用户名: 密码: 验证码:
极区中层夏季回波特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
极区中层夏季回波(PMSE,Polar Mesosphere Summer Echoes)是通过雷达在高纬当地夏季中层顶附近探测到的异常强大雷达回波,是与尘埃等离子体密切相关的自然现象。自从1979年被Ecklund和Balsley发现以来已经引起了广泛的关注。本文以尘埃等离子体电波传播理论为出发点,主要围绕极区中层顶PMSE的产生机制,PMSE层对电磁波的散射与反射,加热对PMSE的影响,测高仪对PMSE的观测开展相关研究。本文主要开展了如下工作:
     1.首先介绍有关极区中层夏季回波的基本知识;然后利用在仅发生PMSE现象时ECT-02实验数据分析得出极区中层顶区域属于尘埃等离子体,最后利用电子密度不规则运动解释PMSE。
     2.介绍了不同雷达对PMSE体反射率的测量以及雷达的测量结果,统计得出雷达体反射率与工作频率的依赖关系,然后分别应用尘埃等离子体的尘埃粒子散射统计平均结果和波恩近似分别得到散射截面与工作频率的内在关系,最后利用小尺度扰动理论得到雷达体反射率与频率的关系,发现它们均与频率的四次方成反比,与统计的实验结果趋于一致。这表明带电尘埃粒子在PMSE形成机制的研究中是不可忽略的因素,尘埃等离子体理论是研究PMSE的一个重要工具。
     3.极区中层顶区域存在大量的带电尘埃粒子,出现明显的分层结构,PMSE回波强度和电子数密度也存在明显的分层结构。采用分层介质波传播理论,分析在频率53.5MHz情况下雷达回波的信噪比。结果表明:利用分层介质理论得到的信噪比与实验结果较吻合。另外分别计算在其它频率的反射系数,发现随频率的增加,反射系数明显减弱。上面结果基本表明PMSE主要是反射现象。可见利用分层介质理论是解释PMSE产生机制的又一重要手段。最后结合分层介质,利用全球定位系统(GPS, Global Positioning System)卫星L2载波频率分析PMSE尘埃层对电磁波的衰减情况,发现GPS信号穿过PMSE层后,信号受到严重衰减,PMSE层能对GPS信号产生重大影响。
     4.极区中层夏季回波具有明显的分层现象,加热能引起过冲现象。我国从2006年开始开展PMSE加热实验,基于三年的PMSE加热实验,发现PMSE回波强度具有明显的分层现象,并且层数之间变化迅速。另外也得到PMSE加热特征曲线OCC(Overshoot Characteristic Curves)图,回波功率随高度变化的剖面图,回波强度随时间的变化图,得到明显的过冲现象。这为我国开展PMSE研究打下了一定的基础。
     5.利用电离层测高仪在MF和HF频段开展对PMSE的研究。应用电离层测高仪在中国南极中山站测得的数据,结合北极Troms?站测高仪测量的频高图,分析发现:在南北半球高纬地区,用MF和HF频段的电离层测高仪能够观测到类似PMSE现象,文中称为PMSE-Es现象。并且还发现南极PMSE-Es具有季节性变化、日变化和半日变化等特征,与北半球的PMSE现象较吻合。最后我们也对其中的差异进行了对比分析。另外本文对比1999-2003年PMSE出现率和PMSE-Es出现率的季节性变化,发现它们出现率的相对大小与相对应的年份吻合的比较好,特别是在2002年,PMSE和PMSE-Es的出现率均明显偏低,这从另外一个侧面说明PMSE与PMSE-Es具有一定的相关性。结果表明可以在MF和HF频段通过研究PMSE-Es来研究PMSE现象。
Recently, considerable attention has been paid to the anomalously high power radar echoes from the mesosphere at high latitude in summer: the polar mesosphere summer echoes (PMSE). PMSE considerable relate to the charged dust particles in polar mesopause. Much research on PMSE has been done since it was first found by Ecklund and Balsley as a fascinating phenomenon in 1979. On the basis of theoretical research on electromagnetic wave propagation in dusty plasma, the generation mechanism is studied with layered media theory. The effect of heating on PMSE is discussed and the ionosonde is used to analyze PMSE. The main topics and results of the study are as follows:
     Firstly, the basic knowledge of PMSE is introduced; the data of ECT-02 only occurring PMSE are given. The data provide a good base to study various features of PMSE. By analyzing the data, one can find that the region in polar summer mesopause where charged dust particles exist should be studies with dusty plasma theory. The variable disturbance of electron density is used to explain PMSE.
     Secondly, by statistically analyzing the volume reflectivities of PMSE at different time, stations and frequencies, the relation between the volume reflectivity and the work frequency is obtained. The differential scattering cross section obtained with Born approximation in dusty plasma is also derived, the same result is obtained. Others, the relation between the volume reflectivity and frequency occurring PMSE is studies using the small scale structure of electron density caused by charged dust particles. A theoretical expression for the radar volume reflectivity is derived and shows that the statistical result agrees with the theoretical results. When studying the generation mechanism of PMSE, the charged dust particles must be considered. The theory of dusty plasma may be a useful tool to investigate the generation mechanism of PMSE.
     Thirdly, the data obtained from sounding rocket campaigns indicate that radar echo power, electron density and dust charge density of polar mesosphere in summer are obvious layered structures. Based on the theory of wave propagation in layered media, the reflection coefficient and radar signal to noise ratio (SNR) at 53.5 MHz at each layer in polar mesosphere is studied. The agreement of the SNR calculated with the theoretical results and the measured results are good. Others, the theory of wave propagation in layered media are also used to study the reflection coefficient at other frequencies. The intensity of the radar echoes reflected by layered structure decreases greatly with the frequency increasing. So the phenomenon of PMSE may mainly be caused by the reflection of the layered structure. Combining dusty plasma theory, the attenuation of L2 carrier frequency of Global Positioning System (GPS) traverses in PMSE layer is studied with the layered media theory. One find that the signals attenuate greatly in PMSE layer, so the PMSE layer can affect communication.
