用户名: 密码: 验证码:
Si基SiGe、Ge弛豫衬底生长及其Ge光电探测器研制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
硅基硅锗材料因其优越的性能,特别是与成熟硅微电子工艺相兼容,在硅基光电子器件如光电探测器、场效应晶体管等方面得到了广泛的应用,硅基硅锗薄膜生长及相关器件的研制引起了人们浓厚的兴趣。然而由于锗与硅的晶格失配度较大,在硅基上生长高质量硅锗和锗薄膜仍然是一个挑战性的课题,需要引入缓冲层技术。本论文采用低温缓冲层技术在UHV/CVD系统上生长出高质量硅基硅锗和锗弛豫衬底,并在此基础上研制出硅基长波长锗光电探测器。主要工作和研究成果如下:
     为了促进外延层应变弛豫、改善表面形貌,我们提出了低温Ge量子点缓冲层制备SiGe弛豫衬底的技术。分析了低温Ge量子点缓冲层在调节应力、湮灭位错等方面的机理,系统地研究了低温Ge量子点缓冲层制备SiGe弛豫衬底的生长条件,制备出质量良好的Si_(0.72)Ge_(0.28)弛豫衬底。Si_(0.72)Ge_(0.28)外延层的厚度仅为380nm,弛豫度高达99%,位错密度低于10~5cm~(-2),表面粗糙度小于2 nm,表面无Cross-hatch形貌,具有良好的热稳定性。
     系统地研究了低温Ge缓冲层的生长温度和厚度对高温Ge外延层表面形貌、应变弛豫等的影响和作用机理,探讨了低温SiGe和Ge双缓冲层对Ge外延层晶体质量改善的作用,优化了低温缓冲层生长条件,在UHV/CVD系统上生长出高质量Si基Ge薄膜。在硅衬底上制备的400nm-Ge外延层表面无Cross-hatch形貌、表面粗糙度仅为0.7 nm,X射线衍射峰的峰形对称且峰值半高宽为470 arcsec,化学腐蚀位错坑法测试位错密度为5×10~5 cm~(-2)。
     研究了高温Ge外延层中张应变的产生机理以及对能带结构的影响。张应变主要是由于Ge和Si热膨胀系数的不同在Ge外延层从高温冷却到室温的过程中产生的,实验测量张应变的大小和理论计算值相吻合。定量计算表明张应变每增加0.1%,直接带隙将减小14 meV。
     设计并制备了正入射Si基长波长Ge PIN光电探测器。器件在-1 V偏压下的暗电流密度为20 mA/cm~2,在波长1.55μm处-2V偏压下的响应度高达0.23 A/W。根据响应度计算Si基张应变的Ge外延层在1.55μm处的吸收系数比体Ge材料提高了3倍,达到3000 cm~(-1)。采用SOI衬底Ge外延层制备的探测器观测到共振增强效应。
Si-based SiGe materials have been extensively applied in optoelectronic devices such as photodetectors and high mobility metal-oxide-semiconductor field effect transistors due to their advantageous properties,especially in compatibility with Si microelectronic processing.Si-based SiGe materials and their related devices have attracted great attention.However,it is a great challenge to directly deposit high-quality SiGe,especially Ge films on Si substrates due to the large lattice mismatch between Ge and Si.This thesis focuses on the growth of relaxed-SiGe and Ge virtual substrates(VSs)in ultra-high vacuum chemical vapor deposition (UHV/CVD)system using low temperature buffer technique and the fabrication of Si-based Ge photodetectors.The following are the details:
     An approach for the growth of relaxed-SiGe VSs with low temperature Ge (LT-Ge)islands buffer was proposed and intensively studied.The role of LT-Ge islands buffer in the mechanism of strain adjustment and dislocation annihilation was analyzed.High-quality relaxed-Si_(0.72)Ge_(0.28)films were grown on Si(100)substrates in UHV/CVD system using LT-Ge islands buffers.Si_(0.72)Ge_(0.28)film with a thickness of only 380 nm has a strain relaxation degree of 99%and a threading dislocation density less than 10~5 cm~(-2).No cross-hatch pattern is observed on the SiGe surface and the surface root-mean-square(rms)roughness is less than 2 nm.Annealing experiment indicated that SiGe films had great thermal stability.
     The influence of growth temperature and thickness of LT-Ge buffers on the surface morphology and strain relaxation of epitaxial Ge(epi-Ge)films was systemically investigated,and the role of LT-SiGe and Ge double buffers to improve the quality of epi-Ge films was studied.High quality relaxed-Ge films were grown on Si(100)substrates in UHV/CVD system with optimized buffer layers.X-ray diffraction peak of 400 nm-Ge epitaxially deposited on Si substrate is symmetric with a full width at half maximum(FWHM)of 460 arc sec,the threading dislocation density is measured to be 5×10~5 cm~(-2)using etching pits counting method.There is no cross-hatch pattern on the Ge surface and the surface rms roughness is only 0.7 nm.
