.40) > semi-shady slope (5.23) > semi-sunny slope (5.12), and the final infiltration rate in different slope positions showed an order as follows: midst slope position (5.92) > lower slope position (5.36) > upper slope position (4.96).
     6. The variation of soil water condition in permanent plots
     The spatio-temporal difference of soil water condition in the Larix principis-rupprechtii plot was very remarkable. According to the soil water dynamics during growing period in 2008, it can be divided into relatively wetness period (4 May to 21 May), durative consuming period (22 May to 7 Sep) and fast accumulating period (8 Sep to 1 Nov). According to soil water utilizing character, the vertical soil water dynamics with soil depth can be divided into 3 layers: faintness-utilizing layer (0-20cm), mostly-utilizing layer (20-60cm) and adjusting layer (below 60cm).
     The soil water availability in different plots in growing period of 2008 showed the order as follows: Hippophae rhamnoides shrub > grassland in sunny slope > grassland in semi-sunny slope > Ostryyopsis davidiana shrub > Larix principis-rupprechtii on steep slope. The soil water condition in plots of Larix principis-rupprechtii on steep slope and Ostryyopsis davidiana shrub appeared even an invalidation state from June to September, but other plots were unwieldy state.
     7. The water balance in permanent plots and the watershed streamflow characters
     For all the plots with different vegetation types in this study, the surface runoff was only about 0.5% of precipitation, and the inter-flow was below 0.5% of precipitation. So they the surface runoff and interflow can be neglected in plot water balance analysis. The results analysis indicated that the evapotranspiration was the biggest item in plot water balance. Grassland (both in sunny and semi-sunny slopes) can be classified into a type of water-yielding, while the Larix principis-rupprechtii plantation (both in steep slope and slow slope) and the Hippophae rhamnoides shrubland in semi-sunny slope can be classified into a type of water-consuming.
     The seasonal variation of streamflow in the small watershed was very uneven. The streamflow was mainly composed of base flow in initial period of growing season and after November, but composed of fast runoff with peak discharge caused by rainstorms in the rainy season from August to October.
     8. The applications of BROOK90 model to simulate the hydrological effect of vegetation
     The simulation with the calibrated model of BROOK90 showed that the evapotranspiration can amounts to more than 70% of gross precipitation for all the vegetation plots in growing season. The evapotranspiration of 3 vegetation types showed an order as follows: Larix principis-rupprechtii > Hippophae rhamnoides > grassland, but the plot water yield as: grassland > Hippophae rhamnoides > Larix principis-rupprechtii. For all the vegetation plots investigated in this study, the evapotranspiration in sunny slope was higher than in shady slope, but the water yield in sunny slope was less than in shady slope. The effect of slope aspect on plot water yield was different with vegetation types and the magnitude of effect decreased with the order of: grassland > Hippophae rhamnoides > Larix principis-rupprechtii. The steeper slope can yield more water resources than that from gentler slope. The evapotranspiration appeared to be decreased with increasing slope gradient for all plots.
     Soil depth is very important factor for the evapotranspiration, but this effect varied with vegetation types. The main response to changing soil depth was the soil evaporation in grassland plot, in the plots of shrub and forestland. When the soil depth increased from 20cm to 90cm, the transpiration increased by 37.1% in Larix principis-rupprechtii plot and26.3% in Hippophae rhamnoides plot. The evapotranspiration and water yield from plots decreased with decreasing initial soil water potential. Taking an integrated analysis of the hillslope hydrological effect from vegetation types, slope aspect and soil depth, the suitable vegetation restoration models was discussed for the research areas.