     Fourthly, PMSE have obvious layered structures, the overshoot can be caused by artificial electron heating experiments during PMSE conditions. Since 2006, we have carried out the heating campaign for three years. Based on the data from 2006 to 2008, the different layered structures are observed, the number of layer change very quickly. The overshoot characteristic curve (OCC) is obtained in our heating campaign too. Others, the echo power changing with height and time are also got. The heating campaign may be the found of studying PMSE in the future.
     Finally, the ionosonde is used to study PMSE at MF and HF bands. Using the ionograms detected by ionosonde at Troms? Station, Arctic and Zhongshan Station, Antarctica, PMSE are studied with data observed by a Digisonde Portable Spunder-4 ionosonde. By analyzing the irregular characteristics of E and Es layers in ionograms, the PMSE-Es may be observed at MF and HF bands. The phenomena of irregular E and Es layer are called PMSE-Es (Polar Mesosphere Summer Echoes-Es). The occurrence rate variations of PMSE-Es exhibit similarity to those of PMSE, such as: seasonal variation, diurnal variation, and semidiurnal variation. Others, in order to compare the seasonal variation of the Arctic PMSE’occurrence rate from 1999 to 2003, a new statically method is used to obtain the PMSE-Es’seasonal variation. Both occurrence rates of PMSE in Arctic and that of PMSE-Es in Antarctica occurrence rates are relatively lower in 2002. At the same time, the occurrence rate of PMSE-Es in the other four years is nearly consistent with that of PMSE. The results show that PMSE-Es should have some relations with PMSE. The ionosonde in Arctic and Antarctica may be used to detect PMSE with the phenomenon of PMSE-Es at MF and HF bands.
引文
[1] Yeh K C and Liu C H. Theory of ionospheric waves, San Diego, Calif.: Academic, 1972. (中译本:王椿年,尹元昭译.电离层波理论.北京:科学出版社, 1983).
    [2]熊年禄,唐存琛,李行健.电离层物理概论.武汉:武汉大学出版社, 1999.
    [3] Shukla P K and Mamun A A. Introduction to dusty plasma physics. London: IOP Publishing Ltd, 2000.
    [4] Ulwick J C, Baker K D, Kelley M C et al. Comparison of simultaneous MST radar and electron density probe measurements during STATE. J. Geophys. Res., 1988, 93(D6): 6989-7000.
    [5] Cho J Y N and Kelley M C. Polar mesosphere summer radar echoes: observations and current theories. Reviews of Geophysics, 1993, 31(3): 243-265.
    [6] Cho J Y N and R?ttger J. An updated review of polar mesosphere summer echoes: Observation, theory, and their relationship to noctilucent clouds and subvisible aerosols. J. Geophys. Res., 1997, 102(D2): 2001-2020.
    [7] Rapp M and Lübken F J. Polar mesosphere summer echoes (PMSE): review of observations and current understanding. Atmos. Chem. Phys., 2004, 4(11-12): 2601-2633.
    [8] Von Zahn U. Achievements of ALOMAR. In Proceedings of the 13th ESA Symposium on European Rocket and Balloon Programmes and Related Research, ?land, Sweden, edited by B. Kaldeich-Schürmann, ESA SP-397, 1997, 141-162.
    [9] Ecklund W L and Balsley B B. Long-term observations of the Arctic mesosphere with the MST radar at Poker Flat, Alaska. J. Geophys. Res., 1981, 86(A9): 7775-7780.
    [10] Havnes O, Melands? F, La Hoz C et al. Charged dust in the Earth’s mesopause: effects on radar backscatter. Phys. Scr., 1992, 45(5): 535-544.
    [11] Liu J Y, Pan C J, Lee C C. VHF radar and MF/HF dynasonde observations during polar mesosphere summer echoes conditions at EISCAT. Earth Planets Space, 2002, 54(6): 691-698.
    [12] Lee C C, Liu J Y, Pan C J et al. Doppler velocities obtained by the EISCAT VHF and the dynasonde during the PMSE95 campaign. J. Atmos. Sol. Terr. Phys., 2001, 63(2-3): 193-199.
    [13] Rose M C, Clilverd M A, Jarvis M J et al. Polar mesosphere summer echo detection using a dynasonde. Radio Sci., 2005, 40(6), RS6003, doi: 10.1029/2005 RS003249.
    [14] Thomas G E. Is the polar mesosphere the miner’s canary of global change? Adv. Space Res., 1996, 18(3): 149-158.
    [15]李芳.尘埃等离子体物理.物理, 1994, 23(9): 518-521.
    [16]马锦秀.尘埃等离子体物理.物理, 2006, 35(3): 244-250.
    [17] Nussbaumer V, Fricke K H, Langer M et al. First simultaneous and common volume observations of noctilucent clouds and polar mesosphere summer echoes by lidar and radar. J. Geophys. Res., 1996, 101(D14): 19161-19167.
    [18] Singer W, Keuer D, Hoffmann P et al. The ALOMAR-SOUSY-radar: technical design and further developments. In: Barbara W ed. 12th ESA Symposium on European Rocket and Balloon Programmes and Related Research. Noordwijk: ESA Publications Division, 1995, 409-415.
    [19] Von Zahn U and Bremer J. Simultaneous and common-volume observations of noctilucent clouds and polar mesosphere summer echoes. Geophys. Res. Lett., 1999, 26(11): 1521-1524.
    [20] Turco R P, Toon O B, Whitten R C et al. Noctilucent clouds: simulation studies of their genesis, properties and global influences. Planet. Space Sci., 1982, 30(11): 1147-1181.
    [21] Kirkwood S. Polar mesosphere winter echoes-a review of recent results. Adv. Space Res., 2007, 40(6): 751-757.
    [22] Kirkwood S, Barabash V, Belova E et al. Polar mesosphere winter echoes during solar proton events. Adv. in Polar Upper Atmos. Res., 2002, 16: 111-125.
    [23] Stebel K, Blum U, Fricke K H et al. Joint radar/lidar observations of possible aerosol layers in the winter mesosphere. J. Atmos. Sol. Terr. Phys., 2004, 66(11): 957-970.