     The origin of tensile strain in epi-Ge and its effect on the band structure was investigated.Tensile strain was developed when cooling down due to the difference in thermal expansion coefficients between Ge and Si.The experimental data for tensile strain agrees quite well with the theoretical calculation.Tensile strain leads to the direct band-gap shrinkage of epi-Ge at a rate of 140 meV per percent calculated based on deformation potential theory.
     Normal-incident Si-based Ge PIN photodetectors were designed and fabricated. The dark current density is 20 mA/cm~2 at-1 V reverse bias.At wavelength 1.55μm, the responsivity is 0.23 A/W at-2 V reverse bias.The absorption coefficient of tensile-strained epi-Ge at 1.55μm is calculated to be 3000 cm~(-1),which is 3 times that of bulk Ge.Response spectrum of epi-Ge photodetector fabricated on Silicon-On-Insulator substrate shows strong resonant enhancement effect.
引文
[1]Y.H.Chen,C.Li,Z.W.Zhou,et al.Room temperature photoluminescence of tensile-strained Ge/Si_(0.13)Ge_(0.87)quantum wells grown on silicon-based germanium virtual substrate[J].App.Phys.Lett.,2009,94(14):141902-1-3.
    [2]J.F.Liu,X.C.Sun,D.Pan,et al.Tensile-strained,n-type Ge as a gain medium for monolithic laser integration on Si[J].Optics Express,2008,15(18):11272-11277.
    [3]J.F.Liu,X.C.Sun,P.Becla,et al.Towards a Ge-based Laser for CMOS Applications[M].5th IEEE International Conference on Group IV Photonics,2008,16-18.
    [4]C.Li,Q.Q.Yang,H.J.Wang,et al.Si_(1-x)Ge_x/Si resonant-cavity-enhanced photodetectors with a silicon-on-oxide reflector operating near 1.3 μm[J].Appl.Phys.Lett.,2000,77(2):157-159.
    [5]C.B.Li,R.W.Mao,Y.H.Zuo,et al.1.55μm Ge islands resonant-cavity-enhanced detector with high-reflectivity bottom mirror[J].Appl.Phys.Lett.,2004,85(14):2697-2699.
    [6]蔡志猛,周志文,李成,赖虹凯,陈松岩.硅基外延锗金属-半导体-金属光电探测器及其特性分析[J].光电子·激光,2008,19(5):587-590.
    [7]Y.Kang,H.-D.Liu,M.Morse,et al.Monolithic germanium/silicon avalanche photodiodes with 340 GHz gain-bandwidth product[J].Nature Photonics,2008,3:59-63.
    [8]Y.-H.Kuo,Y.K.Lee,Y.Ge,et al.Strong quantum-confined Stark effect in germanium quantum-well structures on silicon[J].Nature,2005,437:1334-6.
    [9]J.E.Roth,O.Fidaner,R.K.Schaevitz,et al.Optical modulator on silicon employing germanium quantum wells[J].Opt.Express,2007,15:5851-5859.
    [10]J.Liu,M.Beals,A.Pomerene,et al.Waveguide-integrated,ultralow-energy GeSi electro-absorption modulators[J].Nature Photonics,2008,2:433-437.
    [11]M.L.Lee,E.A.Fitzgerald,et al.Strained Si,SiGe,and Ge channels for high-mobility metal-oxide-semiconductor field-effect transistors[J].J.Appl.Phys.,2005,97(1):011101-1-27.
    [12]G.Vanamu,A.K.Datye,R.Dawson,et al.Growth of high-quality GaAs on Ge/Si_(1-x)Ge_x on nanostructured silicon substrates[J].Appl.Phys.Lett.,2006,88(25):251909-1-3.
    [13]E.Kasper.Properties ofStrained and Relaxed Silicon Germanium[M].余金中译.北京:国防工业出版社,2002.
    [14]J.Tersoff,F.K.LeGoues.Competing relaxation mechanisms in strained layers[J].Phys.Rev.Lett.,1994,72(22):3570-3573.
    [15]B.W.Cheng,C.B.Li,F.Yao,et al.Silicon membrane resonant cavity enhanced photodetector[J].Appl.Phys.Lett.,2005,87(6):061111-3.
    [16]E.A.Fitzgerald,Y.H.Xie,M.L.Green,et al.Totally relaxed Ge_xSi_(1-x)layers with low threading dislocation densities grown on Si substrates[J].Appl.Phys.Lett.,1991,59(7):811-813.
    [17]Y.Bogumilowicz,J.M.Hartmann,F.Laugier,et al.High germanium content SiGe virtual substrates grown at high temperatures[J].J.Cryst.Growth,2005,283(3-4):346-355.
    [18]M.T.Currie,S.B.Samavedam,T.A.Langdo,et al.Controlling threading dislocation densities in Ge on Si using graded SiGe layers and chemical-mechanical polishing[J].Appl.Phys.Lett.,1998,72(14):1718-1720.