引文
Abdenbi H, Maurice R. Stemflow determination in forest stands. Forest Ecology and Management, 1997, (97): 231-235
    Arnold J G, Srinivasan R, Muttiah R S, et al. Large area hydrologic modeling and assessment, PartⅠ: model development. Journal of the American Water Resources Association, 1998, 34: 73-89
    Atkinson T. C. Techniques for measuring subsurface flow on hillslopes. Kirkby M.J. Hillslope Hydrology. Chichester: Wiley, 1978, 73-120
    Baum B. 1998. A validation of the watershed model BROOK90 using forty-years of lake data from northern Arizona. Northern Arizona University, School of Forestry, M.S. Thesis, Flagstaff AZ
    Buchtele J, M Buchtelova, F Gallart, J Latron, P Llorens, C Salvany, A Herrmann, 1998. Rainfall-runoff processes modelling using SACRAMENTO and BROOK models in the Cal Rodócatchment (Pyrenees, Spain). proceedings of the Catchment Hydrological and Biogeochemical Processes in Changing Environment, Conference, Liblice, Czech Republic, September 1998: 13-16
    Baker J.M., Van Bavel C.H.M. Measurement of massflow of water in the stems of herbaceous plants. Plant and Environment. 1987, 10: 777-782
    Beate.K, Haberlandt, U. Impact of land use changes on water dynamics—a case study in temperate meso and macroscale river basins. Physics and Chemistry of the Earth, 2002, 27:619-629
    Bergkamp Ger. A hierarchical view of the interactions of runoff and infiltration with vegetation and microtopography in semiarid shrublands. Catena. 1998, 33: 201-220.
    Bodman G.B. Colman E.A., Moisture and energy condition during downward entry of water into soil. Soil Sci. Soc. AM.J., 1944, 8(2):166-182
    Brakensiek D.L., Rawls W.J.Soil containing rock fragments: effects on infiltration. Catena, 1994, (23):99-110
    Bronstert A., Bárdossy A. Uncertainty of runoff modelling at the hillslope scale due to temporal variations of rainfall intensity. Physics and Chemistry of the Earth. 2003, 28: 283-288
    Cerda A. Effects of rock fragment cover on soil infiltration, interrill runoff and erosion. European Journal of Soil Science, 2001,(52):59-68
    Cerda. Seasonal changes of the infiltration rates in a Mediterranean scrubland on limestone. Journal of Hydrology.1997, 198:209-225
    Delphis F Levia Jr,Ethan E Frost.A review and evaluation of stemflow literature in the hydrologic and biogeochemical cycles of forested and agricultural ecosystems.Journal of Hydrology,2003,274:1-29
