用户名: 密码: 验证码:
HLA-B27启动子活性及启动子激活因子参与脊柱关节病发病机制的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:
     脊柱关节病(spondyloarthropathy,SpA)是一组以中轴和/或外周关节受累、具有家族聚集倾向、血清类风湿因子(RF)阴性为特点的相互关联的多系统炎症性疾病。该病在我国的发病率和致残率都较高,但因为各种SpA的病因和发病机制均未完全明了,缺乏有效的病因治疗。因此研究SpA的病因具有重要意义。目前有关其参与SpA发病主要有以下几个假说:1)分子模拟假说:HLA-B27经典的HLA-I类分子结构通过将关节炎多肽提呈至CD8~+T细胞的TCR上而诱导关节炎;2)HLA-B27异常形式的免疫识别:在多种因素影响下,细胞表面存在多种B27的异常形式,包括自由重链(FHC),重链同源二聚体等,被特异的CD4~+T细胞、NK细胞等识别从而诱发炎症损伤;3)蛋白错误折叠,内质网应激与炎症反应:HLA-B27在内质网的折叠速率减慢,造成内质网应激,引发未折叠蛋白反应(UPR)导致炎症反应。目前理论上有关SpA的发病机理更倾向于后两种假说,而这两种假说均与B27的蛋白表达量相关。
     虽然SpA的发病机制目前尚不清楚,但可以确定的是除了外界环境因素的影响,HLA-B27与SpA的发病关系非常密切,且有HLA-B27转基因大鼠试验表明HLA-B27的拷贝量与转基因鼠的发病有直接关系。另外,也有报道表明HLA-B27阳性的AS患者比HLA-B27阳性正常人的HLA-B27表达量明显增高。以上证据均表明HLA-B27的表达高低与SpA的易感性有关,而启动子的转录调控是影响HLA-B27表达的重要途径。
     因此本实验拟通过对HLA-B27的启动子(promoter)区序列及活性进行分析,试图发现一些对HLA-B27启动子有活化作用的因子,并在体外研究HLA-B27表达阳性的人单核细胞系在这些激活因子的作用下其UPR相关分子表达的情况。以初步判定HLA-B27启动子激活因子与UPR反应参与SpA的发病机理,为进一步揭示SpA的发病机制提供线索和依据。
     方法:
     1.通过搜索IMGT/HLA数据库,建立了包括HLA-B27*05序列在内的所有有效HLA A类和B类分子启动子区序列数据库。通过对HLA-B27*05与其他分子的5’端非编码区特别是转录因子结合位点的序列进行序列分析比对,检测B27与其他HLA I类分子的差异,试图寻求一定规律。
     2.为了研究SpA患者滑液内是否有活化B27启动子的因子,本实验采用25例SpA与8例RA患者的滑液对转染了B27启动子的Hela细胞进行孵育,48小时后通过检测转染载体的荧光素酶活性研究B27启动子对滑液的反应。进而用anti-TNF-α抗体进行阻断试验,以确定TNF-α是否具有激活B27启动子的作用。
     3.采用CBA和Real time PCR的方法集中检测炎性因子在SpA患者外周血单个核细胞中的表达情况,以挑选相关细胞因子进行HLA-B27启动子的活性实验。为了进一步研究B27启动子在人单核细胞的活性,以及TNF-α和其他致炎因子的激活作用,我们将HLA-B27的启动子序列重组入带有黄色荧光蛋白报告基因的载体pmax-YF-PRL内。选用人单核细胞系U937作为宿主细胞,引入重组载体,建立稳定转染细胞株。用25种细胞因子(IL-1α,IL-1β,IL-2,IL-4,IL-5,IL-6,IL-7,IL-8,IL-12-p70,IL-13,IL-15,IL-17,IL-18,TNF-α,M-CSF,GM-CSF,IP-10,MCP-1,RANTES,MIP-1α,IFN-α,IFN-β,IFN-γ,TGF-β1和OSM)及12种TLR配体(MDP,PGN,Zyn,PIC,LPS,Flag,FSL,Lox,ssRNA,EcDNA,Pams和Decap KP)作用于该转染子,分别在孵育后24,48及72小时运用流式细胞仪检测细胞的黄色荧光表达强度,筛选对B27启动子有激活作用的因子。
     4.为了证明在SpA患者外周血单个核细胞中可能存在UPR反应,首先采用定量PCR的方法对UPR主要相关蛋白BIP和CHOP的mRNA表达进行检测,进而我们将HLA-B2704基因和HLA-A2对照基因重组入带有绿色荧光蛋白(GFP)报告基因的真核表达载体pEGFP-N1内,并将以上重组质粒和pEGFP-N1原质粒转入人单核细胞系U937,建立表达HLA-B2704全长的人单核细胞稳定转染细胞株B27-U937,表达HLA-A2的对照细胞株A2-U937以及只表达GFP的细胞株GFP-U937。随后,用筛选出的HLA-B27启动子激活因子作用于以上转染细胞株,并采用real-time PCR检测B27-U937,A2-U937和EGFP-U937细胞株的UPR相关蛋白(Grp78,CHOP,XBP-1)mRNA的表达情况。
     结果:
     1.所有I类分子中只有6个等位基因与HLA-B27的promoter区完全相同,且其中三种是HLA-B27的亚型。同时还发现ISRE和kB2在B类分子中高度保守。
     2.发现25例SpA患者滑液中有5例可明显增高Hela细胞中HLA-B27 promoter的活性,而RA患者滑液无此作用。且这些增强作用均可被TNF-α拮抗剂部分阻断。
     3.发现AS患者外周血单个核细胞与健康对照相比显著高表达多种炎症性细胞因子,包括TNF-α,IL-10,IL-6和IL-1β,可能在AS中发挥着重要作用。研究还显示,TNF-α,INF-α,INF-β,INF-γ可激活U937细胞中HLA-B27启动子的活性(P<0.05),且以上因子的激活作用在72小时内与孵育时间成正相关。孵育72小时后,以INF-γ的激活作用最强。不同剂量细胞因子对启动子活性影响无显著差异(P>0.05)。
     4. AS患者外周血单个核细胞中GRP78和CHOP基因的mRNA表达量比健康对照组显著增高,提示存在UPR反应。GRP78,CHOP和XBP-1基因mRNA的表达量在人单核细胞U937转染子B27-U937和A2-U937中无显著差异(P>0.05)。当用PMA、IFN-γ、LPS和TNF-α等细胞因子对以上细胞进行孵育后,real-time PCR结果显示IFN-γ刺激8小时后,CHOP和GRP78的mRNA水平相对于未刺激细胞均明显增加,尤其以GRP78显著(P<0.05)。但B27-U937,A2-U937和EGFP-U937细胞间无明显差异。LPS和TNF-α刺激后均得到相似的结果。而半定量PCR结果也显示在细胞因子的作用下HLA-B27并不能调节XBP-1剪切体的含量。
     结论:
     1. TNF-α,IL-10,IL-6和IL-1β在AS患者外周血单个核细胞中高表达,提示这些因子在SpA发病中起重要作用。同时我们还发现SpA患者滑液中确实存在可刺激HLA-B27表达的成分,且与TNF-α相关。这些结果都明确指出了细胞因子极有可能参与了SpA的发病机制。
     2.通过序列比对及多种细胞因子和TLR配体对HLA-B27启动子活性作用的筛选,我们发现在HLA-B类分子启动子区高度保守的ISRE、kB2转录因子结合位点对HLA-B27 promoter的活化起到了决定性的作用,仅与该位点相关的细胞因子INF、TNF对HLA-B27启动子有明显活化作用。提示以上因子有可能通过刺激HLA-B27启动子的活性,从而增加HLA-B27的表达而诱发细胞的UPR参与SpA的发病。
     3.为了探明这些HLA-B27启动子激活因子是否是通过增加HLA-B27的表达来诱导细胞的UPR而参与致病,我们首先检测了AS患者外周血单个核细胞中GRP78和CHOP基因的mRNA表达量,结果显示比健康对照组显著增高,提示存在UPR反应。进而我们检测了HLA-B27基因全长转染U937细胞中CHOP、GRP78和XBP-1在这些启动子激活因子作用下的表达,结果显示较未刺激细胞有显著增加,但与转染了A2和EGFP的细胞无显著差异(P>0.05)。这些结果提示在多种炎症因子刺激情况下,HLA-B27转染细胞可能并没有异常增高的UPR反应存在,这与本实验室前期结果仍有差异。因此我们将采用多种细胞系,特别是人原代单核/巨噬细胞来研究HLA-B27对细胞因子的反应,从而结合已有结果对SpA发病机理进行进一步的研究。
Objectives:
     The spondyloarthropathies (SpAs) are the second-commonest cause of inflammatory arthritis in humans, after rheumatoid arthritis. One genetic factor shared by all the varieties of SpA has already been identified, that is, HLA-B27. Although the presence of the HLA-B27 allele marks a strong predisposition for SpA, its role in disease pathogenesis is still unclear. Until now, there are three main hypotheses explaining the role of HLA-B27 in SpA: 1) Molecular mimicy: HLA-B27 or HLA-B27 bound peptides were thought to resemble bacterial peptides, and thus become the target of cross-reactive antibodies and/or CD8~+ cells. 2) Immunological recognition of aberrant forms of HLA-B27: the aberrant forms of HLA-B27 such as free heavy chains or HLA-B27 homodimers are specifically recognized by the receptors on NK, CD4~+ T cells or other immune cells. 3) Protein misfolding, ER stress, and inflammatory disease: HLA-B27 misfolding results in heavy chain retension and cause unfolded preotein response (UPR) activation that perhaps initiate or perpetuates a chronic inflammatory process. These hypotheses are based on the activities of the HLA-B27 protein, and hence would require the HLA-B27 gene to be transcribed.