    [19]S.G.Thomas,S.Bharatan,R.E.Jones,et al.Structural characterization of thick,high-quality epitaxial Ge on Si substrates grown by low-energy plasma-enhanced chemical vapor deposition[J].J.Electron.Mater.,2003,32(9):976-980.
    [20]P.M.Mooney,J.L.Jordan-Sweet,J.O.Chu,F.K.LeGoues.Evolution of strain relaxation in step-graded SiGe/Si structures[J].Appl.Phys.Lett.,1995,66(26):3642-3644.
    [21]P.M.Mooney,J.L.Jordan-Sweet,et al Relaxed Si0.7Ge0.3 buffer layers for high-mobility devices[J].Appl.Phys.Lett.,1995,67(16):2373-2375.
    [22]G.L.Luo,T.H.Yang,E.Y.Chang,C.Y.Chang,K.A.Chao.Growth of High-Quality Ge Epitaxial Layers on Si(100)[J].Jpn.J.Appl.Phys.,2003,42:L517-L519.
    [23]Z.H.Huang,N.Kang,X.Y.Guo,et al.21-GHz-Bandwidth Germanium-on-Silicon Photodiode Using Thin SiGe Buffer Layers[J].IEEE J.Select.Topics Quantum Electron.,2006,12(6):1450-1454.
    [24]J.P.Liu,L.H.Wong,D.K.Sohn,et al.A Novel Thin Buffer Concept for Epitaxial Growth of Relaxed SiGe Layers with Low Threading Dislocation Density[J].Electrochem.Solid-State Lett.,2005,8(2):G60-G62.
    [25]L.H.Wong,J.P.Liu,C.C.Wong,et al.Thermal Stability of a Reverse-Graded SiGe Buffer Layer for Growth of Relaxed SiGe Epitaxy [J]. Electrochem. Solid-State Lett.. 2006, 9(4):G114-G116.
    [26] L. H. Wong, J. P. Liu, F. Romanato, C. C. Wong, Y. L. Foo. Strain relaxation mechanism in a reverse compositionally graded SiGe heterostructure [J]. Appl. Phys. Lett.. 2007, 90(6):061913-1-3.
    [27] A. P. Knights, R. M. Gwilliam, B. J. Sealy, et al. Growth temperature dependence for the formation of vacancy clusters in Si/Si_(0.64)Ge_(0.36)/Si structures [J]. J. Appl. Phys., 2001, 89(1):76-78.
    [28] T. Ueno, T. Irisawa, Y. Shiraki, et al. Characterization of low temperature grown Si layer for SiGe pseudo-substrates by positron annihilation spectroscopy [J]. J. Cryst. Growth, 2001,227-228:761-765.
    [29] E. Palange, L. Di Gaspare, F. Evangeliste. Real time spectroscopic ellipsometric analysis of Ge film growth on Si(001) substrates [J]. Thin Solid Films, 2003, 428(1-2):160-164.
    [30] E. Kasper, K. Lyutovich, M. Bauer, M. Oehme. New virtual substrate concept for vertical MOS transistors [J]. Thin Solid Films, 1998, 336: 319-322.
    [31] H. Chen, L. W. Guo, Q. Cui, et al. Low-temperature buffer layer for growth of a low-dislocation-density SiGe layer on Si by molecular-beam epitaxy [J]. J. Appl. Phys., 1996,79(2): 1167-1169.
    [32] K. L. Linder, F. C. Zhang, J.-S. Rieh, et al. Reduction of dislocation density in mismatched SiGe/Si using a low-temperature Si buffer layer [J]. Appl. Phys. Lett., 1997, 70(24):3224-3226.
    [33] J. H. Li, C. S. Peng, Y. Wu, et al. Relaxed Si_(0.7)Ge_(0.3) layers grown on low-temperature Si buffers with low threading dislocation density [J]. Appl. Phys. Lett., 1997, 71(21):3132-3134.
    [34] Y. H. Luo, J. Wan, R. L. Forrest, et al. Compliant effect of low-temperature Si buffer for SiGe growth [J]. Appl. Phys. Lett., 2001, 78(4): 454-456.
    [35] Y. H. Luo, J. Wan, R. L. Forrest, et al. High-quality strain-relaxed SiGe films grown with low temperature Si buffer [J]. J. Appl. Phys., 2001, 89(12): 8279-8283.
    [36] S. W. Lee, H. C. Chen, L. J. Chen, et al. Effects of low-temperature Si buffer layer thickness on the growth of SiGe by molecular beam epitaxy [J]. J. Appl. Phys., 2002, 92(11): 6880-6885.
    [37] M. Myronov, Y. Shiraki. Strain Relaxation and Surface Morphology of Ultrathin High Ge Content SiGe Buffers Grown on Si(001) Substrate [J]. Jpn. J. Appl. Phys., 2007, 46: 721-725.
    [38] M. Myronov, Y. Shiraki. Very thin, high Ge content Si_(0.3)Ge_(0.7) relaxed buffer grown by MBE on SOI(001) substrate [J]. J. Crystal Growth, 2007,301-302: 315-318.