    [24] Belova E, Kirkwood S, Ekeberg J et al. The dynamical background of polar mesosphere winter echoes from simultaneous EISCAT and ESRAD observations. Ann. Geophys., 2005, 23(4): 1239-1247.
    [25] Kirkwood S, Belova E, Blum U et al. Polar mesosphere winter echoes during MaCWAVE. Ann. Geophys., 2006, 24(4): 1245-1255.
    [26] Zeller O, Zecha M, Bremer J et al. Mean characteristics of mesosphere winter echoes at mid- and high-latitudes. J. Atmos. Sol. Terr. Phys., 2006, 68(10):1087-1104.
    [27] Lübken F J, Strelnikov B, Rapp M et al. The thermal and dynamical state of the atmosphere during polar mesosphere winter echoes. Atmos. Chem. Phys. Discuss, 2005, 5(4): 7613-7645.
    [28] Brattli A, Blix T A, Lie-Svendsen ? et al. Rocket measurements of positive ions during polar mesosphere winter echo conditions. Atmos. Chem. Phys. Discuss., 2006, 6(4): 7093-7117.
    [29] Lübken F J, Hillert W, Lehmacher G et al. Experiments revealing small impact of turbulence on the energy budget of the mesosphere and lower thermosphere. J. Geophys. Res., 1993, 98(D11): 20369-20384.
    [30] Kavanagh A J, Honary F, Rietveld M T et al. First observations of the artificial modulation of polar mesosphere winter echoes. Geophys. Res. Lett., 2006, 33(19), L19801, doi: 10.1029/2006GL027565.
    [31] Kirkwood S, Chilson P, Belova E et al. Infrasound-the cause of strong polar mesosphere winter echoes? Ann. Geophys., 2006, 24(2): 475-491.
    [32] Hocking W K. Evidence for viscosity, thermal conduction and diffusion waves in the Earth’s atmosphere. Rev. Sci. Instrum., 2003, 74(1): 420-426.
    [33] Hocking W K, Fukao S, Yamamoto M et al. Viscosity waves and thermal- conduction waves as a cause of‘specular’reflectors in radar studies of the atmosphere. Radio Sci., 1991, 26(5): 1281-1303.
    [34] Garces M A, Willis M, Hetzer C et al. On using ocean swells for continuous infrasonic measurements of winds and temperature in the lower, middle, and upper atmosphere. Geophys. Res. Lett., 2004, 31(19), doi: 10.1029/2004GRL02069.
    [35] Drob D P, Picone J M, Garcés M A. The global morphology of infrasound propagation. J. Geophys. Res., 2003, 108(D21), doi: 10.1029/2002JD003307.
    [36] Czechowsky P, Rüster R, Schmidt G. Variations of mesospheric structures in different seasons. Geophys. Res. Lett., 1979, 6(6): 459-462.
    [37] Hoppe U P, Hall C, R?ttger J. First observations of summer polar mesospheric backscatter with a 224 MHz radar. Geophys. Res. Lett., 1988, 15(1): 28-31.
    [38] R?ttger J, La Hoz C, Kelley M C et al. The structure and dynamics of polar mesosphere summer echoes observed with the EISCAT 224 MHz radar. Geophys. Res. Lett., 1988, 15(12): 1353-1356.
    [39] R?ttger J, Rietveld M T, La Hoz C. Polar mesosphere summer echoes observed with the EISCAT 933-MHz radar and the CUPRI 46.9-MHz radar, their similarityto 224-MHz radar echoes, and their relation to turbulence and electron density profiles. Radio Sci., 1990, 25(4): 671-687.
    [40] Cho J Y N and Kelley M K. Enhancement of Thomson scatter by charged aerosols in the polar mesosphere: with a 1.29-GHz radar. Geophys. Res. Lett., 1992, 19(11): 1097-1100.
    [41] Inhester B, Schmidt G, UIwick J C et al. Consistency of rocket and radar electron density observations: implication about the anisotropy of turbulence. J. Atmos. Terr. Phys., 1990, 52(10-11): 855-873.
    [42] Karashtin A N, Shlyugaev Y V, Abramov V I et al. First HF radar measurements of summer mesopause echoes at SURA. Ann. Geophys., 1997, 15(7): 935-941.
    [43] Fraser G J and Khan U. Semidiurnal variations in the time scal of irregularities near the Antarctic summer mesopause. Radio Sci., 1990, 25(5): 997-1003.
    [44] Hoppe U P, Fritts D C, Reid I M et al. Multiple frequency studies of the high latitude summer mesosphere: implications for scattering process. J. Atmos. Terr. Phys., 1990, 52 (10-11): 907-926.
    [45] Bremer J, Hoffmann P, Manson A H et al. PMSE observations at three different frequencies in northern Europe during summer 1994. Ann. Geophys., 1996, 14(12): 1317-1327.
    [46] Kelley M C, Huaman M, Chen C Y et al. Polar mesosphere summer echo observations at HF frequencies using the HAARP Gakona Ionospheric Observatiory. Geophys. Res. Lett., 2002, 29(12), 1603, doi: 10.1029/2001GL 013411.
    [47] Ogawa T and Nishitani N. Upper mesosphere summer echoes detected with the Antartic Syowa HF radar. Geophys. Res. Lett., 2002, 29(7), 1157, 10.1029/ 2001/GL014094.
    [48] Ogawa T, Arnold N F, Kirkwood S. Finland HF and Esrange MST radar observations of polar mesosphere summer echoes. Ann. Geophys., 2003, 21(4): 1047-1055.
    [49] Tereshchenko V D, Vasiliev E B, Tereshchenko V A. The polar mesospheric MF echoes.‘physics of auroral phenomena’. Proc.XXV Annual Seminar, Apatity, 2002, 118-121.
    [50] Kelley M C, Hall T, Ulwick J C et al. Intense turbulence in the polar mesosphere - rocket and radar measurements. J. Atmos. Terr. Phys., 1990, 52: 875-891.