    Dunne, T., Zhang, W., Aubry, B. Effects of rainfall, vegetation and microtopography on infiltration and runoff. Water Resource Research, 1991, 27(9):2271-2285
    Eckhardt K, Haverkamp S, Fohrer N, et al. SWAT-G, a version of SWAT99.2 modified for application to low mountain range catchments. Physics and Chemistry of the Earch, 2002, 27: 641-644
    Federer, C.A. 1995. BROOK90: a simulation model for evaporation, soil water, and streamflow, Version 3.1.Computer freeware and documentation. USDA Forest Service, PO Box 640, Durham NH, 03824
    Fu BJ, Wang J, Chen LD, et al. The effects of land use on soil moisture variation in the Danangou catchment.the Loess Plateau of China. Catena, 2003, 54:197- 21
    Gash J H C. An analytical model of rainfall interception by forests, quarterly. Journal of Royal Meteorological Society, 1979, 105(443):43-45
    Gash J. H. C. et al. Comparative estimates of interception loss from three coniferous forests in Great Britain. Journal of Hydrology, 1980, 48:89-105
    Gash J. H. C. et al. Estimating sparse forest rainfall interception with an analytical model. Journal of Hydrology, 1995, 170:79-8
    Ghuman BS, Lal R. Effects of partial clearing on microclimate in a humid tropical forest. Agric For Meteorol, 1987.40:17-29
    Gomez-Plaza.A, Martinez-Mena.M, Albaladejo.J, Castillo.V.M. Factors regulating spatial distribution of soil water content in small semiarid catchments. Journal of Hydrology, 2001, (253): 211-226
    Harden C P, Scruggs P D. Infiltration on mountain slopes: a comparison of three environments. Geomorphology, 2003, 55: 5-24
    Hoad, S.P., J. Grace and C.E. Jeffree. Humidity response of cuticular conductance of beech (Fagus sylvatica L.) leaf discs maintained at high relative water content. Journal of Experimental Botany. 1997, 48:1969-1975
    Hogg, E.H. and P.A. Hurdle. Sap flow in trembling aspen: implications for stomatal responses to vapor pressure deficit. Tree Physiology. 1997, 17:501-509
    Hornbeck J W,Swank W T.Watershed ecosystem analysis as a basis for multiple use management of eastern forests.Eco1.App1, 1992, (2):238-247
    Huang YL, Chen LD, Fu BJ, et al. Evapotranspiration and soil moisture balance for vegetation restoration in a gully catchment on the Loess Plateau, China. Pedo2sphere, 2005, 15 (4): 509- 517
    Itzhak Katra, Hanoch Lavee, Pariente Sarah. The effect of rock fragment size and position on topsoil moisture on arid and semi-arid hillslopes. Catena, 2008, 72:49-55