     It is believed in addition to certain other genes and/or environmental factors, the expression degree of the HLA-B27 gene is also responsible for susceptibility to this disease. HLA-B27 positivity strongly influences spondyloarthropathy (SpA) susceptibility and phenotype, and experiments of HLA-B27 transgenic rats showed the gene level is probably linked to its arthritis-causing potential. Other people reported that the expression of the HLA-B27 molecule on the surface of PBMCs is higher in patients with AS than in HLA-B27-positive healthy volunteers. However, very little research has been conducted to investigate HLA-B27 gene regulation.
     Based on several observations suggesting that factors modulating HLA-B27 transcription may play a role in the pathogenesis of SpA, we designed this study to identify factors that might be responsible for the transcription of HLA-B27 in human monocytic cells and to assess whether any differences in the UPR can be detected following incubation with these promoter-activating factors.
     Methods:
     1. The IMGT/HLA Database was used to compare HLA-B2705 with other HLA B alleles and HLA A alleles at the 5’untranslated region to find out the similarities and differences especially at transcription binding sites.
     2. After that we used 25 specimens of synovial fluid of SpA patients to incubate the Hela B27 promoter transfectants for 48 hours, and TNF-αinhibitor was added into those positive specimens.
     3. Then the promoter region of HLA-B27 was transfected into U937 cell line to reveal the respond of B27 promoter in human monocyte cell line. The transfectant was challenged separately with 25 kinds of cytokines (IL-1α, IL-1β, IL-2, IL-4, IL-5, IL-6, IL-7, IL-8, IL-12-p70, IL-13, IL-15, IL-17, IL-18, TNF-α, M-CSF, GM-CSF, IP-10, MCP-1, RANTES, MIP-1α, IFN-α, IFN-β, IFN-γ, TGF-β1 and OSM) and 12 kinds of Toll Like Receptor ligands (MDP, PGN, Zyn, PIC, LPS, Flag, FSL, Lox, ssRNA, EcDNA, Pams and Decap KP). Promoter activity is measured by Flow Cytometry.
     4. Quantitive RT-PCR was used to study the mRNA expression of UPR related genes (GRP78, CHOP) in PBMC of SpA patients. Meanwhile, we constructed HLA-B27-EGFP, HLA-A2-EGFP and EGFP-alone stable transfected U937 cells and examined the FHC expression on them. Moreover, the UPR in B27 and A2 transfected U937 cells were studied by RT-PCR. HLA-B27 promoter-activating factors were used to incubate these cell lines.
     Resultes:
     1. There are just 6 B alleles including 3 B27 subtypes having the same sequence with HLA-B2705. X1/X2, S and CAAT Box binding site of B alleles have more variability than others. ISRE and kB1/2 are highly conservative in HLA B alleles.
     2. 5 out of 25 specimens of SF from SpA patients could significantly increase the activity of the HLA-B27 promoter. None of the RA specimens caused the same effect. The promoter activation caused by SF could be significantly inhibited by anti-TNF-αantibody
     3. The CBA and RT-PCR results showed that these cytokines, TNF-α,IL-10,IL-6 and IL-1, were significantly higher in the PBMC of AS patients than that of normal control.Out of TNF-α, only INF-α, -β, -γcan activate the B27 promoter in U937 cell line. And all the increase effects and the incubate time have positive correlation in 72 hours. The dose response relationship for HLA-B27 promoter activity in response to these cytokines was tested, and there were no significant differences in this cell line. When the peaks were compared, the most effective cytokine was INF-γ.
     4. Compared with the PBMC of normal control, the GRP78 and CHOP expression of SpA was significantly higher (P<0.05). The mRNA expression of GRP78, XBP-1 and CHOP were same in EGFP-U937, B27-U937 and A2-U937 cells. Then we then used IFN-γ, LPS, and TNF-αas stimulators to activate these U937 cells. The PCR results showed that after IFN stimulation for 8 h, CHOP and GRP78 expression were all increased compared with unstimulated cells, especially the GRP78 expression. But there were no significant differences between B27, A2-U937, and EGFP-U937 cells. LPS and TNF-αstimulation demonstrated the same results and we found that HLA-B27 does not modulate XBP-1 splicing following cytokine stimulation also.
     Conclusion:
     1. Our results confirmed that the cytokines including TNF-α,IL-10,IL-6 and IL-1βsecreted by PBMC play important roles in SpA. We found that Synovial fluids of spondyloarthropathy patients can significantly increased activity of HLA-B27 promoter and the increase was inhibited by TNF-αinhibitor. All these results indicate that cytokines play a very important role in pathogenesy of SpA.
     2. After compared HLA-B2705 with other HLA B alleles and HLA A alleles and screened cytokines and Toll Like Receptor ligands, we found out that only INF and TNF-αwhich associated with ISRE and kB1/2 binding sites can activate B27 promoter significantly. These results inferred that the HLA-B27 promoter activating factors could possibly stimulate the expression of HLA-B27 to induce the UPR in B27 expression cells.