    [51] Hocking W. Target parameter estimation, in: Handbook for MAP volume 30,SCOSTEP, edited by: Fukao, S., Urbana, 1989, 228-268.
    [52] R?ttger J and La Hoz C. Characteristics of polar mesosphere summer echoes (PMSE) observed with the EISCAT 224 MHz radar and possible explanations of their origin. J. Atmos. Terr. Phys., 1990, 52(10-11): 893-906.
    [53] Hoppe U P and Hansen T L. Studies of vertical motions in the upper mesosphere using the EISCAT UHF radar. Ann. Geophys., 1988, 6(2): 181-186.
    [54] Hocking W K, Rüster R, Czechowsky P. Absolute reflectivities and aspect sensitivities of VHF radio waves scatterers measured with the SOUSY radar. J. Atmos. Terr. Phys., 1986, 48(2): 131-144.
    [55] Czechowsky P, Reid I M, Rüster R. VHF radar measurements of the aspect sensitivity of the summer polar mesospaus echoes over Andenes (69oN, 16oE), Norway. Geophys. Res. Lett., 1988, 15(11): 1259-1262.
    [56] Czechowsky P and Rüster P. VHF radar observations of turbulent structures in the polar mesopause region. Ann. Geophys., 1997, 15(8): 1028-1036.
    [57] Zecha M, R?ttger J, Singer W et al. Scattering properties of PMSE irregularities and refinement of velocity estimates. J. Atmos. Sol. Terr. Phys., 2001, 63(2-3): 201-214.
    [58] Zecha M, Bremer J, Latteck R et al. Properties of mid-latitude mesosphere summer echoes after three seasons of VHF radar observations at 54oN. J. Geophys. Res., 2003, 108 (D8), 8439, doi: 10.1029/2002JD002442.
    [59] Chilson P B, Yu T Y, and Palmer R D. Aspect sensitivity measurements of polar mesosphere summer echoes using coherent radar imaging. Ann. Geophys., 2002, 20(2): 213-223.
    [60] Lübken F J, Lehmacher G, Blix T et al. First in-situ observations of neutral and plasma density fluctuations within a PMSE layer. Geophys. Res. Lett., 1993, 20(20): 2311-2314.
    [61] Ulwick J C, Kelley M C, Alcala C et al. Evidence for two different structuring and scattering mechanisms and the associated role of aerosols in the polar summer mesosphere. Geophys. Res. Lett., 1993, 20(20): 2307-2310.
    [62] Cho J Y N, Swartz W E, Kelley M C et al. CUPRI observations of PMSE during salvo B of NLC-91: evidence of both partial reflection and turbulent scatter. Geophys. Res. Lett., 1993, 20(20): 2291-2294.
    [63] Goldberg R, Kopp E, Witt G et al. An overview of NLC-91: A rocket/radar study of the polar summer mesosphere. Geophys. Res. Lett., 1993, 20(20): 2443-2446.
    [64] Blix T A. The importance of charged aerosols in the polar mesosphere in connection with noctilucent clouds and polar mesosphere summer echoes. Adv. Space Res., 1999, 24(12): 1645-1654.
    [65] Havnes O, Tr?im J, Blix T et al. First detection of charged dust particles in the Earth’s mesosphere. J. Geophys. Res, 1996, 101(A5): 10839-10847.
    [66] Goldberg R, Pfaff R, Holzworth R et al. DROPPS: A study of the polar summer mesosphere with rocket, radar and lidar: properties of the polar summer mesosphere. Geophys. Res. Lett., 2001, 28(8): 1407-1410.
    [67] Smiley B, Robertson S, Horanyi M et al. Measurement of negatively and positively charged particles inside PMSE during MIDAS SOLSTICE 2001. J. Geophys. Res., 2003, 108 (D8), 8444, doi: 10.1029/2002JD002425.
    [68] Blix T A, Bekkeng J K, Latteck R et al. Rocket probing of PMSE and NLC-results from the recent MIDAS/MACWAVE campaign. Adv. Space Res., 2003, 31(9), 2061-2067.
    [69] Lübken F J, Rapp M, Hoffmann P. Neutral air turbulence and temperatures in the vicinity of polar mesosphere summer echoes. J. Geophys. Res., 2002, 107(D15), 4273, 10.1029/2001JD000915.
    [70] Müllemann A, Rapp M, Lübken F J. Morphology of turbulence in the polar summer mesopause region during the MIDAS/SOLSTICE campaign 2001. Adv. Space Res., 2003, 31(9): 2069-2074.
    [71] Strelnikov B, Rapp M, Lübken F J. A new technique for the analysis of neutral air density fluctuations measured in situ in the middle atmosphere. Geophys. Res. Lett., 2003, 30(20), 2052, doi: 10.1029/2003GL018271.
    [72] Rapp M, Strelnikov B, Müllemann A et al. Turbulence measurements and implications for gravity wave dissipation during the macwave/midas rocket program. Geophys. Res. Lett., 2004, 31(24), L24S07, doi: 10.1029/2003GL 019325.
    [73] Rapp M and Lübken F J. On the nature of PMSE: electron diffusion in the vicinity of charged particles revisited. J. Geophys. Res., 2003, 108 (D8), 8437, doi: 10.1029/2002JD002857.
    [74] Chilson P B, Belova E, Rietveld M et al. First artificially induced modulation of PMSE using the EISCAT heating facility. Geophys. Res. Lett., 2000, 27(23): 3801-3804.
    [75] Rapp M and Lübken F J. Electron temperature control of PMSE. Geophys. Res.Lett., 2000, 27(20): 3285-3288.
    [76] Belova E, Chilson P B, Kirkwood S et al. The response time of PMSE to ionospheric heating. J. Geophys. Res., 2003, 108(D8), 8446, doi: 10.1029/2002JD 002385.
    [77] Rapp M and. Lübken F J. Comment on“The response time of PMSE to ionospheric heating”by E. Belova et al. J. Geophys. Res., 2003, 108(D23), 4727, doi: 10.1029/2003JD003638.