    Iritz, Z. and A. Lindroth. Night-time evaporation from a shortrotation willow stand. J. Hydrol. 1994, 157:235-245
    Kosugi K, Mori K, Yasuda H.An inverse modeling approach for the characterization of unsaturated water flow in an organic forest floor.Journal of Hydrology, 2001, 246:96-108
    Landsberg J.J., Blanchard T.W., Warrit B. 1976. Studies on the movement of water through apple trees. Journal of Experimental Botany. 27: 579-596
    Liding Chen, Zhilin Huang, Jie Gong, et al. The effect of land cover/vegetation on soil water dynamic in the hilly area of the loess plateau, China Catena, 2007, 70: 200-208
    Lloyd C.R., A.D.O.Marques. Spatial ariability of throughfall and stemflow measurements in Amazonian rainforest.Agricultural and Forest Meteorology, 1988, 72:63-73
    Loescher H.W., J.S.Powers, S.F.Oberbauer. Spatial variation of throughfall volume in and old~growth tropical wet forest Costa Rica. Journal of Tropica.Ecology, 2002, 18:397-407
    Loustau,D.,Berbigier,P.,Granier,A.et al. Interception loss,throughfall and stemflow in maritime pine standⅠ.Variability of throughfall and stemflow beneath the pine canopy. Journal of Hydrology.1992, 138:449-467
    Maguire DA.Branch mortality and potential litter fall from Douglas-fir trees in stands of varying density.Forest Ecology and Management, 1994, 70:41-53
    Marin C.T., W.Bouten, J.Sevink. Gross rainfall and its partitioning into throughfall, stemflow and evaporation of intercepted water in four forest ecosystems in western Amazonia.Journal of Hydrology, 2000, 237: 40-57
    Miller F T, Guthrie R L. Classification and distribution of soil containing rock fragments in the United States. Soil Sci Soc Am Spec Pub, 1984, 13:1-61
    Morin et al., J. Morin, S. Goldberg, I. Seginer. A rainfall simulator with a rotating disk, Trans. ASAE, 1967, (10): 74-79
    Muchow, R.C., M.M. Ludlow, M.J. Fisher and R.J.K. Myers. Stomatal behaviour of kenaf and sorghum in a semiarid tropical environment. I. During the night. Australian Journal of Plant Physiology. 1980, 7: 609- 619
    Poesen J, Van Wesemael B. Patten of rock fragment cover generated by tillage erosion. Geomorphology, 1997, 18:183-197
    Poesen J., H. Lavee. Rock fragment in top soil: significance and processes. Catena, 23(1994):1-28
    Putuhena W. M. and Cordery. I. Estimations of interception capacity of the forest floor. Journal of Hydrology, 1996, 180:283-299
    Robichaud P R. Fire effects on infiltration rates after prescribed fire in Northern Rocky Mountain forests, USA. Journal of Hydrology, 2000, 231-232: 220-229