    [39] C. S. Peng, Z. Y. Zhao, H. Chen, et al. Relaxed Si_(0.1)Ge_(0.9) alloy layers with low threading dislocation densities grown on low-temperature Si buffers [J]. Appl. Phys. Lett., 1998, 72(34):3160-3162.
    [40] T. Ueno. T. Irisawa, Y. Shiraki. A. Uedono. S. Tanigawa. Low temperature buffer growth for modulation doped SiGe/Ge/SiGe heterostructures with high hole mobility [J]. Thin Solid Films, 2000, 369(1-2): 320-323.
    [41] Y. B. Bolkhovityanov, A. S. Deryabin, A. K. Gutakovskii, et al. Strain relaxation of GeSi/Si(001) hetrostructures grown by low-temperature molecular-beam epitaxy [J]. J Appl.Phys., 2004, 96(12): 7665-7674.
    [42] Y. Fukuda, Y. Kohama. High quality heteroepitaxial Ge growth on (100) Si by MBE [J]. J.Cryst. Growth, 1987, 81: 451-457.
    [43] Y. Fukuda. Y. Kohama. Effect of in situ Thermal Annealing on Crystalline Quality of Ge Layers Grown by Molecular Beam Epitaxy on Si (100) [J]. Jpn. J. Appl. Phys., 1987, 26(5):L597-L599.
    [44] Y. Fukuda, Y. Kohama, M. Seki, Y. Ohmachi. Dislocation Reduction in MBE-Grown Ge on Si(001) by in situ Thermal Annealing [J]. Jpn. J. Appl. Phys., 1988, 27(9): L1591-L1593.
    [45] G. L. Zhou, K. M. Chen, W. D. Jiang, et al. Heteroepitaxial growth of Ge films on Si substrates by molecular beam epitaxy [J]. Appl. Phys. Lett., 1988, 53(22): 2179-2181.
    [46] J.-M. Baribeau, T. E. Jackman, D. C. Houghton, et al. Growth and characterization of Si_(1-x)Ge_x and Ge epilayers on (100) Si [J]. J. Appl. Phys., 1988, 63(12): 5738-5746.
    [47] B. Cunningham, J. O. Chu, S. Akbar. Heteroepitaxial growth of Ge on (100) Si by ultrahigh vacuum, chemical vapor deposition [J]. Appl. Phys. Lett., 1991, 59(27): 3574-3576.
    [48] H.-C. Luan, D. R. Lim, K. K. Lee, et al. High-quality Ge epilayers on Si with low threading-dislocation densities [J]. Appl. Phys. Lett., 1999, 75(19): 2909-2911.
    [49] J. M. Hartmann, A. Abbadie, A. M. Papon, et al. Reduced pressure-chemical vapor deposition of Ge thick layers on Si(OOl) for 1.3-1.55-um photodetection [J]. J. Appl. Phys. 2004, 95(10):5905-5913.
    [50] M. Halbwax, D. Bouchier, V. Yam, et al. Kinetics of Ge growth at low temperature on Si(001) by ultrahigh vacuum chemical vapor deposition [J]. J. Appl. Phys., 2005, 97(6): 064907-1-6.
    [51] J. Nakatsuru, H. Date, S. Mashiro, M. Ikemoto. Growth of High Quality Ge Epitaxial Layer on Si(100) Substrate Using Ultra Thin Si_(0.5)Ge_(0.5) Buffer [J]. Mater. Res. Soc. Symp. Proa,2006, 891:EE07-24.01-EE07-24.06.
    [52] T. H. Loh, H. S. Nguyen, C. H. Tung, et al. Ultrathin low temperature SiGe buffer for the growth of high quality Ge epilayer on Si(100) by ultrahigh vacuum chemical vapor deposition [J]. Appl. Phys. Lett., 2007, 90(9): 092108-1-3.
    [53] T. A. Langdo, C. W. Leitz, M. T. Currie, E. A. Fitzgerald, A. Lochtefeld, D. A. Antoniadis.High quality Ge on Si by epitaxial necking [J]. Appl. Phys. Lett., 2000, 76(25): 3700-3702.
    [54] J.-S. Park, J. Bai, M. Curtin, B. Adekore, M. Carroll, A. Lochtefeld. Defect reduction of selective Ge epitaxy in trenches on Si(001) substrates using aspect ratio trapping [J]. Appl.Phys. Lett., 2007, 90(5): 052113-1-3.
    [55] Q. Li, S. M. Han, S. R. J. Brueck, et al. Selective growth of Ge on Si(100) through vias of SiO_2 nanotemplate using solid source molecular beam epitaxy [J]. Appl. Phys. Lett., 2003,83(24): 5032-5024.
    [56] G. Vanamu, A. K. Datye, S. H. Zaidi. Heteroepitaxial grown on microscale patterned silicon structures. J. Cryst. Growth, 2005, 280: 66-74.