    [78] Havnes O, La Hoz C, N?sheim L I. First observations of the PMSE overshoot effect and its use for investigation the conditions in the summer mesosphere. Geophys. Res. Lett., 2003, 30(23), 2229, doi: 1029/2003GL018429.
    [79] Havnes O. Polar mesospheric summer echoes (PMSE) overshoot effect due to cycling of artificial electron heating. J. Geophys. Res., 2004, 109(A2), A02309, doi: 10.1029/2003JA010159.
    [80] Biebricher A, Havnes O, Hartquist T W et al. On the influence of plasma absorption by dust on the PMSE overshoot effect. Adv. Space Res., 2006, 38(11), 2541-2550.
    [81] Havnes O, La Hoz C, Biebricher A et al. Investigation of the mesospheric PMSE conditions by use of the new overshoot effect. Phys. Scr. 2004, 70: 70-78.
    [82] Havnes O, Kassa M, La Hoz C. Time evolution of artificial electron heating in polar mesosphere summer echo layers. J. Geophys. Res., 2007, 112(D8), D08202, doi: 10.1029/2006JD007660.
    [83] Havnes O, La Hoz C, Aylward A et al. Observations of the overshoot effect during the 2004 EISCAT PMSE campaign. Adv. Space Res., 2006, 38(11): 2344-2352
    [84] Belova E, Chilson P, Rapp M et al. Electron temperature dependence of PMSE power experimental and modeling results. Adv. Space Res., 2001, 28(7): 1077-1082.
    [85] N?sheim L I, Havnes O, La Hoz C. A comparison of polar mesosphere summer echo at VHF (224 MHz) and UHF (930 MHz) and the effects of artificial electron heating. J. Geophys. Res., 2008, 113(D8), D08205, doi: 10.1029/2007JD009245.
    [86] Kassa M, Havnes O, Belova E. The effect of electron bite-outs on artificial electron heating and the PMSE overshoot. Ann. Geophys., 2005, 23(12): 3633-3643.
    [87] Dimant Y S and Milikh G M. Effect of radio wave heating on polar mesospheric clouds. Adv. Space Res., 2004, 34(11): 2413-2421.
    [88] Hill R J. Nonneutral and quasineutral diffusion of weakly ionized multiconstituent plasma. J. Geophys. Res., 1978, 83(A3): 989-998.
    [89] Scales W A and Ganguli G. Electrodynamic structure of charged dust clouds in the earth's middle atmosphere. New J. Phys., 2004, 6(12): doi: 10.1088/1367-2630/6/ 1/012.
    [90] Scales W A. Electron temperature effects on small-scale plasma irregularities associated with charged dust in the earth’s mesosphere. IEEE Trans. Plamsa Sci., 2004, 32(2): 724-730.
    [91] Chen C and Scales W A. Electron temperature enhancement effects on plasma irregularities associated with charged dust in the Earth’s mesosphere. J. Geophys. Res., 2005, 110(A12), A12313, doi: 10.1029/2005JA011341.
    [92] Chen C and Scales W A. Active perturbation of dust-associated electron irregularities in the Earth’s mesosphere: discrete-charging effects. IEEE Trans. Plamsa Sci., 2007, 35(3): 731-735.
    [93] Scales W A and Chen C. On the initial perturbation of mesospheric dust associated irregularities by high powered radio waves. Adv. Space Res., 2008, 41(1): 50-56.
    [94] Scales W A and Chen C. On initial enhancement of mesospheric dust associated plasma irregularities subsequent to radiowave heating. Ann. Geophys., 2008, 26(8): 2265-2271.
    [95] Lie-Svendsen ?, Blix T A, Hoppe U P et al. Modeling the plasma response to small-scale aerosol particle perturbations in the mesopause region. J. Geophys. Res., 2003, 108(D8), 8442, doi: 10.1029/2002JD002753.
    [96] Woodman R F, Balsley B B, Aquino F et al. First observations of polar mesosphere summer echoes in Antarctica. J. Geophys. Res., 1999, 104(A10): 22577-22590.
    [97] Sarango M F, Woodman R F, Flores L A et al. Further observations of PMSE in Antarctica. MST10 Radar Workshop Proceedings, Piura, Peru, 13-20 May, 2003.
    [98] Morris R J, Murphy D J, Reid I M et al. First polar mesosphere summer echoes observed at Davis, Antarctica (68.6oS), 2004. Geophys. Res. Lett., 31(16), L16111, doi: 10.1029/2004GL020352.
    [99] Morris R J, Murphy D J, Vincent R A et al. Characteristics of the wind, temperature and PMSE field above Davis, Antarctica. J. Atmos. Sol. Terr. Phys., 2006, 68(3-5): 418-435.
    [100] Hosokawa K, Ogawa T, Arnold N F et al. Extraction of polar mesospheresummer echoes from Super-DARN data. Geophys. Res. Lett., 2005, 32(12), L12801, doi: 10.1029/2005GL022788.
    [101] Jarvis M J, Cliverd M A, Rose M C et al. Polar mesosphere summer echoes (PMSE) at Halley (76oS, 27oW), Antarctica. Geophys. Res. Lett., 2005, 32(6), L06816, doi: 10.1029/2004GL021804.
    [102] Kirkwood S, Wolf I, Nilsson H et al. Polar mesosphere summer echoes at Wasa, Antarctica (73oS): first observations and comparison with 68oN. Geophys. Res. Lett., 2007, 34(15), L15803, doi: 10.1029/2007GL030516.
    [103] Morris R J, Murphy D J, Klekociuk A R et al. First complete season of PMSE observations above Davis, Antarctica, and their relation to winds and temperatures. Geophys. Res. Lett., 2007, 34(5), L05805, doi: 10.1029/2006GL028641.
    [104] Lübken F J, Müllemann A, Jarvis M J. Temperature and horizontal winds in the Antarctic summer mesosphere. J. Geophys. Res., 2004, 109(D24), D24112, doi: 10.1029/2004JD005133.