    Rutter A J, et al. A predictiver model of rainfall interception in forest,Ⅰ: Derivation of model from observation in a plantation of Corsican Pine. Agric, Meteorol, 1971, 9:367-384
    Samba SAN, CamiréC, Margolis HA. Allometry and rainfall interception of Cordyla pi nnata in a semi-arid agroforestry park-lard. Senegal For Ecol Man, 2001, 154:277-288
    Sarr M, Agbogbaa C, Russell-Smith A, et al. Effects of soil faunal activity and woody shrubs on water infiltration rates in a semi-arid fallow of Senegal. Applied Soil Ecology, 2001, 16: 283-290
    Sinun W., Meng W.W., Douglas I. and Spencer T. Throughfall, stemflow, overland flow and throughflow in the Ulu Segama rain forest, Sabah, Malaysia. 1992
    Sloan P G, Moore I D.Modelling subsueface stromflow on steeply sloping forested watersheds. Water ResourResearch, 1984, 20(12): 1815-1822
    Swartzendruber D. Derivation of a two-term infiltration equation from the Green-Ampt model. Journal of Hydrology, 2000, 236:247-251
    Stednick J D.Monitoring the effects of timber harvests on annual water yield.Journal of Hydrology, 1996, 176:79-95
    Steinberg S.L., Van Bavel C.H.M., MaFarland M. J. A gauge to measure mass flow of sap flow in stems and trunks of woody plants. Journal of the American Society for Horticultural Science. 1989, 114: 466-472
    Steinberg S.L., van Bavel C.H.M., McFarland M.J. Improved sap flow gauge for woody and herbaceous plants. Agron. J. 1990, 83: 851-854
    Swank W T, et a1.Stream flow changes associated with forest cutting, species conversion sand natural disturbance.In: Forest Hydrology and Ecology at Coweet.Eco1.Stud. New York: Springer-verlag, 1988, 66:297-312
    Torri D.,Poesen J., Monaci F., et al. Rock fragment content and fine soil bulk density Catena, 1994, 23:65-71
    Uttam Kumar Mandal, A.K. Bhardwajb, D.N. Warringtonc, Dina Goldstein,et al. Changes in soil hydraulic conductivity, runoff, and soil loss due to irrigation with different types of saline–sodic water. Geoderma, 2008, (144):509-516
    Viville D, et al. Interception on a mountainous declining spruce stand in the Strengbach catchment (Voges, France). Journal of Hydrology.1993, 144:273-282
    Waring R H, McDowell N.use of physiological process model with forestry yield tables to set limits on annual carbon balances.Tree physiologic, 2002, 22:179-188
    Wullschleger, S, F.C. Meinzer and R.A.Vertessy. A review of whole-plant water use studies in trees. Tree Physiology, 1998, 18: 499-512