    [57] G. Vanamu, A. K. Datye, S. H. Zaidi. Growth of high quality Ge/Si_(1-x)Ge_x on nano-patterned Si structures. J. Vac. Sci. Technol. B, 2005, 23(4): 1622-1629.
    [58] G. Vanamu, A. K. Datye Saleem, H. Zaidi. Epitaxial growth of high-quality Ge films on nanostructured silicon substrates [J]. Appl. Phys. Lett., 2006, 88(20): 204104-1-3.
    [59] S. Luryi, A. Kastalsky, J. C. Bean. New infrared detector on a silicon chip [J]. IEEE Trans.Electron. Devices, 1984,31(9): 1135-1139.
    [60] H. Temkin, T. P. Pearsall, J. C. Bean, et al. Ge_xSi_(1-x) strained-layer superlattice waveguide photodetectors operating near 1.3 μm [J]. Appl. Phys. Lett., 1986,48 (15): 963-965.
    [61] F. Y. Huang, X. Zhu, M. O. Tanner, et al. Normal-incidence strained-layer superlattice Ge_(0.5)Si_(0.5)/Si photodiodes near 1.3 μrn [J]. Appl. Phys. Lett., 1995, 67 (4): 566-568.
    [62]F.Y.Huang,K.L.Wang.Normal-incidence epitaxial SiGeC photodetector near 1.3 μm wavelength grown on Si substrate[J].Appl.Phys.Lett.,1996,69(16):2330-2332.
    [63]X.Shao,S.L.Rommel,B.A.Orner,et al.1.3μm photoresponsivity in Si-based Ge_(1-x)C_x photodiodes[J].Appl.Phys.Lett.,1998,72(15):1860-1862.
    [64]S.B.Samavedam,M.T.Currie,T.A.Langdo,et al.High-quality germanium photodiodes integrated on silicon substrates using optimized relaxed graded buffers[J].Appl.Phys.Lett.,1998,73(15):2125-2127.
    [65]Z.H.Huang,J.W.Oh,J.C.Campbell.Back-side-illuminated high-speed Ge photodetector fabricated on Si substrate using thin SiGe buffer layers[J].Appl.Phys.Lett.,2004,85(15):3286-3288.
    [66]L.Colace,G.Masini,F.Galluzzi,et al.Metal-semiconductor-metal near-infrared light detector based on epitaxial Ge/Si[J].Appl.Phys.Lett.,1998,72(24):3175-3177.
    [67]L.Colace,G.Masini,G.Assanto,et al.Efficient high-speed near-infrared Ge photodetectors integrated on Si substrates[J].Appl.Phys.Lett.,2000,76(10):1231-1233.
    [68]S.Fam(?),L.Colace,G.Masini,et al.High performance germanium-on-silicon detectors for optical communication[J].Appl.Phys.Lett.,2002,81(4):586-588.
    [69]M.Rouvi(?)re,L.Vivien,X.Roux,et al.Ultrahigh speed germanium-on-silicon-on-insulator photodetectors for 1.31 and 1.55 μm operation[J].Appl.Phys.Lett.,2005,87(23):231109-3.
    [70]M.Jutzi,M.Berroth,G W(o|¨)hl,et al.Ge-on-Si vertical incidence photodiodes with 39-GHz bandwidth[J].IEEE Photon.Technol.Lett.,2005,17(7):1510-1512.
    [71]O.I.Dosunmu,D.D.Cannon,M.K.Emsley,et al.High-speed resonant cavity enhanced Ge photodetectors on reflecting Si substrates for 1550-nm operation[J].IEEE Photon.Technol.Lett.,2005,17(1):175-177.
    [72]D.Ahn,C.Hong,J.Liu,et al.High performance,waveguide integrated Ge photodetectors[J].Opt.Express,2007,15(7):3916-3921.
    [73]L.Vivien,M.Rouvi(?)re,J.F(?)d(?)li,et al.High speed and high responsivity germanium photodetector integrated in a Silicon-On-Insulator microwaveguide[J].Opt.Express,2007,15(15):9843-9848.
    [74]L.Vivien,D.M.Morini,J.Mangeney,et al.42 GHz waveguide Germanium-on-silicon vertical PIN photodetector[M].5th IEEE International Conference on Group Ⅳ Photonics, Sorrento,Italy,17-19 Sept.2008.
    [75]T.Yin,R.Cohen,M.M.Morse,et al.31 GHz Ge n-i-p waveguide photodetectors on Silicon-on-Insulator substrate[J].Opt.Express,2007,15(21):13965-13971.
    [1]双生长室超高真空CVD系统说明书[A].中国科学院沈阳科学仪器研制中心有限公司,2005.
    [2]张克从,张乐潓.《晶体生长科学与技术 下册》[M].科学出版社,1997.
    [3]B.E.Warren.X-ray Diffraction[M].General Publishing Company,1990.
    [4]J.M.Hartman,B.Gallas,J.Zhang,J.J.Harris.Gas-source molecular beam epitaxy of SiGe virtual substrates:Ⅱ.Strain relaxation and surface morphology[J].Semicond.Sci.Technol.,2000,15:370-377.