    [105] Latteck R, Singer W, Kirkwood S et al. Observation of mesosphere summer echoes with calibrated VHF radars at latitudes between 54oN and 69oN in summer 2004. In: Barbara W ed. 17th ESA Symposium on European Rocket and Balloon Programmes and Related Research. Noordwijk: ESA Publications Division, 2005, 121-126.
    [106] Huaman M M and Balsley B B. Differences in near-mesopause summer winds, temperatures, and water vapour at northern and southern latitudes as possible casual factors for inter-hemispheric PMSE differences. Geophys. Res. Lett., 1999, 26(11): 1529-1532.
    [107] Bailey S M, Merkel A W, Thomas G E, et al. Observations of polar mesospheric clouds by the Student Nitric Oxide Explorer. J. Geophys. Res., 2005, 110(D13), D13203, doi: 10.1029/2004JD005422.
    [108] Bailey S M, Merkel A W, Thomas G E et al. Hemispheric differences in polar mesospheric cloud morphology observed by the Student Nitric Oxide Explorer. J. Atmos. Sol. Terr. Phys., 2007, 69(12): 1407-1418.
    [109] Wrotny J E and Russell J M. Interhemispheric differences in polar mesospheric clouds observed by the HALOE instrument. J. Atmos. Sol. Terr. Phys., 2006, 68(12): 1352-1369.
    [110] Hervig M and Siskind D. Decadal and inter-hemispheric variability in polar mesospheric clouds, water vapour, and temperature. J. Atmos. Sol. Terr. Phys.,2006, 68(1): 30-41.
    [111] Morris R J, Klekociuk A K, Latteck R et al. Inter-hemispheric asymmetry in polar mesosphere summer echoes and temperature at 69o latitude. J. Atmos. Sol. Terr. Phys., 2008, doi: 10.1016/j.jastp.2008.09.042 (in printed).
    [112] Latteck R, Singer W, Morris R J et al. Similarities and differences in polar mesosphere summer echoes observed in the Arctic and Antarctica. Ann. Geophys., 2008, 26(9): 2795-2806.
    [113] Hervig M, Thompson R, McHugh M et al. First confirmation that water ice is the primary component of polar mesospheric clouds. Geophys. Res. Lett., 2001, 28(6): 971-974.
    [114] Inhester B, Klostermeyer J, Lübken F J et al. Evidence for ice clouds causing polar mesosphere summer echoes. J. Geophys. Res., 1994, 99(D10): 20937-20954.
    [115] Rapp M, Gumbel J, Lübken F J. Absolute density measurements in the middle atmosphere. Ann. Geophys., 2001, 19(5): 571-580.
    [116] Rapp M, Lübken F J, Müllemann A et al. Small scale temperature variations in the vicinity of NLC: experimental and model results. J. Geophys. Res., 2002, 107 (D19), doi: 10.1029/2001JD001241.
    [117] K?rner U and Sonnemann G. Global 3d-modelling of the water vapor concentration of the mesosphere/mesopause region and implications with respect to the NLC region. J. Geophys. Res., 2001, 106(D9): 9639-9651.
    [118] Lübken F J. Thermal structure of the Arctic summer mesosphere. J. Geophys. Res., 1999, 104(D8): 9135-9149.
    [119] Havnes O, Brattli A, Aslaksen T et al. First common volume observations of layered plasma structures and polar mesospheric summer echoes by rocket and radar. Geophys. Res. Lett., 2001, 28(8): 1419-1422.
    [120] Mitchell J, Croskey C, Goldberg R. Evidence for charged aerosol particles and associated meter-scale structure in identified PMSE/NLC regions. Geophys. Res. Lett., 2001, 28(8): 1423-1426.
    [121] Mitchell J D, Croskey C L, Goldberg R A et al. Charged particles in the polar mesopause region: probe measurements from the MaCWAVE and DROPPS programs. In: Barbara W ed. 16th ESA Symposium on European Rocket and Balloon Programmes and Related Research. Noordwijk: ESA Publications Division, 2003, 351-356.
    [122] Cho J Y N, Hall T M, Kelley M C. On the role of charged aerosols in polarmesosphere summer echoes. J. Geophys. Res., 1992, 97(D1), 875-886.
    [123] Hagfors T. Note on the scattering of electromagnetic waves from charged dust particles in a plasma. J. Atmos. Terr. Phys., 1992, 54(3-4): 333-338.
    [124] Rapp M, Gumbel J, Lübken F J et al. D region electron number density limits for the existence of polar mesosphere summer echoes. J. Geophys. Res., 2002, 107 (D14), 4187, doi: 10.1029/2001JD001323.
    [125] Blix T A, Rapp M, Lübken F J. Relations between small scale electron number density fluctuations, radar backscatter and charged aerosol particles. J. Geophys. Res., 2003, 108 (D8), 8450, doi: 10.1029/2002JD002430.
    [126]张永.极区夏季中层对雷达波的反射特性研究.西安电子科技大学硕士论文, 2006.
    [127]孙秀红.极区中层顶区域尘埃等离子体参数的研究.西安电子科技大学硕士论文, 2006.
    [128]淡修库.极区中层顶区域“过冲”现象若干问题研究.西安电子科技大学硕士论文, 2007.
    [129]吴军.大功率电磁波对电离层的扰动效应研究.武汉大学博士论文, 2007.
    [130]赵捷.尘埃等离子体的电磁波散射研究及双探针实验.中国科学院电子学研究所硕士论文, 2000.
    [131]蒋成进.空间尘埃等离子体重力波特性及PMSE研究.中国科学院电子学研究所硕士论文, 2006.
    [132]李芳,李廉林,隋强.等离子体中尘埃粒子对电磁波的吸收效应.中国科学E辑, 2004, 34(7): 832-840.
    [133]李芳, Havnes O.电磁波被尘埃等离子体散射的功率谱.电子科学学刊, 1999, 21(5): 679-685.
    [134]将成进,李芳.空间尘埃等离子体中的重力波特性.地球物理学报, 2006, 49(5): 1250-1256.
    [135]刘仁强,易帆.极区夏季中层顶大气波的共振非线性相互作用.中国科学G辑, 2003, 33(2): 158-167.