    Xiao-Yan Li, Sergio Contreras, Albert Solé-Benet. Spatial distribution of rock fragments in dolines: A case study in a semiarid Mediterranean mountain-range (Sierra de Gádor, SE Spain). Catena, 2007, 70:366-374
    安金玲,孟好军.祁连山区石砾河滩沙棘林生态水文功能研究.甘肃科技,2008,24(9):167-168
    鲍文,包维楷,何丙辉,丁德蓉.岷江上游23年生油松纯林下凋落物与土壤截留降水的效应.水土保持学报,2004,18(5):115-119
    鲍文,何丙辉,包维楷,丁德蓉.森林植被对降水的截留效应研究.水土保持研究,2004,11(1):193-197
    鲍文,包维楷,丁德蓉,等.岷江上游人工油松林凋落量及其持水特征.西南农业大学学报,2004,26(5):567-569
    曹丽娟,刘晶淼.陆面水文过程研究进展.气象科技,2005,32(2):97-103
    常学问,赵爱芬,王金叶,等.祁连山林区大气降水特征与森林降水的截留作用.高原气象,2002 ,21(3):274-280
    陈海滨,孙长忠,安锋,等.黄土高原沟壑区林地土壤水分特征的研究(1)—土壤水分的垂直变化和季节变化特征[J].西北林学院学报,2003,18(4):13-16
    陈洁,王建荣.清水李沟井与礼县石桥井流量异常变化与地震的关系.西北地震学报,2001,23(3):238-242
    陈吉虎.关于森林对降水截留过程的研究.河南水利与南水北调,2008,12:23-29
    陈玲.乌鲁木齐深井水位记震能力及特征分析.内陆地震,1992,6(2):197-201
    陈丽华,余新晓,张东升.贡嘎山冷杉林区苔藓层截持降水过程研究.北京林业大学学报,2002,21(4):60-63
    陈奇伯,解明曙,张洪江.森林枯落物影响地表径流和土壤侵蚀研究动态.北京林业大学学报,1994,(16增刊3):88-97
    陈云明,刘国彬,徐炳成.黄土丘陵区人工沙棘林水土保持作用机理及效益.应用生态学报,2005,16(4):595-599
    程金花,张洪江,史玉虎,等.三峡库区三种林下枯落物储水特性.应用生态学报,2003,14(11):1825-1828
    程琴娟,蔡强国,郑明国.黄土土壤结皮对产流临界雨强的影响分析.地理科学,2007,27(5):678-682
    杜阿朋.六盘山叠叠沟小流域土壤物理性质及其水文功能研究,河北农业大学,硕士学位论文,2006
    杜阿朋,于澎涛,王彦辉等.六盘山北侧叠叠沟小流域土壤物理性质空间变异的研究.林业科学研究,2006,19(5):547-554
    范世香,裴铁,蒋德明,等.两种不同林分截留能力的比较研究.应用生态学报,2000,11(5):671-674
    高人,周广柱.辽东山区不同森林植被类型枯落物层截留降雨行为研究.辽宁林业科,2002,5:1-4
    高小其,许秋龙,王道,等.地下流体中强震源兆、场兆和强震远兆特征及其物理成因.地震,2002,22 (3):81-87
    高小其,周俊,李新勇,等.乌鲁木齐地区地下流体中等地震源兆特征的研究.高原地震,2001,13(3):16-23
    高小其,李艳萍,许秋龙,等.新疆伽师地震北天山地区水化学的远场效应.山西地震,2000,(1):34-39
    郭汉清,白秀梅.三种主要森林类型枯落物水文效应研究.山西水土保持科技,2006,2:13-15,28
    郭明春.六盘山叠叠沟小流域森林植被坡面水文影响的研究,中国林业科学研究院,博士学位论文,2005
    郭明春,王彦辉,于澎涛.森林水文学研究述评.世界林业研究,2005,18(3):6-11
    管伟.六盘山北坡叠叠沟小流域华北落叶松生长及水分影响研究,中国林业科学研究院,博士学位论文,2007
    关红杰,冯浩,吴普特.土壤砂砾覆盖对入渗和蒸发影响研究进展.中国农学通报,2008,24(12):289-293
    韩冰,吴钦孝,李秧秧,等.黄土丘陵区人工油松林地土壤人渗特征的研究.防护林科技,2004,5:1- 4
    胡润田,靳洪生,李清林.数字化地形信息及其在森林资源管理中的应用.东北林业大学学报,1994,22(2):24-35
    黄承标,梁宏温.广西亚热带主要林型的树干茎流.植物资源与环境学报,1994,3(4):10-17
    黄志刚,曹云,欧阳志云,等.南方红壤丘陵区油桐人工林土壤水分动态.应用生态学报,2007,18(2):241-246
    黄志宏,周国逸,Morris J,等.桉树人工林冠层气象因子对雨季土壤水分的影响.热带亚热带植物学报,2003,11(3):197-204
    黄新会,王占礼,牛振华.水文过程及模型研究主要进展水土保持研究.2004,11(4):105-108
    蒋定生.黄土高原水土流失与治理模式.北京:中国水利水电出版社,1997
    金雁海,柴建华,朱智红.内蒙古黄土丘陵区次降雨条件下坡面土壤侵蚀影响因子研究.水土保持研究.2006,13(6):192-194
    李崇巍,刘世荣,孙鹏森,张远东,等.岷江上游植被冠层降水截留的空间模拟.植物生态学报,2005,29(1):60-67
    李代琼.半干旱黄土区沙棘的水分生理生态与形态解剖学特性研究.水土保持研究,1998,5(1):97-102