     3. Quantitive RT-PCR was used to study the mRNA expression of UPR related genes (GRP78, CHOP) in PBMC of SpA patients. Compared with the PBMC of normal control, the GRP78 and CHOP expression of SpA was significantly higher. The result indicated there is UPR in SpA patients. Then we used these HLA-B27 promoter activating factors as stimulators to activate these transfected U937 cells. The PCR results showed that after stimulation, GRP78, CHOP and XBP-1 expression were all increased compared with unstimulated cells. But there were no significant differences between B27, A2-U937, and EGFP-U937 cells. These results were different with our early research. So, further studies on the response of the HLA-B27 promoter to cytokines in different kinds of cells, especially primary human monocytes/macrophages, combined with our findings will provide further understanding of the roles of HLA-B27 in the pathogenesis of SpA.
引文
1. Fiorillo MT, Maragno M, Butler R, Dupuis ML, Sorrentino R. CD8+ T-cell autoreactivity to an HLAB27-restricted self-epitope correlates with ankylosing spondylitis. J Clin Invest. 2000, 106:47-53.
    2. Allen RL, O’Callaghan CA, McMichael AJ, Bowness P. Cutting edge: HLA-B27 can form a novel b2-microglobulinfree heavy chain homodimer structure. J Immunol. 1999, 162:5045-8.
    3. Mear JP, Schreiber KL, Munz C. Misfolding of HLAB27 as a result of its B pocket suggests a novel mechanism for its role in susceptibility to spondyloarthopathies. J Immunol. 1999, 163:6665-70.
    4. Khan MA. HLA-B27 polymorphism and association with disease. J Rheumatol. 2000, 27:1110-4.
    5. D’Amato M, Fiorillo MT, Carcassi C. Relevance of residue 116 of HLA-B27 in determining susceptibility to ankylosing spondylitis. Eur J Immunol. 1995, 25:3199-201.
    6. Lopez-Larrea C, Sujirachato K, Mehra NK. Hla-B27 subtypes in Asian patients with ankylosing spondylitis. Evidence for new associations. Tissue Antigens. 1995, 45:169-76.
    7. Coppin HL, McDevitt HO. Absence of polymorphism between HLA-B27 genomic exon sequences isolated from normal donors and ankylosing spondylitis patients. J Immunol. 1986, 137:2168-72.
    8. Taurog JD, Maika SD, Simmons WA, Breban M, Hammer RE. Susceptibility to inflammatory disease in HLA-B27 transgenic rat lines correlates with the level of B27 expression. J Immunol. 1993, 150:4168-78.
    9. A. Cauli, G. Dessole, M. T. Fiorillo1, A. Vacca, A. Mameli, P. Bitti2, G. Passiu, R. Sorrentino1 and A. Mathieu. Increased level of HLA-B27 expression in ankylosing spondylitis patients compared with healthy HLA-B27-positive subjects: a possible further susceptibility factor for the development of disease. Rheumatology. 2002, 41:1375-9.
    10. Le Bouteiller, P. HLA class I chromosomal region, genes, and products: facts and questions. Crit Rev Immunol. 1994, 14: 89-129.
    11. Identification of Cytokines Which Might Enhance the Promoter Activity of HLA-B27
    12. Turner MJ, Sowders DP, DeLay ML, Mohapatra R, Bai S, Smith JA. HLA-B27 misfolding in transgenic rats is associated with activation of the unfolded protein response. J Immunol. 2005, 175: 2438-48.
    13. Turner MJ, DeLay ML , Bai S , Klenk E , Colbert R A. HLA-B27 Up-Regulation Causes Accumulation of Misfolded Heavy Chains and Correlates With the Magnitude of the Unfolded Protein Response in Transgenic Rats. Arthritis & Rheumatism. 2007, 56: 215-23.
    14. Gu, J., M. Rihl, E. Marker-Hermann, D. Baeten, J.G. Kuipers, Y.W. Song, W.P. Maksymowych, R. Burgos-Vargas, E.M. Veys, F. De Keyser, H. Deister, M. Xiong, F. Huang, W.C. Tsai, D.T. Yu. Clues to the pathogenesis of spondyloarthropathy derived from synovial fluid mononuclear cell gene expression profiles. J Rheumatol. 2002, 29:2159-64.
    15. Clin A, Taurog D(eds). The spondylarthritides . Oxford: Oxford Univercity Prwss. 1998, 1.
    16. Olivieri I, Salvarani C, Cantini F. Ankylosing spondylitis and undifferentiated spondyloarthropoathies: a clinical review and description of a disease subset with older age at onset. Curr Opin Rheumatol. 2003, 13(4):280.
    17. Said-Nahal R, Miceli-Richard C, Gautreau C, Tamouza R, Borot N, Porcher R, Charron D, Dougados M, Breban M. The role of HLA genes in familial spondyloarthropathy: a comprehensive study of 70 multiplex families. Ann Rheum Dis. 2002, 61(3):201-6.
    18. Reveille JD, Ball EJ, Khan MA. HLA-B27 and genetic predisposing factors in spondyloarthropathies.Curr Opin Rheumatol. 2001, 13(4):265-72.
    19. Reveille JD, Arnett FC. Spondyloarthritis: update on pathogenesis and management. Am J Med. 2005, 118(6):592-603.
    20. Stebbings S, Munro K, Simon MA, Tannock G, Highton J, Harmsen H, Welling G, Seksik P, Dore J, Grame G, Tilsala-Timisjarvi A. Comparison of the faecal microflora of patients with ankylosing spondylitis and controls using molecular methods of analysis. Rheumatology (Oxford). 2002, 41(12):1395-401.
    21. Stone MA, Payne U, Schentag C. Comparative immune response to candidate arthritogenie bacteria do not confirm a role for Klebsiella pneumoniae in the pathogenesis of familial ankylosing spendylitis. Rhematology. 2004, 43:148-55.
    22. Martinez-Gonzalez O, Cantero-Hinojosa J, Paule-Sastre P, Gomez-Magan JC, Salvatierra-Rios D. Intestinal permeability in patients with ankylosing spondylitis and their healthy relatives. Br J Rheumatol. 1994, 33 (7): 644-7.
    23. Taurog JD, Richardson JA, Croft JT. The germ free state prevents de velopment of gut and joint inflammatory disease in transgenic rats. J Exp Med. 1994, 180(4): 2359-64.
    24. Inmn RD. Mechanisms of disease: infection and spondyloarthritis. Nat Clin Pract Rh matol. 2006, 2(3): 163-9.
    25. Stebbings S, Munro k, Simon MA. Comparison of the faecal microflora of patienys with ankylosing spendylitis and control using molecular methods of allalysis. Rheumatology(Oxford). 2002, 41:1395-401.
    26. Fendler C. Frequency of triggering bacteria in patients with reactive arthritis and undifferentiated oligoarthritis and the relative importance of the tests used for diagnosis. Ann Rheum Dis. 2001, 60:337-43.
    27. Gerard HC. Synovial Chl amydia trachomatis in patients with reactive arthritis/Reiter’s syndrome are viable but show aberrant gene expression. J Rheumatol. 1998, 25: 734-742.
    28. Kuipers JG. Detection of Chlamydia trachomatis in peripheral blood leukocytes of reactive arthritis patients by polymerase chain reaction. Arthritis Rheum. 1998, 41: 1894-1895.
    29. Kuipers JG. How does Chlamydia cause arthritis? Rheum Dis Clin North Am. 2003, 29: 613-629.
    30. Morrison RP. New insights into a persistent problem—chlamydial infections. J Clin Invest. 2003, 111: 1647-1649.
    31. Zeidler H. Chlamydia-induced arthritis. Curr Opin Rheumatol. 2004, 16: 380-392.
    32. Tse SM. Accumulation of diacylglycerol in the Chlamydia inclusion vacuole: possible role in the inhibition of host cell apoptosis. J Biol Chem. 2005,280: 25210-25215
    33. Jendro MC. Chlamydia trachomatis infected macrophages induce apoptosis of activated T cells by secretion of tumor necrosis factor-alpha in vitro. Med Microbiol Immunol. 2004, 193: 45-52.