    [136]刘仁强,易帆.极区夏季中间层半日潮汐的VHF雷达观测.空间科学学报, 2000, 20(3): 233-241.
    [137]魏寒颖,赵正予,倪彬彬.加热电离层生成不均匀体的理论及模拟研究.电波科学学报, 2006, 21(1): 84-88, 93.
    [138]蔡红涛,马淑英.由非相干散射雷达数据重建极光沉降粒子能谱.地球物理学报, 2007, 50(1): 10-17.
    [139]徐寄遥,吴永富,王咏梅等.夏季极区中层顶光化诱发重力波不稳定判据的研究.中国科学D辑, 2001, 31(11): 889-895.
    [140] Hosokawa K, Ogawa T, Sato N et al. Statistics of Antarctic mesospheric echoes observed with the SuperDARN Syowa Radar. Geophys. Res. Lett., 2004, 31(2), L02106, doi: 10.1029/2003GL018776.
    [141] Barabash V. Investigation of polar mesosphere summer echoes in Northern Scandinavia. Kiruna: Swedish Institute of Space Physics. Doctoral thesis of Ume? University, 2004.
    [142] Dalin P, Kirkwoo1 S, Mostr?m A et al. A case study of gravity waves in noctilucent clouds. Ann. Geophys., 2004, 22(6): 1875-1884.
    [143] Backhouse T W. The luminous cirrus cloud of June and July. Meterol. Mag., 1885, 20: 133.
    [144] Gadsden M. The north-west Europe data on noctilucent clouds: a survey. J. Atmos. Sol. Terr. Phys., 1999, 60(12): 1163-1174.
    [145] Balsley B B and Huaman M. On the relationship between seasonal occurrence of northern hemispheric polar mesosphere summer echoes and mean mesopause temperatures. J. Geophys. Res., 1997, 102(D2): 2021-2024.
    [146] Trakhtengerts V Y and Demekhov A G. Nonequilibrium electron density fluctuations and wave scattering in the mesosphere. J. Atmos. Terr. Phys., 1995, 57(10): 1153-1164.
    [147] Trakhtengerts V Y. Generation mechanism of polar mesosphere summer echoes. J. Geophys. Res., 1994, 99(D10): 21083-21088.
    [148] Gumbel J and Witt G. Cluster ions and ice particle nucleation: positive feedback at the summer mesopause. Geophys. Res. Lett., 2002, 29(16), 1782, doi: 10.1029 /2002 GL015146.
    [149] Lübken F J, Rapp M, Blix T et al. Microphysical and turbulent measurements of the Schmidt number in the vicinity of polar mesosphere summer echoes. Geophys. Res. Lett., 1998, 25(6): 893-896.
    [150] R?ttger J. Observations of the polar D-region and the mesosphere with the EISCAT Svalbard Radar and the SOUSY Svalbard Radar. Men. Nat. Inst. Pol. Res., 2001, 54: 9-20.
    [151] Hocking W K and R?ttger J. Studies of Polar mesosphere summer echoes over EISCAT using calibrated signal strengths and statistical parameters. Radio Sci., 1997, 32(4): 1425-1444.
    [152] Bremer J, Hoffmann P, Latteck R et al. Seasonal and long term variation of PMSE from VHF radar observations at Andenes, Norways. J. Geophys. Res., 2003, 108(D8), 8438, doi: 10.1029/2002JD002369.
    [153] Kirwood S, Barabash V, Chilson P et al. The 1997 pmse season - its relation to wind, temperature and water vapour. Geophys. Res. Lett., 1998, 25(11): 1867- 1870.
    [154] Barabash V, Kirkwood S, Chilson P. Are variations in PMSE intensity affected by energetic particle precipitation? Ann. Geophys., 2002, 20(4): 539-545.
    [155] Huaman M M, Kelley M C, Hocking W K et al. Polar mesosphere summer echo studies at 51.5 MHz at Resolute Bay, Canada: comparison with Poker Flat results. Radio Sci., 2001, 36(6): 1823-1837.
    [156] Lübken F J, Zecha M, H?ffner J et al. Temperatures, polar mesosphere summer echoes, and noctilucent clouds over Spitsbergen (78oN). J. Geophys. Res., 2004, 109(D11), D11203, doi: 10.1029/2003JD004247.
    [157] Kirkwood S, Barabash V, Brandstrom BUE et al. Noctilucent clouds, PMSE and 5-day planetary waves: a case study. Geophys. Res. Lett., 2002, 29(10), 1411, doi: 10.1029/2001GL014022.
    [158] Hoppe U P and Fritts D. On the downward bias in vertical velocity measurements by VHF radars. Geophys. Res. Lett., 1994, 22(5): 619-622.
    [159] Hoppe U P and Fritts D C. High resolution measurements of vertical velocity with the European incoherent scatter VHF radar. 1: motion field characteristics and measurement biases. J. Geophys.Res., 1995, 100(D8): 16813-16825.
    [160] Rüster R, Czechnowsky P, Hoffmann P et al. Gravity wave signatures at mesopause heights. Ann. Geophys., 1996, 14(11): 1186-1191.
    [161] Chilson P B, Czechowsky P, Klostermeyer J et al. An investigation of measured temperature profiles and VHF mesosphere summer echoes at mid-latitudes. J. Geophys.Res., 1997, 102(D20): 23819-23828.
    [162]石雁祥,王菊,吴健等.对两种弱电离尘埃等离子体特征参量的定量估计.电波科学学报, 2008, 23(1): 95-99.
    [163] Kelley M C and Ulwick J C. Large- and small-scale organization of electrons in the high-latitude mesosphere: implications of the STATE data. J. Geophys. Res., 1988, 93(D6): 7001-7008.
    [164] Rapp M, Lübken F J, and Blix T. A.Small scale density variations of electrons and charged particles in the vicinity of polar mesosphere summer echoes. Atmos.Chem. Phys., 2003, 3(5): 1399-1407.