    李德生.山东泰安黄前水库流域主要植被类型的水文特征研究,北京林业大学,博士论文,2007
    李海涛,陈灵芝.应用热脉冲技术对棘皮桦和五角枫树干液流的研究.北京林业大学学报,1998,20(1):1-6
    李燕,高明,魏朝富,等.土壤砾石的分布及其对水文过程的影响.中国农学通报,2006,22 (5):271-276
    李玉山.测定土壤水势的离心机法.土壤,1981,(4):143-146
    李玉山.黄土高原地区土壤水分循环特征及其对陆地水分循环的影响.生态学报,1983,3(2):91-101
    李振新,郑华,欧阳志云,等.岷江冷杉针叶林下穿透雨空间分布特征.生态学报,2004,24(5):1015-1021
    林业部科技司编.森林生态系统定位研究方法.北京:中国科学技术出版社,1994
    卢静芳,王道,张元胜.区域应力场作用引起的北天山地区地下流体异常特征分析.地震地质,2002,24(2):223-233
    刘春江,杨玉盛,马祥庆.欧亚大陆地上森林凋落物的研究.林业研究,2003,14(1):27-34
    刘奉觉,郑世锴,巨关升.树木蒸腾耗水测算技术的比较研究.林业科学,1997,33(2):117-126
    刘奉觉,郑世锴,巨关升,等.用热脉冲速度记录仪(HPVP)测定树干液流.植物生理学通讯,1993,29(2):110-115
    刘家冈,万国良,张学培,王本楠.林冠对降雨截留的半理论模型.林业科学,2000,36(2):2-5
    刘建立.六盘山叠叠沟坡面生态水文过程与植被承载力研究,中国林业科学研究院,博士学位论文,2008
    刘曙光.树冠截留模型.林业科学,1992,28(5):445-449
    刘世荣,温远光等.中国森林生态系统水文生态功能规律.北京:中国林业出版社,1996
    刘苑秋,王红胜,郭圣茂,等.江西省退化石灰岩红壤区重建森林土壤水分与降水量和蒸发量的关系.应用生态学报,2008,19(12):2588-2592
    刘永宏,梁海荣,张文才.森林水文研究综述.内蒙古林业科技,2000,(增刊):67-73
    马雪华,杨茂瑞,胡星弼.亚热带杉木、马尾松人工林水文功能的研究.林业科学,1993,29(3):199-206
    马雪华.森林水文学.北京:中国林业出版社,1993
    莫菲.六盘山洪沟小流域森林植被的水文影响与模拟,中国林业科学研究院,博士学位论文,2008
    漆良华,张旭东,周金星,等.湘西北小流域典型植被恢复群落土壤贮水量与入渗特性.林业科学,2007,43(4):1-8
    秦耀东著.土壤物理学.北京:高等教育出版社,2003,97-110
    邱扬.黄土丘陵小流域土地质量特征的时空变异及环境效应,中国科学院生态环境研究中心,博士学位论文,2001
    邱杨,傅伯杰,王军,等.黄土丘陵小流域土壤物理性质的空间变异.地理学报,2002,57(5):587-594
    饶良懿,朱金兆,毕华兴.重庆四面山森林枯落物和土壤水文效应.北京林业大学学报,2005,27(1):33-37
    阮成江,李代琼.黄土丘陵区人工沙棘蒸腾作用研究.生态学报,2001,21(12):2141-2146
    邵永新,李君英,李一兵,等.地下流体动态异常分布与构造的关系.西北地震学报,2000,22(3) :284-287
    时忠杰,王彦辉,熊伟,徐丽宏,等.六盘山典型植被类型土壤中石砾对大孔隙形成的影响.山地学报,2007,25(5):541-547
    时忠杰,王彦辉,于澎涛,徐丽宏,等.六盘山森林土壤中的砾石对渗透性和蒸发的影响.生态学报,2008,28(11):6090-6098
    时忠杰,王彦辉,徐丽宏,熊伟,等.六盘山森林土壤中的砾石对土壤大孔隙特征及出流速率的影响.生态学报, 2008,28(10):4929-4939
    时忠杰.六盘山香水河小流域森林植被的坡面生态水文影响,中国林业科学研究院,博士学位论文,2006
    施炜,张岳桥,马寅生,刘刚等.六盘山盆地形成和改造历史及构造应力场演化.中国地质,2006,33(5):1066-1074
    宋吉红,张洪江,孙超;,王智超.缙云山自然保护区不同森林类型林冠的截留作用.中国水土保持科学,2008,6(3):71-75
    孙立达,朱金兆.水土保持林体系综合效益研究与评价.北京:中国科学技术出版社,1995
    孙林.六盘山半干旱区坡面植被蒸腾模拟,中国林业科学研究院,博士后出站报告,2008
    孙慧珍,周晓峰,赵惠勋.白桦树干液流的动态研究.生态学报,2002,22(9):1387-1391
    孙鹏森,马履一.水源保护树种耗水特性研究与应用.北京:中国环境科学出版社,2002
    孙鹏森,马履一,王小平,翟明普.油松树干液流的时空变异性研究.北京林业大学学报,2000,22(5):1-6
    田大伦,陈书军.樟树人工林土壤水文一物理性质特征分析.中南林学院学报,2005,25(2):1-6
    田佳秋,兰伟,李树森,等.整地深度对土壤物理性质的影响.防护林科技,2005,3:28-29
    王华田,马履一.利用热扩式边材液流探针(TDP)测定树木整株蒸腾耗水量的研究.植物生态学报,2002,26(6):661-667
    王景升,任青山,兰小中.急尖长苞冷杉原始森林降水分配格局.林业科技,2002,27(6):7-10
    
    王力,邵明安,王全九.林地土壤水分运动研究述评.林业科学,2005,41(2):147-153
    王绍强,朱松丽,周成虎.中国土壤土层厚度的空间变异性特征.地理研究,2001,20(2):161-169
    王新平,张志山,张景光,等.荒漠植被影响土壤水文过程研究综述.中国沙漠,2005,25(2):196-201