    [5]P.M.Mooney,F.K.LeGoues,J.O.Chu,S.F.Nelson.Strain relaxation and mosaic structure in relaxed SiGe layers[J].Appl.Phys.Lett.,1993,62(26):3464-3466.
    [6]J.H.Li,C.S.Peng,Y.Wu,D.Y.Dai,J.M.Zhou,Z.H.Mai.Relaxed Si_(0.7)Ge_(0.3)layers grown on low-temperature Si buffers with low threading dislocation density[J].Appl.Phys.Lett.,1997,71(21):3132-3134.
    [7]J.H.Li,C.S.Peng,Z.H.Mai,et al.Evolution of mosaic structure in Si_(0.7)Ge_(0.3)epilayers grown on Si(001)substrates[J].J.Appl.Phys.,1999,86(3):1292-1297.
    [8]J.M.Hartmann,A.Abbadie,A.M.Papon,et al.Reduced pressure-chemical vapor deposition of Ge thick layers on Si(001)for 1.3-1.55-μm photodetection[J].J.Appl.Phys.,2004,95(10):5905-5913.
    [9]黄昆,韩汝琦.固体物理学[M].北京:高等教育出版社,1988.
    [10]盛篪等.硅锗超晶格及低维量子阱[M].上海:上海科学技术出版社,2004.
    [11]P.A.Temple,C.E.Hathaway.Multiphonon Raman Spectrum of Silicon[J].Phys.Rev.B,1973,7(8):3685-3697.
    [12]B.A.Weinstein,M.Cardona.Second-Order Raman Spectrum of Germanium[J].Phys.Rev.B,1973,7(6):2545-2551.
    [13]M.I.Alonso,K.Winer.Raman spectra of c-Si_(1-x)Ge_x alloys[J].Phys.Rev.B,1989,39(14):10056-10062.
    [14]J.C.Tsang,P.M.Mooney,F.Dacol,J.O.Chu.Measurements of alloy composition and strain in thin Ge_xSi_(1-x)layers[J].J.Appl.Phys.,1994,75(12):8098-8108.
    [15]马荣骏.原子力显微镜及其应用[J].矿冶工程,2005,25(4):62-65.
    [16]F.Secco D'Aragona.Dislocation Etch for(100)Planes in Silicon[J].J.Electrochem.Soc.,1972,119(7):948-951.
    [17]H.-C.Luan.D.R.Lim,K.K.Lee,et al.High-quality Ge epilayers on Si with low threading-dislocation densities[J].Appl.Phys.Lett.,1999,75(19):2909-2911.
    [1] E. A. Fitzgerald, Y. H. Xie, M. L. Green, et al. Totally relaxed Ge_xSi_(1-x) layers with low threading dislocation densities grown on Si substrates [J]. Appl. Phys. Lett., 1991, 59(7):811-813.
    [2] J. P. Liu, L. H. Wong. D. K. Sohn. et al. A Novel Thin Buffer Concept for Epitaxial Growth of Relaxed SiGe Layers with Low Threading Dislocation Density [J]. Electrochem.Solid-State Lett.. 2005. 8(2): G60-G62.
    [3] L.H. Wong, J.P. Liu, C. Ferraris, Low-dislocation-density strain relaxation of SiGe on a SiGe/SiGeC buffer layer [J]. Appl. Phys. Lett., 2006, 88(4): 041915-1-3.
    [4] J. H. Li, C. S. Peng, Y. Wu, et al. Relaxed Si_(0.7)Ge_(0.3) layers grown on low-temperature Si buffers with low threading dislocation density [J]. Appl. Phys. Lett., 1997, 71(21):3132-3134.
    [5] C. S. Peng, Z. Y. Zhao, H. Chen, et al. Relaxed Si_(0.1)Ge_(0.9) alloy layers with low threading dislocation densities grown on low-temperature Si buffers [J]. Appl. Phys. Lett., 1998, 72(34):3160-3162.
    [6] K. Sawano, S. Koh. Y. Shiraki. et al. Fabrication of high-quality strain-relaxed thin SiGe layers on ion-implanted Si substrates [J]. Appl. Phys. Lett. 2004, 85(13): 2514-2516.
    [7] Yu. B. Bolkhovityanov, O. P. Pchelyakov, L. V.Sokolov, et al. Artificial GeSi substrates for heteroepitaxy: Achievements and problems [J]. Semiconductors, 2003, 37(5): 493-518.
    [8] J. W. P. Hsu, E. A. Fitzgerald, Y. H. Xie, et al. Surface morphology of related Ge_xSi_(1-x) films [J].Appl. Phys. Lett., 1992,61(11): 1293-1295.
    [9] H. Chen, Y. K. Li, C. S. Peng, et al. Crosshatching on a SiGe film grown on a Si(001) substrate studied by Raman mapping and atomic force microscopy [J]. Phys. Rev. B, 2002,65(23): 233303-1-4.