    [165] Balsley B B, Ecklund W L, Fritts D C. VHF echoes from the high-latitude mesosphere and lower thermosphere: observations and interpretations. J. Atmos. Sci., 1983, 40(10): 2451-2466
    [166]赵捷,李芳.等离子体中的稀疏尘埃粒子对电磁波的散射.电波科学学报, 1999, 4(14): 44-47.
    [167] Havnes O, de Angelis U, Bingham R et al. On the role of dust in the summer mesopause. J. Atmos. Terr. Phys. 1990, 52(6-8): 637-643.
    [168] Bingham R, de Angelis U, Tsytovich V N et al. Electromagnetic wave scattering in dusty plasmas. Phy. Fluids., 1991, B3(3): 811-817. (Erratum: Phy. Fluids., 1992, B4(1): 283-284).
    [169] De Angelis U, Forlani A, Tsytovich V N et al. Scattering of electromagnetic waves by a distribution of charged dust particles in space plasmas. J. Geophys. Res., 1992, 97(A5): 6261-6267.
    [170] Ishimaru A. Wave propagation and scattering in random media. New York: Academic Press, 1978, 329-334.
    [171] Blix T A. Small-scale plasma and charged aerosol variations and their importance for polar mesosphere summer echoes. Adv. Space Res., 1999, 24 (5): 537-546.
    [172] Rapp M, Lübken F J, Blix TA. Small scale density variations of electrons and charged particles in the vicinity of polar mesosphere summer echoes. Atmos. Chem. Phys., 2003, 3(5): 1399-1407.
    [173] Belova E, Dalin P, Kirkwood S. Polar mesosphere summer echoes: a comparison of simultaneous observations at three wavelengths. Ann. Geophys., 2007, 25(12): 2487-2496.
    [174] Rapp M, Strelnikova, I., Latteck, R et al. Polar mesosphere summer echoes (PMSE) studied at Bragg wavelengths of 2.8m, 67cm, and 16cm. J. Atmos. Sol. Terr. Phys., 2008, 70(7): 947-961.
    [175]葛德彪.电磁波理论.西安:西安电子科技大学出版社, 2003.
    [176]郭硕鸿.电动力学.北京:高等教育出版社, 1979.
    [177]石雁祥,吴健,葛德彪.尘埃粒子充放电过程对尘埃等离子体电导率的影响.物理学报, 2006, 55(10): 5318-5324.
    [178]石雁祥,葛德彪,吴健.尘埃等离子体微波衰减常数的理论分析.地球物理学报, 2007, 50(4): 1005-1010.
    [179] Shi Y X, Ge D B, Wu Jian. Theoretical analysis of microwave attenuation constant of weakly ionized dusty plasma. Chinese J. Geophys., 2007, 50(4): 877-883.
    [180]北京邮电学院天线教研组编.天线及电波传播.北京:人民邮电出版社, 1961.
    [181]肖晶明,王元坤.电波传播工程计算.西安:西安电子科技大学出版社, 1989.
    [182]张守信. GPS卫星测定定位理论与应用.长沙:国防科技大学出版社, 1996.
    [183] Hey J S, Parsons S J, Phillips J W. Fluctuations in cosmic radiation at radio frequencies. Nature, 1946, 158: 247-258.
    [184] Laroussi M and J. Reece Roth J R. Numerical calculation of the reflection, absorption, and transmission of microwaves by a nonuniform plasma slab. IEEE Trans. Plamsa Sci., 1993, 21(4): 366-372.
    [185] La Hoz C, Havnes O, N?sheim L I et al. Observations and theories of polar mesospheric summer echoes at a Bragg wavelength of 16 cm. J. Geophys. Res., 2006, 111, D04203, doi: 10.1029/2005JD006044.
    [186] R?ttger J. Polar mesosphere summer echoes: dynamics and aeronomy on the mesosphere. Adv. Space Res., 1994, 14(9): 123-137.
    [187] Tereschenko V D, Tereshchenko V A, Vasiljev E B et al. The radar measurements of electron density in the lower ionospere? Proc. of the 24 Annual Seminer on Physics auroral phenomena, Apatity, 2001, 131-134.
    [188] Jones G O L, Cliverd M A, Espy P J et al. An alternative explanation of PMSE-like scatter in MF radar data. Ann. Geophys., 2004, 22(8): 2715-2722.
    [189] Ramos C. Kelley M C, Djuth F et al. MF/HF/VHF radar observations of polar mesosphere summer echoes (PMSE). Radar Conference, 2007 IEEE, 1029-1033.
    [190] http://dynamite.eiscat.uit.no/jww/.
    [191] Piggott W A, Rawer K. URSI handbook of ionogram interpretation and reduction, Report UAG-23A, Colorado, Boulder: World Data Center A for Solar-Terrestrial Physics, 1972.
    [192] Kyzyurow Y V. On the spectrum of mid-latitude sporadic-E irregularities. Ann. Geophys., 2000, 18(10): 1283-1292.
    [193] Bibl K, Reinisch B W, Kitrosser D F. General description of the compact digital ionospheric sounder, digisonde 256. University of Lowell Center for Atmospheric Research, 1981.
    [194] Wright J W and Pitteway M L V. Data processing for the dynasonde, the dopplionogram. J. Geophys. Res., 1982, 87(A3): 1589-1598.
    [195] He L S, Liu R Y, Liu S L et al. Seasonal characteristics of F region in lower solar activity period at Zhongshan Station, Antarctica. Chinese Journal of Polar Science, 1999, 10(2): 149-154.
    [196]刘瑞源,钱嵩林,贺龙松.南极中山站数字式电离层测高仪的初步观测结果.地球物理学进展, 1997, 12(4): 109-118.
    [197] Goldberg R A, Fritts D C, Williams B P et al. The MaCWAVE/MIDAS rocket and ground-based measurements of polar summer dynamics: overview and mean state structure. Geophys. Res. Lett., 2004, 31(24), L24S02, doi: 10.1029/2004GL 019411.
    [198] Liou K, Newell P T, Meng C I et al. Synoptic auroral distribution: a survey using polar ultraviolet imagery. J. Geophys. Res., 1997, 102(A12): 27197-27205.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700