    34. Colmegna I. HLA-B27-associated reactive arthritis: pathogenetic and clinical considerations. Clin Microbiol Rev. 2004, 17: 348-369.
    35. Katona IM. Modulation of monocyte chemotactic function in inflammatory lesions. Role of inflammatory mediators. J Immunol. 1991, 146: 708-714.
    36. Zhang X. Synovial fibroblasts infected with Salmonella enterica serovar typhimurium mediate osteoclast differentiation and activation. Infec Immun. 2004, 72: 7183-7189.
    37. Kuon W, Holzhutter HG, Appel H. Identification of HLA-B27 restricted peptides from the Chlamydia traehomatis proteome with possible relevance to HLA-B27 associated diseases. J Immunol. 200l, l67: 4738-4746.
    38. Azuz-Lieberman N, Markel G, Mizrahi S. The involvement of NK cells in ankylosing spendylitis.Int Immunol. 2005, 17(7):837-845.
    39. Bingham CO 3rd. The pathogenesis of rheumatoid arthritis: pivotal eytokines involved in bone degration and inflammation. J Rheumatol. 2002, 65(supp1):3-9.
    40. Drouart M, Sass P, Billot M, et a1. High scram vascular endothelial growth factor correlates with disease activity of spondyloarthropathies. Clin Exp Immunol. 2003, l32:158-162.
    41. Mielants H, Veys EM. Seronegative spondylarthropathies. In: Ralph Schumacher, Jr HKlippel JH, Koopman WJ. Primer on the rheumatic diseases.10th ed Atlanta: the Arthritis Foundation, 1993: 151-167.
    42. Vender Linden SM, Khan MA.The risk of ankylosing spondylitis in HLA B27 positive individuals: A reappraisal. J Rheumatol. 1984, 11(5):727-728.
    43. Taurog JD, Maika SD, Simmons WA. Susceptibility to inflammatory disease in HLA B27 transgenic rat lines correlated with the level of B27 expression. J Immunol. 1993, 150(10): 4168-4178.
    44. Gaston JS. Pathogenic role of gut inflammation in the spondylar thropathies. Curr Opin Rheumatol. 1997, 9(4): 302-307.
    45. Madden DR, Gorga JC, Strominger JL. The three dimensional structure of HLA B27 at 2.1 A resolution suggests a general mechanism for tight peptide binding to MHC. Cell. 1992, 70(5):1035-1048.
    46. Reveille JD. The genetic basis of ankylosing spondylitis. Curr Opin Rheumatol. 2006, 18(4):332-41.
    47. Birinci A, Bilgici A, Kuru D, et a1. HLA-B27 polymorphism in Turkish patients with ankylosing spondylitis. Rheumatol Int. 2006, 26(4):285-287.
    48. Reveille JD, Brown MA. Pathogenesis of ankylosing spondylitis. In: Weisman MH, Reveille JD, van der Heijde D, editors. Ankylosing spondylitis and the spondyloarthropathies. Philadelphia: Mosby, 2006. 28.
    49. Wang B, Su H, Gao P, etal. Study on the association of transporter associated with antigen processing gene with ankylosing spondylitis and HLA B27 in Han nationality. Zhong hua Yi Xue Yi Chuan Xue Za Zhi. 2001, 18(3): 209-212.
    50. Purcell AW, Kelly AJ, Peh CA, et a1. Endogenous and exogenous factors contributing to the surface expression of HLA-B27 on mutant APC. Hum Immunol. 2000, 61(2), 120-130.
    51. Scofield RH, Warren WL, Koelsch G, Harley JB. A hypothesis for the HLA-B27 immune dysregulation in spondyloarthropathy: contributions from enteric organisms, B27 structure, peptides bound by B27, and convergent evolution. Proc Natl Acad Sci USA. 1993, 90(20):9330-9334.
    52. Davenport MP. The promiscuous B27 hypothesis. Lancet. 1995, 346(8973): 500-1.
    53.袁玉华,王学谦. B27在强直性脊柱炎发病中的作用研究进展.中华风湿病学杂志, 2002年,第6卷(2): 113-5.
    54. May E, Dorris ML, Satumtira N, Iqbal I, Rehman MI, Lightfoot E, TaurogJD. CD8 T cells are not essential to the pathogenesis of arthritis or colitis in HLA-B27 transgenic rats. J Immunology. 2003, 170:1099-1105.
    55. Ringrose JH HLA-B27 associated spondyloarthropathy, an autoimmune disease based on cross reactivity between bacteria and HLA-B27? Ann. Rheum. Dis. 1999, 58:598-610.
    56. Anderson KS, Alexander J, Wei M, Cresswell P. Intracellular transport of class I MHC molecules in antigen processing mutant cell lines. J Immunol. 1993,151:3407-3419.
    57. Wang J, Yu DT, Fukazawa T. A monoclonal antibody that recognizes HLA-B27 in the context of peptides. J Immunol. 1994, 152: 1197-1205.
    58. Purcell AW, Kelly AJ, Peh CA, Dudek NL, McCluskey J. Endogenous and exogenous factors contributing to the surface expression of HLA B27 on mutant APC. Hum Immunol. 2000, 61: 120-30.
    59. Peh CA, Burrows SR, Barnden M. HLA-B27-restricted antigen presentation in the absence of tapasin reveals polymorphism in mechanisms of HLA class I peptide loading. Immunity. 1998, 8: 531-42.
    60. MacLean L, Macey M, Lowdell M. Sulphydryl reactivity of the HLA-B27 epitope: accessibility of the free cysteine studied by flow cytometry. Ann Rheum Dis. 1992, 51: 456-60.
    61. Allen RL, O’Callaghan CA, McMichael AJ, Bowness P.Cutting edge: HLA-B27 can form a novel beta 2-microglobulin-free heavy chain homodimer structure.J Immunol. 1999, 162: 5045-8.
    62. Dangoria NS, DeLay ML, Kingsbury DJ. HLA-B27 misfolding is associated with aberrant intermolecular disulfide bond formation (dimerization) in the endoplasmic reticulum. J Biol Chem. 2002, 277: 23459-68.
    63. Urban, R.G., R.M. Chicz, W.S. Lane, J.L. Strominger, A. Rehm, M.J.H. Kenter, F.G.C.M. Uytde-Haag, H. Ploegh, B. Uchanska-Ziegler, and A. Ziegler. A subset of HLA-B27 molecules contains peptides much longer than nonamers. Proc Natl Acad Sci USA. 1994, 91:1534-1538.
    64. Malik, P, P. Klimovitsky, L.W. Deng, J.E. Boyson, and J.L. Strominger. Uniquely conformed peptide-containing beta 2-microglobulin-free heavy chains of HLA-B2705 on the cell surface. J Immunol. 2002, 169:4379-4387.
    65. Boyle LH, Gaston JS H. Breaking the rules: the unconventional recognition of HLA-B27 by CD4+T lymphocytes as an insight into the pathogenesis of the spondyloarthropathies. Rheumatology. 2003, 42: 404-412.
    66. Katayama T, Imaizumi K, Honda A, Yoneda T, Kudo T, Takeda M, Mori K, Rozmahel R, Fraser P, George-Hyslop PS, Tohyama M. Disturbed activation of endoplasmic reticulum stress transducers by familial Alzheimer's disease-linked presenilin-1 mutations. J Biol Chem. 2001, 276(46):43446-54.