    [10] K. Sawano, S. Koh, Y. Shiraki, N. Usami, K. Nakagawa. In-plane strain fluctuation in strained-Si/SiGe heterostructures [J]. Appl. Phys. Lett., 2003, 83(13): 4339-4341.
    [11] D. Zubia, S. D. Hersee. Nanoheteroepitaxy: The Application of nanostructuring and substrate compliance to the heteroepitaxy of mismatched semiconductor materials [J]. J. Appl. Phys., 1999, 85(9): 6492-6496.
    [12] A. Sakai, K. Sugimoto, T. Yamamoto, et al. Reduction of threading dislocation density in SiGe layers on Si(OOl) using a two-step strain-relaxation procedure [J]. Appl. Phys. Lett., 2001, 79 (21): 3398-3400.
    [13] F. Secco D'Aragona. Dislocation Etch for (100) Planes in Silicon [J]. J. Electrochem. Soc., 1972, 119(7): 948-951.
    [1] Y. Fukuda, Y. Kohama. High quality heteroepitaxial Ge growth on (100) Si by MBE [J]. J. Cryst. Growth, 1987, 81: 451-457.
    [2] M. T. Currie, S. B. Samavedam, T. A. Langdo, et al. Controlling threading dislocation densities in Ge on Si using graded SiGe layers and chemical-mechanical polishing [J]. Appl. Phys. Lett., 1998, 72(14): 1718-1720.
    [3] S. G. Thomas, S. Bharatan. R. E. Jones, et al. Structural characterization of thick, high-quality epitaxial Ge on Si substrates grown by low-energy plasma-enhanced chemical vapor deposition [J]. J. Electron. Mater., 2003, 32(9): 976-980.
    [4] G. L. Luo, T. H. Yang, E. Y. Chang, C. Y. Chang, K.A. Chao. Growth of High-Quality Ge Epitaxial Layers on Si (100) [J]. Jpn. J. Appl. Phys., 2003, 42: L517-L519.
    [5] H.-C. Luan, D. R. Lim, K. K. Lee, et al. High-quality Ge epilayers on Si with low threading-dislocation densities [J]. Appl. Phys. Lett., 1999, 75(19): 2909-2911.
    [6] T. H. Loh, H. S. Nguyen, C. H. Tung, et al. Ultrathin low temperature SiGe buffer for the growth of high quality Ge epilayer on Si(100) by ultrahigh vacuum chemical vapor deposition [J]. Appl. Phys. Lett., 2007, 90(9): 092108-1-3.
    [7] T. A. Langdo, C. W. Leitz, M. T. Currie, E. A. Fitzgerald, A. Lochtefeld. D. A. Antoniadis. High quality Ge on Si by epitaxial necking [J]. Appl. Phys. Lett., 2000, 76(25): 3700-3702.
    [8] G. Vanamu, A. K. Datye Saleem, H. Zaidi. Epitaxial growth of high-quality Ge films on nanostructured silicon substrates [J]. Appl. Phys. Lett., 2006. 88(20): 204104-1-3.
    [9] J. L. Liu, S. Tong, Y. H. Luo, et al. High-quality Ge films on Si substrates using Sb surfactant-mediated graded SiGe buffers [J]. Appl. Phys. Lett., 2001, 79(21), 3431-3433.
    [10] T. F. Wietler, E. Bugiel, K. R. Hofmann. Surfactant-mediated epitaxy of relaxed low-doped Ge films on Si(001) with low defect densities [J]. Appl. Phys. Lett., 2005, 87(18): 182102-1-3.
    [11] Y. C. Hsieh, E. Y. Chang, G. L. Luo, et al. Use of Si~+ pre-ion-implantation on Si substrate to enhance the strain relaxation of the Ge_xSi_(1-x) metamorphic buffer layer for the growth of Ge layer on Si substrate [J]. Appl. Phys. Lett., 2007, 90(8): 083507-1-3.
    [12] E. Palange, L. Di Gaspare, F. Evangeliste. Real time spectroscopic ellipsometric analysis of Ge film growth on Si(001) substrates [J]. Thin Solid Films, 2003, 428(l-2):160-164.
    [13] M. Halbwax, D. Bouchier, V. Yam, et al. Kinetics of Ge growth at low temperature on Si(001) by ultrahigh vacuum chemical vapor deposition [J]. J. Appl. Phys., 2005, 97(6): 064907-1-6.
    [14] Y. Ishikawa, K. Wada, J. Liu, et al. Strain-induced enhancement of near-infrared absorption in Ge epitaxial layers grown on Si substrate [J]. J. Appl. Phys., 2005, 98(1): 013501-1-7.
    [15] H. P. Singh. Determination of thermal expansion of germanium, rhodium and iridium by X-rays [J]. Acta Crystallogr.. Sect. A: Cryst. Phys., Diffr.. Theor. Gen. Crystallogr., 1968, 24(4): 469-471.
    [16] Y. Okada, Y. Tokamaru. Precise determination of lattice parameter and thermal expansion coefficient of silicon between 300 and 1500 K [J]. J. Appl. Phys., 1984, 56(2): 314-320.