    王馨,张一平,刘文杰.Gash模型在热带季节雨林林冠截留研究中的应用.生态学报,2006,26(3):722-729
    王彦辉.陇东黄土地区刺槐水土保持效益的定量研究.北京林业大学学报,1986,8(1):35-52
    王彦辉,于澎涛,郭浩等.北京官厅库区森林植被生态用水及其恢复.中国林业出版社,2008
    王彦辉,于澎涛,徐德应,赵茂盛.林冠截留降雨模型转化和参数规律的初步研究.北京林业大学学报,1998,20(6):25-30
    王佑民.中国林地枯落物持水保土作用研究概况.水土保持学报,2000,14(4):l08-113
    王印杰,王玉珉.非饱和土壤水分函数解析与Richards方程入渗新解.水文,1996,2:1-9
    王月玲,蒋齐,蔡进军,张源润,等.半干旱黄土丘陵区土壤水分入渗速率的空间变异性.水土保持通报,2008,28(4):52-55,74
    魏宇昆,梁宗锁,王俊峰,韩蕊莲.黄土丘陵区不同立地条件沙棘水分特征与生物量研究.沙棘,2001,14(4):5-8
    吴发启,赵晓光,刘秉正,等.1998.地表糙度的量测方法及对坡面径流和侵蚀的影响.西北林学院学报,13(2):15-19
    吕刚,吴祥云.土壤入渗特性影响因素研究综述.中国农学通报,2008,24(7):494-499
    仙巍,邵怀勇,周万村.基于3S技术的三峡库区不同坡度带与坡向带的景观格局研究.中国生态农业学报,2007,15 (1):140-144
    熊伟,王彦辉,徐德应.宁南山区华北落叶松人工林蒸腾耗水规律及其对环境因子的响应.林业科学,2003,39(2):1-7
    徐士中,王道,张元胜.乌鲁木齐4号井的水位变化与地震活动的关系.内陆地震,1987,1 (2) :146-153
    薛立,何跃君,屈明,等.华南典型人工林凋落物的持水特性.植物生态学报,2005,29(3):415-421
    闫文德,张学龙,王金叶,等.祁连山森林枯落物水文作用的研究.西北林学院学报,1997,12(2):7-14
    严昌荣,Alec Downey,韩兴国,陈灵芝.北京山区落叶阔叶林中核桃楸在生长中期的树干液流研究.生态学报,1999,19(6):793-797
    杨劼,曹云,李国强,宋炳煜.皇甫川流域百里香草原和人工沙棘灌木林的水分利用特征.地球科学进展,2002,17(2):241-246
    杨永辉,赵世伟,雷廷武,等.耕作对土壤入渗性能的影响.生态学报,2006,26(5):1624-1630
    杨文利,樊后保.小流域森林植被冠层对降雨侵蚀力减缓研究.亚热带水土保持,2008,20(2):1-4
    余新晓,张建军,朱今兆,等.黄土地区防护林生态系统土壤水分条件的分析与评价.林业科学,1996,32(4):289-296
    于维忠.论流域产流.水利学报,1985,2:1- 11
    原翠萍.砂石覆盖对蒸发和入渗产流过程影响的试验研究.北京:中国农业大学2007
    
    袁建平.纸坊沟流域土壤入渗速率随空间和治理度之变异规律.水土保持学报,2000,14(4):121-124
    战伟庆,张志强,武军,肖金强.华北油松人工林冠层穿透雨空间变异性研究.中国水土保持科学,2006,4(3):26-30
    张光灿,刘霞,赵玖.泰山几种林分枯落物和土壤水文效应研究.林业科技通讯,1999,(6):28-29
    张洪江,程金花,余新晓,等.贡嘎山冷杉纯林枯落物储量及其持水特性.林业科学研究,2003,39:148-151
    张宁南,徐大平, Morris J,等.雷州半岛尾叶桉人工林树液茎流特征的研究.林业科学研究,2003,(16)6:661-667
    张一平,王馨,刘文杰.热带森林林冠对降水再分配作用的研究综述,福建林学院学报,2004,24(3):274-282
    张玉宝,谢忠奎,王亚军,等.黄土高原西部荒漠草原植被恢复的土壤水分管理研究.中国沙漠,2006,26(4):574-579
    张振明,余新晓,牛健植,等.不同林分枯落物层的水文生态功能.水土保持学报,2005,19(3) :139-143
    张志永,张卓文,陈玉生,等. 5种主要森林类型涵养水源能力比较研究.福建林学院学报,2005,25(2):171-175
    张亚丽,李怀恩,张兴昌.土壤质地对坡地土壤水分运动与转化特征的影响研究.灌溉排水学报,2008,27(6):27-30
    赵海霞,李波,刘颖慧,等.皇甫川流域不同尺度景观分异下的土壤性状.生态学报,2005,25(8):2010-2018
    赵鸿雁,吴钦孝,刘向东.山杨枯枝落叶的水文水保作用研究.林业科学,1994,30(2):176-180
    赵西宁,吴发启.土壤水分入渗的研究进展和评述.西北林学院学报,2004,19(1):42-45
    郑子成,吴发启,何淑勤,等.不同地表条件下土壤侵蚀的坡度效应.节水灌溉,2006,6:23-26
    中野秀章.森林水文学.李云森译.北京:中国林业出版社,1993
    周国逸.几种常用造林树种冠层对降水动能分配及其生态效应分析.植物生态学报,1997,21(3):250-259
    周启鸣,刘学军.2006.数字地形分析.北京:科学出版社
    周平,李吉跃,招礼军.北方主要造林树种苗木蒸腾耗水特性研究.北京林业大学学报,2002,24(5/6):50-55
    朱元骏,邵明安.不同碎石含量的土壤降雨入渗和产沙过程初步研究.农业工程学报,2006,22(2):64-67

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700