    67. Allen RL, Raine T, Haude A, Trowsdale J,Wilson MJ. Leukocyte receptor complex-encoded immunomodulatory receptors show differing specificity for alternative HLA-B27 structures. J Immunol. 2001, 167: 5543-7.
    68. Allen RL, Trowsdale J. Recognition of classical and heavy chain forms of HLA-B27 by leukocyte receptors. Curr Mol Med. 2004, 4(1):59-65.
    69. Tsai WC, Chen CJ, Yen JH, Ou TT, Tsai JJ, Liu CS, Liu HW. Free HLA class I heavy chain-carrying monocytes--a potential role in the pathogenesis of spondyloarthropathies.J Rheumatol. 2002, 29(5):966-72.
    70. Boyle, LH, JC Goodall, SS Opat, JSH. Gaston. The recognition of HLA-B27 by human CD4+ T lymphocytes. J Immunol. 2001,167:2619-2624.
    71. Boyson, JE, R Erskine, MC Whitman, M Chiu, JM Lau, LA Koopman, MM Valter, P Angelisova, V Horejsi, JL Strominger. Disulfide bond-mediated dimerization of HLA-G on the cell surface. Proc Natl Acad Sci USA. 2002, 99:16180-16185.
    72. Heemskerk, MH, RA de Paus, EG Lurvink, F Koning, A Mulder, R Willemze, JJ van Rood, JH Falkenburg. Dual HLA class I and II restricted recognition of alloreactive T lymphocytes mediated by a single T cell receptor complex. Proc Natl Acad Sci USA. 2001, 98:6806-6811.
    73. Mear JP, Schreiber KL, Munz C, Zhu X, Stevanovic S, Rammensee HG, Rowland-Jones SL, Colbert RA. Misfolding of HLA-B27 as a result of its B pocket, suggests a novel mechanism for its role in susceptibility to spondyloarthropathies. J Immunol. 1999, 163:6665-6670.
    74. Bertolotti, A, Y Zhang, L Hendershot, H Harding, D Ron. Dynamic interaction of BiP and the ER stress transducers in the unfolded protein response. Nat Cell Biol. 2000, 2:326-332.
    75. Hacquard-Bouder C, Ittah M, Breban M. Animal models of HLA-B27-associated diseases: new outcomes. Joint Bone Spine. 2006, 73(2):132-8.
    76. Sam J P Gobin. The role of enhancer A in the locus specific transactivation of classical and nonclassical HLA class I gene by nuclear factor kB. J Immunol. 1998, 161:2276-2283.
    77. James C Cross, Shirley L, Simcha Y. Defective induction of the transcription factor interferon-stimulated gene factor 3 and interferon alpha insensitivity in human trophoblast cell. Biol Reprod. 1999, 60:312-321.
    78. HongKang Xi , Donna D Eason ,Debarati G. Co-occupancy of the interferonregulatory element of the classⅡtransactivator typeⅡpromoter by interferon regulatory factors 1 and 2. Oncogene. 1999, 18: 5889-5903.
    79. Griffioen M, Ouwerkerk IJM, Harten V. HLA2B down-regulation in human melanome is mediated by sequences located downstream of the transcription2initiation site. Int J Cancer. 1999, 49:287
    80. Mavria G, Hall KT, Jones RA. Transcriptional regulation of MHC classⅠgene expression in rat oligldendrocytes. Biochem J. 1998, 330:155.
    81. Keith W, Paul T. Interferon regulatory factor21 is required for interferon-γ-induced MHC classⅠgene in astrocyte. J Neuroimmunol. 2002, 22:74-84.
    82. Peter J, SamJ P, Nienke S. Transcriptional control of MHC genes in fetal trophoblast cell. J Reprod Immunol. 2001, 52:129-145.
    83. Hicklin D J, Marincola FM, Ferrone S. HLA class I antigen downregulation in human cancers: T-cell immunotherapy revives an old story. Mol Med Today. 1999, 5:178-186.
    84. Odile B, Jean2Francois B, Helene Z. Altered binding of regulatory factors to HLA class I enhancer sequence in human tumor cell lines lacking class I antigen expression. Proc Natl Sci USA. 1992, 89:3488-3492.
    85. Tuck W, Kam M H. Locus specific transcriptional control of HLA. J Immunol. 1992, 149(6): 2008-2020.
    86. Griffioen M, Ouwerkerk IJ, Harren V. Role of interferon stimulated response element in HLA-B downregulation in human melanoma cell lines. Immunogenetics. 1999, 49(4):287-294.
    87. Abril E, Real LM, Serrano A. Unresponsiveness to interferon associated with STAT1 Protein deficiency in a gastric adenocarcinoma cell line. Cancer Immunol Immunother. 1998, 47(2):113-120.
    88. Xi H, George B. Interferon regulatory factor22 point mutations in human pancreatic tumor. Int J Cancer. 2000, 87(6): 803-808.
    89. Bee C Sim. A HLA class I cis-regulatory element whose activity can be modulated by hormones. Int Cancer. 1994, 59:646-654.
    90. 1. Stenven R Snyder, Jeffrey F, Sheng Z. A 3’-transcribed region of the HLA-A2 gene mediates postranscriptional stimulation by IFN-γ. J Immunol. 2001, 166:3966-3947.
    91. Baeten D, Demetter P, Cuvelier CA, Kruithof E, van Damme N, de Vos M. Macrophages expressing the scavenger receptor 163: a link between immune alterations of the gut and synovial inflammation in spondyloarthropathy. J Pathol. 2002, 196:343-50.
    92. Baeten D, Moller HJ, Delanghe J, Veys EM, Moestrup SK, de Keyser F. Association of CD163+ macrophages and local production of soluble CD163 with decreased lymphocyte activation in spondylarthropathy synovitis. Arthritis Rheum. 2004, 50:1611-23.
    93. Baeten D, de Rycke L, Vandooren B, Foell D, Roth J, Kruithof E. Synovial histopathology of psoriatic arthritis, oligo- and polyarticular, resembles more spondyloarthropathy than rheumatoid arthritis. Arthritis Res Ther. 2005, 7:569-80.
    94. Baeten D, Kruithof E, de Rycke L, Vandooren B, Wyns B, Boullart L. Diagnostic classification of spondylarthropathy and rheumatoid arthritis by synovial histopathology: a prospective study in 154 consecutive patients. Arthritis Rheum. 2004, 50:2931-41.
    95. Baeten D, Kruithof E, de Rycke L, Boots AM, Mielants H, Veys EM. Infiltration of the synovial membrane with macrophage subsets and polymorphonuclear cells reflects global disease activity inspondyloarthropathy. Arthritis Res Ther. 2005, 7:359-69.
    96. Iwahashi M, Yamamura M, Aita T, Okamoto A, Ueno A, Ogawa N, Akashi S, Miyake K, Godowski PJ, Makino H. Expression of Toll-like receptor 2 on CD16+ blood monocytes and synovial tissue macrophages in rheumatoid arthritis. Arthritis Rheum. 2004, 50(5):1457-67.
    97. Perer M, Rethage J, Seibl R, et a1. Chemokine secretion of 33 rheumatoid arthritis synovial fibroblasts stimulated by Toll-like receptor 2 ligands. J Immunol. 2004, 172(2):1256--1265.
    98. Kyburz D, Rethage J, Seibl R. Bacterial peptidoglycans but not CpG oligodeoxynucleotides activate synovial fibroblasts by Toll-like receptor signaling. Arthritis Rheum. 2003, 47:642-650.