    [17] J. Liu. D. D. Cannon, K. Wada. et al. Deformation potential constants of biaxially tensile stressed Ge epitaxial films on Si(100) [J]. Phys. Rev. B, 2004, 70(15): 155309-1-5.
    [1]施敏,伍国钰.半导体器件物理[M].第三版,西安:西安交通大学出版社,2008.
    [2]刘恩科,朱秉升,罗晋生.半导体物理学[M].北京:电子工业出版社,2006.
    [3]余金中.半导体光电子技术[M].北京:化学工业出版社,2003.
    [4]J.F.Liu,J.Michel,W.Giziewicz,et al.High-performance,tensile-strained Ge p-i-n photodetectors on a Si platform[J].Appl.Phys.Lett.,2005,87(10):103501-1-3.
    [5]D.D.Cannon.Strain-engineered CMOS-compatible Ge photodetector[D].MIT Ph.D thesis,2003.
    [6]L.Colace,G.Masini,G.Assanto,et al.Efficient high-speed near-infrared Ge photodetectors integrated on Si substrates[J].Appl.Phys.Lett.,2000,76(10):1231-1233.
    [7]Z.H.Huang,J.W.Oh,S.K.Banerjee,J.C.Campbell.Effectiveness of SiGe Buffer Layers in Reducing Dark Currents of Ge-on-Si Photodetectors[J].IEEE J.Quantum Electronics,2007,43(3):238-242.
    [8]M.Born,E.Wolf.Principles of Optics[M].北京:世界图书出版公司,2001.
    [9](U|¨)nl(u|¨)M S,Samuel S.Resonant cavity enhanced photonic devices[J].J.Appl.Phys.,1995,78(2):607-639.
    [10]D.P.Brunco,B.De Jaeger,G.Eneman,et al.Germanium MOSFET Devices:Advances in Materials Understanding,Process Development,and ElectricalPerformance[J].Journal of The Electrochemical Society.2008,155(7):H552-H561.
    [11]Z.H.Huang,J.W.Oh,J.C.Campbell.Back-side-illuminated high-speed Ge photodetector fabricated on Si substrate using thin SiGe buffer layers[J].Appl.Phys.Lett.,2004,85(15):3286-3288.
    [12]S.Fam(?),L.Colace,G.Masini,et al.High performance germanium-on-silicon detectors for optical communication[J].Appl.Phys.Let.,2002,81(4):586-588.
    [13]T.Yin,R.Cohen,M.M.Morse,et al.31 GHz Ge n-i-p waveguide photodetectors on Silicon-on-Insulator substrate[J].Opt.Express,2007,15(21):13965-13971.
    [14]J.F.Liu,D.D.Cannon,K.Wada,et al.Tensile strained Ge p-i-n photodetectors on Si platform for C and L band telecommunications[J].Appl.Phys.Lett.,2005,87(1):011110-3.
    [15]T.H.Loh,H.S.Nguyen,R.Murthy,et al.Selective epitaxial germanium on silicon-on-insulator high speed photodetectors using low-temperature ultrathin Si_(0.8)Ge_(0.2)buffer[J].Appl.Phys.Lett.,2007,91(7):073503-1-3.
    [16]M.Morse,O.Dosunmu,G.Sarid,Y.Chetrit.Performance of Ge-on-Si p-i-n Photodetectors for Standard Receiver Modules[J].IEEE Photon.Technol.Lett.,2006,18(23):2442-2444.
    [17]L.Colace,P.Ferrara,G.Assanto,D.Fulgoni,L.Nash.Low Dark-Current Germanium-on-Silicon Near-Infrared Detectors[J].IEEE Photon.Technol.Lett.,2007,19(22):1813-1815.
    [18]S.B.Samavedam,M.T.Currie,T.A.Langdo,et al.High-quality germanium photodiodes integrated on silicon substrates using optimized relaxed graded buffers[J].Appl.Phys.Lett.,1998,73(15):2125-2127.
    [19]B.W.Cheng,C.B.Li,F.Yao,et al.Silicon membrane resonant cavity enhanced photodetector[J].Appl.Phys.Lett.,2005,87(6):061111-3.
    [20]B.L.Anderson,R.L.Anderson.Fundamental of Semiconductor Device[M].北京:清华大学出版社,2006.
    [21]Ge Electrical properties.http://www.ioffe.rssi.ru/SVA/NSM/Semicond/Ge/electric.html.
    [22]R.F.Potter.Germanium(Ge)[M].in Handbook of Optical Constants of Solids,E.D.Palik,Ed.Orlando,FL:Academic,1985,465-478.
    [23]E.Kasper.Silicon Germanium Heterostructures and Devices[A].厦门大学物理系学术报告.2008.p8 and 76.
    [24]K.Wada,et al.Si Microphotonics for optical interconnection[M].in Optical Interconnects:The Silicon Approach.L.Pasesi,G.Guillot.Eds.:Springer,2006,p307.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700