    99. De Rycke L, Vandooren B, Kruithof E, De Keyser F, Veys EM, Baeten D. Tumor necrosis factor alpha blockade treatment down-modulates the increased systemic and local expression of Toll-like receptor 2 and Toll-like receptor 4 in spondylarthropathy. Arthritis Rheum. 2005, 52(7):2146-58.
    100.Timms AE, Crane AM, Sims AM, et a1. The interleukin 1 gene cluster contain a major susceptibility locus for ankylosing spendylitis. Am J Hum Ge net, 2004, 75: 587-595.
    101.Gratacos J, Collado A, Filella X, Sanmarti R, Canete J, Llena J. Serum cytokines (IL-6, TNF-a, IL-1b and IFN-γ) in ankylosing spondylitis: a close correlation between serum IL-6 and disease activity and severity. Br J Rheumatol. 1994, 33:927-31.
    102.Sonel B, Tutkak H, Duzgun N. Serum levels of IL-1beta, TNF-alpha, IL-8, and acute phase proteins in seronegative spondyloarthropathies. Joint Bone Spine. 2002, 69:463-7.
    103.Claudepierre P, Rymer J-C, Chevalier X. IL-10 plasma levels correlate withdisease activity in spondyloarthropathy. J Rheumatol. 1997, 24:1659-61.
    104.Claudepierre P, Rymer J-C, Authier F-J, Allanore Y, Larget-Piet B, Gherardi R. A relationship between TGF-b1 or IL-6 plasma levels and clinical features of spondyloarthropathies. Br J Rheumatol. 1997, 36: 400-6.
    105.Ritchlin C, Haas-Smith SA, Hicks D, Cappuccio J, Osterland CK, Looney RJ. Patterns of cytokine production in psoriatic synovium. J Rheumatol. 1998, 25: 1544-52.
    106.Canete JD, Martinez SE, Farres J, Sanmarti R, Blay M, Gomez A. Differential Th1/Th2 cytokine patterns in chronic arthritis: interferon c is highly expressed in synovium of rheumatoid arthritis compared with seronegative spondyloarthropathies. Ann Rheum Dis. 2000, 59:263-8.
    107.Bas S, Kvien TK, Buchs N. Lower level of synovial fluid interferon-gamma in HLA-B27-positive than in HLA-B27-negative patients with Chlamydia trachomatis reactive arthritis. Rheumatology (Oxford). 2003, 42: 461-467.
    108.Brandt J, Haibel H, Cornely D, Golder W, Gonzalez J, Reddig J. Successful treatment of active ankylosing spondylitis with the anti-tumor necrosis factor a monoclonal antibody infliximab. Arthritis Rheum. 2000, 43: 1346-52.
    109.Gorman JD, Sack KE, Davis JC Jr. Treatment of ankylosing spondylitis by inhibition of tumor necrosis factor alpha. N Engl J Med. 2002, 346:1349-56.
    110.Stone MA, Payne U, Pacheco-Tena C, Inman RD. Cytokine correlates of clinical response patterns to infliximab treatment of ankylosing spondylitis. Ann Rheum Dis. 2004, 63:84-87.
    111.Van Damme N, De Vos M, Baeten D, Demetter P, Mielants H, Verbruggen G. Flow cytometric analysis of gut mucosal lymphocytes supports an impaired Th1 cytokine profile in spondyloarthropathy. Ann Rheum Dis. 2001,60:495-9.
    112.Zou JX, Braun J, Sieper J. Immunological basis for the use of TNFa-blocking agents inankylosing spondylitis and immunological changes during treatment. Clin Exp Rheumatol. 2002, 20(suppl 28):34-7.
    113.Zou JX, Rudwaleit M, Brandt J, Thiel A, Braun J, Sieper J. Down-regulation of the nonspecific and antigen-specific T cell cytokine response in ankylosing spondylitis during treatment with infliximab. Arthritis Rheum. 2003, 48:780-90.
    114.Braun J, Xiang J, Brandt J, Maetzel H, Haibel H, Wu P. Treatment of spondyloarthropathies with antibodies against tumor necrosis factor a: first clinical and laboratory experiences. Ann Rheum Dis. 2000, 59(suppl I):I85-9.
    115.Gu J, Marker-Hermann E, Baeten D, Tsai WC, Gladman D, Xiong M. A 588-gene microarray analysis of the peripheral blood mononuclear cells of spondyloarthropathy patients. Rheumatology (Oxford). 2002, 41:759-66.
    116.Braun J, Bollow M, Neure L, Seipelt E, Seyrekbasan F, Herbst H. Use of immunohistologic and in situ hybridization techniques in the examination of sacroiliac joint biopsy specimens from patients with ankylosing spondylitis. Arthritis Rheum. 1995, 38: 499-505.
    117.Canete JD, Llena J, Collado A, Sanmarti R, Gaya A, Gratacos J. Comparative cytokine gene expression in synovial tissue of early rheumatoid arthritis and seronegative spondyloarthropathies. Br J Rheumatol. 1997, 36:38-42.
    118.Kokame K, Kato H, Miyata T. Identification of ERSE-II, a new cis-acting element responsible for the ATF6-dependent mammalian unfolded protein response. J Biol Chem. 2001, 276(12):9199-205.
    119.Harding HP, Zhang Y, Ron D. Protein translation and folding are coupled by an endoplasmic-reticulum-resident kinase. Nature. 1999, 397 (6716):271-4.
    120.Pomar N, Berlanga JJ, Campuzano S, Hernandez G, Elias M, de Haro C. Functional characterization of Drosophila melanogaster PERK eukaryotic initiation factor-alpha (eIF-alpha) kinase. Eur J Biochem. 2003, 270(2):293-306.
    121.Brewer JW, Diehl JA. PERK mediates cell-cycle exit during the mammalian unfolded protein response. Proc Natl Acad Sci USA. 2000, 97(23):12625-30.
    122.Kaufman RJ, Scheuner D, Schroder M, Shen X, Lee K, Liu CY, Arnold SM. The unfolded protein response in nutrient sensing and differentiation. Nat Rev Mol Cell Biol. 2002, 3(6):411-21.
    123.Pahl, HL, PA. Baeuerle. The ER-overload response: activation of NF-kappa B. Trends Biochem Sci. 1997, 22:63-67
    124.Shastry BS. Neurodegenerative disorders of protein aggregation. Neurochem Int. 2003, 43(1): 1-7.
    125.Ozcan U, Cao Q, Yilmaz E, Lee AH, Iwakoshi NN, Ozdelen E, Tuncman G, Gorgun C, Glimcher LH, Hotamisligil GS. Endoplasmic reticulum stress links obesity, insulin action, and type 2 diabetes. Science. 2004, 306(5695):457-61.
    126.Oyadomari S, Araki E, Mori M. Endoplasmic reticulum stress-mediated apoptosis in pancreaticβ-cells. Apoptosis. 2002, 7(4):335-345.
    127.Oyadomari S, Takeda K, Takiguchi M. Nitric oxide induced apoptosis in pancreatic beta cells is mediated by the endoplasmic reticulum stress pathway. Natl Acad Sci USA, 2001, 98(19):10845-10850.
    128.Oyadomari S, Koizumi A, Takeda K, et a1. Targeted disruption of theCHOP gene delays endoplasmic reticulum stress-mediated diabetes. J Clin Invest. 2002, 109(4):525-532.
    129.Lereux L, Desbois P, Lamotte L, et a1. Compensatory response in mice carrying a null mutation for Insl or Ins2. Diabetes. 2001, 50(Suppl1):S150 -S153.
    130.Xu Z, Jensen G, Yen TS. Activation of hepatitis B virus S promoter by the viral large surface protein via induction of stress in the endoplasmic reticulum. J Virol. 1997, 71(10):7387-92.
    131.Wang HC, Huang W, Lai MD, Su IJ. Hepatitis B virus pre-S mutants, endoplasmic reticulum stress and hepatocarcinogenesis. Cancer Sci. 2006, 97(8):683-8.
    132.Su HL, Liao CL, Lin YL. Japanese encephalitis virus infection initiates endoplasmic reticulum stress and an unfolded protein response. J Virol. 2002, 76(9):4162-71.
    133.Lawless MW, Greene CM, Mulgrew A, Taggart CC, O'Neill SJ, McElvaney NG. Activation of endoplasmic reticulum-specific stress responses associated with the conformational disease Z alpha 1-antitrypsin deficiency. J Immunol. 2004, 172(9):5722-6.
    134.Hidvegi T, Schmidt BZ, Hale P, Perlmutter DH. Accumulation of mutant alpha1-antitrypsin Z in the endoplasmic reticulum activates caspases-4 and -12, NF kappa B, and BAP31 but not the unfolded protein response. J Biol Chem. 2005, 280(47): 39002-15.
    135.Nagaraju K, Casciola-Rosen L, Lundberg I, Rawat R, Cutting S, Thapliyal R, Chang J, Dwivedi S, Mitsak M, Chen YW, Plotz P, Rosen A, Hoffman E, Raben N. Activation of the endoplasmic reticulum stress response in autoimmune myositis: potential role in muscle fiber damage anddysfunction. Arthritis Rheum. 2005, 52(6):1824-35.
    136.Turner MJ, Sowders DP, DeLay ML, Mohapatra R, Bai S, Smith JA, Brandewie JR, Taurog JD, Colbert RA. HLA-B27 misfolding in transgenic rats is associated with activation of unfolded protein response. J Immunology. 2005, 175: 2438-48.
    137.Tran TM, Satumtira N, Dorris ML, May E, Wang A, Furuta E, Taurog JD. HLA-B27 in transgenic rats forms disulfide-linked heavy chain oligomers and multimers that bind to the chaperone BiP. J Immunology. 2004, 172 (8):5110-5119.
    138.Penttinen MA, Heiskanen KM, Mohapatra R, DeLay ML, Colbert RA, Sistonen L, Granfors K. Enhanced intracellular replication of Salmonella in HLA-B27 expressing human monocytic cells. Arthritis Rheumatism. 2004, 50(7):2255-63.
    139.Goodall JC, Ellis L, Yeo GS, Gaston JS. Does HLA-B27 influence the monocyte inflammatory response to lipopolysaccharide? Rheumatology (Oxford). 2007, 46(2): 232-7.
    140.Hung JH, Su IJ, Lei HY, Wang HC, Lin WC, Chang WT, Huang W, Chang WC, Chang YS, Chen CC, Lai MD.. Endoplasmic reticulum stress stimulates the expression of cyclooxygenase-2 through activation of NF-kappaB and pp38 mitogen-activated protein kinase. J Biol Chem. 2004, 279(45):46384-392.
    141.Marjon PL, Bobrovnikova-Marjon EV, Abcouwer SF. Expression of the pro-angiogenic factors vascular endothelial growth factor and interleukin-8/CXCL8 by human breast carcinomas is responsive to nutrient deprivation and endoplasmic reticulum stress. Mol Cancer. 2004, 3:4.
    142.Lin W, Harding HP, Ron D, Popko B. Endoplasmic reticulum stressmodulates the response of myelinating oligodendrocytes to the immune cytokine interferon-gamma. J Cell Biol. 2005, 169(4):603-12.
    143.Ikawa T, Ikeda M, Yamaguchi A, Tsai WC, Tamura N, Seta N, Trucksess M, Raybourne RB, Yu DT. Expression of arthritis-causing HLA-B27 on Hela cells promotes induction of c-fos in response to in vitro invasion by Salmonella typhimurium. J Clin Invest. 1998, 101(1): 263-72.
    144.Ekman P, Saarinen M, He Q, Gripenberg-Lerche C, Gronberg A, Arvilommi H, Granfors K. HLA-B27-transfected (Salmonella permissive) and HLA-A2-transfected (Salmonella nonpermissive) human monocytic U937 cells differ in their production of cytokines. Infect Immun. 2002, 70(3): 1609-14.
    145.Hattori T, Ohoka N, Hayashi H, Onozaki K. C/EBP homologous protein (CHOP) up-regulates IL-6 transcription by trapping negative regulating NF-IL6 isoform. FEBS Lett. 2003, 541(1-3):33-9.
    146.Iwakoshi NN, Lee AH, Vallabhajosyula P, Otipoby KL, Rajewsky K, Glimcher LH Plasma cell differentiation and the unfolded protein response intersect at the transcription factor XBP-1. Nat Immunol. 2003, 4(4):321-9.
    147.Le Bouteiller, P. HLA class I chromosomal region, genes, and products: facts and questions. Crit Rev Immunol. 1994, 14:89-129.
    148.van den Elsen PJ, Holling TM, Kuipers HF, van der Stoep N. Transcriptional regulation of antigen presentation. Curr Opin Immunol. 2004, 16:67-75.
    149.Cerundolo V, T Elliott, J Elvin, J Bastin, HG Rammensee and A Townsend. (1991). The binding affinity and dissociation rates of peptides for class I Major Histocompatibility complex molecules. Eur J Immunol. 21:2069-2075.
    150.Gobin SJP, Keijsers V, Woltman A M, Peijnenburg A, Wilson L, Van den Elsen PJ. Locus-specific regulation of HLA class I gene expression. In: D. Charron (ed.): Genetic diversity of HLA: Functional and Medical Implications 1997, (Vol 2):295-297.
    151.Girdlestone J, Isamat M, Gewert D, Milstein C. Transcriptional regulation of HLA-A and -B: differential binding of members of the Rel and IRF families of transcription factors. Proc Natl Acad Sci USA. 1993, 90:11568-11572.
    152.van den Elsen PJ, Gobin SJ, van Eggermond MC, Peijnenburg A. Regulation of MHC class I and II gene transcription: differences and similarities. Immunogenetics. 1998, 48: 208-221.
    153.Goes, N., Sims, T., Urmson, J., Vincent, D., Ramassar, V., and Halloran, P. F. Disturbed MHC regulation in the IFN- g knockout mouse. Evidence for three states of MHC expression with distinct roles for IFN-g. J Immunol. 1995, 155: 4559-4566.
    154.Hakem R, LeBouteiller P, Jezo-Bremond A, Harper K, Campese D, Lemonnier FA. Differential regulation of HLA-A3 and HLA-B7 MHC class I genes by IFN is due to two nucleotide differences in their IFN response sequences. J Immunol. 1991, 147:2384-2390.
    155.Girdlestone J, Milstein C. Differential expression and interferon response of HLA class I genes in thymocyte lines and response variants. Eur J Immunol. 1988, 18:139-143.
    156.Schmidt H, Gekeler V, Haas H, Engler-Blum G, Steiert I, Probst H, Müller CA. Differential regulation of HLA class I genes by interferon. Immunogenetics. 1990, 31:245-252.
    157.Braun J, Bollow M, Neure L. Use of immunohistologic and in situhybridization techniques the examination of sacroiliac joint biopsy specimens from patients from patients with ankylosing spondylitis. Arthritis Rheum. 1995, 38:499-505.
    158.Hamzaoui K, Hamza M, Ayed K. Production of TNF and IL-1 in active Behcet′s disease. J Rheumatol. 1990, 17:1107-1108.
    159.Mege JL, Dilsen N, Sanguedolce V, Gul A, Bongrand P, Roux H, Ocal L, Inan? M, Capo C. Overproduction of Monocyte Derived Tumor Necrosis Factorα, Interleukin ( IL )-6 , IL-8 and increased neutrophil superoxide generation in Behcet′s disease: a comparative study with familial mediterranean fever and healthy subjects. J Rheumatol. 1993, 20:1544-1549.
    160.Tutuncu ZN, Bilgie A, Kennedy LG, Calin A. Interleukin-6, acute phase reactants and clinical status in ankylosing spondylitis. Ann Rheum Dis. 1994, 53(6):425-426.
    161.Repo H, J??ttel? M, Leirisalo-Repo M, Hurme M. Production of tumour necrosis factor and interleukin 1 by monocytes of patients with previous Yersinia arthritis. Clin Exp Immunol. 1988, 72:410-414.
    162.Houssiau FA, Devogelaer JP, Van Damme J, de Deuxchaisnes CN, Van Snick J. Interleukin-6 in synovial fluid and serum of patients with rheumatoid arthritis and other inflammatory arthritides. Arthritis Rheum. 1988, 31:784-788.
    163.Remving L. Sulfasalazine inhibition of endotoxin induced interleukin-1 production from human monocytes in vitro. Scand J Immunol. 1988, 28:507.
    164.Gratacós J, Collado A, Filella X, SanmartíR, Ca?ete J, Llena J, Molina R, Ballesta A, Mu?oz-Gómez J. Serum cytokines ( IL-6, TNF, IL-1, IFN-γ) inankylosing spondylitis. Br J Rheumatol. 1994, 33:927-931.
    165.Grom AA, Murray KJ, Luyrink L, Emery H, Passo MH, Glass DN, Bowlin T, Edwards C 3rd. Patterns of expression of tumor necrosis factorα,tumor necrosis factorβ,and other receptors in synovia of patients with juvenile rheumatoid arthritis and juvenile spondylarthropathy. Arthritis Rheum. 1996, 39:1703-1710.
    166.Di Giovine FS, Nuki G, Duff GW. Tumour necrosis factor in synovial exudates. Ann Rheum Dis. 1988, 47:768-772.
    167.1. Partsch G, Wagner E, Leeb BF, Br?ll H, Dunky A, Smolen JS. T cell derived cytokines in psoriatic arthritis synovial fluids. Ann Rheum Dis. 1998, 57(11):691-693.
    168.Schlaak JF, Pfers I, Meyer zum Büschenfelde K-H, M?rker-Hermann E. Different cytokine profiles in the synovial fluid of patients with osteoarthritis, rheumatoid arthritis and seronegative spondylarthropathies. Clin Exp Rheumatol. 1996, 14:155-162.
    169.Gu, J, M Rihl, E Marker-Hermann, D Baeten, JG Kuipers, YW Song, WP Maksymowych, R Burgos-Vargas, EM Veys, F De Keyser, H Deister, M Xiong, F Huang, WC Tsai, DT Yu. Clues to the pathogenesis of spondyloarthropathy derived from synovial fluid mononuclear cell gene expression profiles. J Rheumatol. 2002, 29:2159-2164.
    170.Khan MA. HLA-B27 polymorphism and association with disease. J Rheumatol. 2000, 27:1110-1114.
    171.D’Amato M, Fiorillo MT, Carcassi C . Relevance of residue 116 of HLA-B27 in determining susceptibility to ankylosing spondylitis. Eur J Immunol. 1995, 25:3199-3201.
    172.Lopez-Larrea C, Sujirachato K, Mehra NK. Hla-B27 subtypes in Asianpatients with ankylosing spondylitis. Evidence for new associations. Tissue Antigens. 1995, 45:169-76.
    173.Coppin HL, McDevitt HO. Absence of polymorphism between HLA-B27 genomic exon sequences isolated from normal donors and ankylosing spondylitis patients. J Immunol. 1986, 137:2168-2172.
    174.Cauli A, Dessole G, Fiorillo MT, Vacca A, Mameli A, Bitti P, Passiu G, Sorrentino R, Mathieu A. Increased level of HLA-B27 expression in ankylosing spondylitis patients compared with healthy HLA-B27-positive subjects: a possible further susceptibility factor for the development of disease. Rheumatology. 2002, 41:1375-1379.
    175.van den Elsen PJ, Holling TM, Kuipers HF, van der Stoep N. Transcriptional regulation of antigen presentation. Curr Opin Immunol. 2004 16:67-75.
    176.Gobin SJ, van Zutphen M, Westerheide SD, Boss JM, van den Elsen PJ. The MHC-specific enhanceosome and its role in MHC class I and beta(2)-microglobulin gene transactivation. J Immunol. 2001, 167:5175-84.
    177.Johnson DR. Locus-specific constitutive and cytokine-induced HLA class I gene expression. J Immunol. 2003, 170:1894-902.
    178.RUDWALEIT M, SIEGERT S. Low T cell production of TNF-a and IFN-γin ankylosing spondylitis:its relation to HLA-B27 and influence of the TNF-308 gene polymorphism. Ann Rheum Dis. 2001, 60: 36-42.
    179.Keller C, Webb A, Davis J. Cytokines in the seronegative spondyloarthropathies and their modification by TNF blockade: a brief report and literature review. Ann Rheum Dis. 2003, 62: 1128-1132.
    180.Gorman JD, Sack KE, Davis JC. Treatment of ankylosing spondylitis by inhibition of tumor necrosis factor a. N Engl J Med. 2002, 346: 1349-1356.
    181.Chou CT, Huo AP, Chang HN, Tsai CY, Chen WS,Cytokine production from peripheral blood mononuclear cells in patients with ankylosing spondylitis and their first-degree relatives. Arch Med Res. 2007 , 38(2):190-5.
    182.Bal A, Unlu E, Bahar G, Aydog E, Eksioglu E, Yorgancioglu R. Comparison of serum IL-1 beta, sIL-2R, IL-6, and TNF-alpha levels with disease activity parameters in ankylosing spondylitis. Clin Rheumatol. 2007 Feb; 26(2):211-5.
    183.Claudepierre P, Rymer JC, Chevalier X. IL-10 plasma levels correlate with disease activity in spondyloarthropathy. J Rheumatol. 1997, 24: 1659-16.
    184.T.W.J. Huizinga, V. Keijsers, G. Yanni, M. Hall, W. Ramage and L. Lanchbury., Are differences in interleukin 10 production associated with joint damage? Rheumatology. 2000, 39: 1180–1188.
    185.Yoshida H, Matsui T, Yamamoto A, Okada T, Mori K. XBP1 mRNA is induced by ATF6 and spliced by IRE1 in response to ER stress to produce a highly active transcription factor. Cell. 2001, 107:881-891.
    186.Penttinen MA, Heiskanen KM, Mohapatra R, DeLay ML, Colbert RA, Sistonen L, Granfors K. Enhanced intracellular replication of Salmonella in HLA-B27 expressing human monocytic cells. Arthritis Rheumatism. 2004, 50(7):2255-2263.
    187.Goodall JC, Ellis L, Yeo GS, Gaston JS. Does HLA-B27 influence the monocyte inflammatory response to lipopolysaccharide? Rheumatology (Oxford). 2007, 46(2):232-237.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700