用户名: 密码: 验证码:
前列腺癌特异性分子探针的构建及其活体MR成像实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:
     1.培养人前列腺癌细胞系,建立前列腺癌荷瘤裸鼠模型,探讨PSCA在其中的表达及其意义;
     2.应用纳米金磁微粒标记抗人PSCA单抗7F5,构建前列腺癌特异性MR分子探针7F5@GoldMag,检测其与前列腺癌细胞结合的特异性;
     3.探讨7F5@GoldMag用于体外、体内MR显像的可行性及其在PCa特异性诊断中的价值和意义。
     方法:
     1.培养人前列腺癌细胞系LNCaP、PC-3和人肝癌细胞系SMMC-7721,建立荷瘤裸鼠模型,利用免疫组织化学,间接免疫荧光,免疫细胞化学,流式细胞术和western blotting等方法,检测PSCA在体外培养的前列腺癌细胞系及荷瘤裸鼠肿瘤中的表达。
     2.将金磁微粒作为MR对比剂标记7F5,应用非共价键偶联方法构建前列腺癌特异性MR分子探针7F5@GoldMag,通过激光共聚焦显微镜观察,流式细胞术,透射电镜观察等方法,检测探针与前列腺癌细胞结合的特异性。
     3.利用临床应用的3.0T磁共振扫描仪建立MR扫描序列,观察不同浓度的金磁微粒MR成像情况,探讨MR可分辨的最低浓度;研究探针用于特异性体外细胞成像的可行性;对荷瘤裸鼠经尾静脉注射7F5@GoldMag,分别在注射前、注射后6 h、12 h和24 h行MR扫描,观察其对肿瘤T2WI信号的影响,探讨其用于体内肿瘤MR成像的可行性。
     结果:
     1.人前列腺癌细胞系LNCaP、PC-3及人肝癌细胞系SMMC-7721呈单层贴壁生长;LNCaP细胞成瘤率12.5%(1/8);PC-3和SMMC-7721细胞成瘤率100%(8/8);免疫细胞化学染色、间接免疫荧光、Western-blot及流式细胞术检测结果证实LNCaP、PC-3细胞表达PSCA;SMMC-7721细胞不表达PSCA;荷瘤裸鼠组织的免疫组织化学染色证实了类似结果。
     2.成功构建了前列腺癌特异性MR分子探针7F5@GoldMag;流式细胞术检测结果7F5@GoldMag与LNCaP及PC-3细胞结合率分别为85.2%和92.1%,而与SMMC-7721细胞结合率为4.2%,无关抗体@GoldMag组三种细胞均为阴性;激光共聚焦显微镜观察见LNCaP和PC-3细胞与7F5@GoldMag有特异性结合,红色荧光位于细胞膜,SMMC-7721细胞的胞膜未见红色荧光,无关抗体组各细胞系均为阴性;透射电镜观察LNCaP及PC-3靠近细胞膜可见多个直径约50nm的团块状致密电子密度颗粒聚集, SMMC-7721细胞表面未见致密电子密度颗粒,无关抗体@GoldMag组各细胞系均仅个别视野见少量致密电子密度颗粒,且距离细胞膜较远。
     3. GoldMagTM-CS稀释至1:640与1%琼脂糖凝胶相比,T2WI序列信号强度差异有统计学意义;利用7F5@GoldMag标记不同细胞系行MR扫描结果提示, 7F5@GoldMag可显著降低LNCaP和PC-3细胞T2WI信号,而对SMMC-7721MR信号无显著影响。非特异抗体偶联的GoldMag对三种细胞MR信号均无显著影响。
     4.荷瘤裸鼠MR显像结果,PC-3荷瘤裸鼠注射7F5@GoldMag 6 h、12 h和24 h后肿瘤组织T2WI信号强度较平扫显著降低(ANOVA,F=43.675,p=0.000);注射探针后12 h较6 h信号强度有进一步降低(p=0.001);注射后12 h和24 h肿瘤信号强度差异无统计学意义(p=0.145)。而SMMC-7721+7F5@GoldMag、PC-3+无关抗体@GoldMag和SMMC-7721+无关抗体@GoldMag组在平扫和注射造影剂后6 h、12 h和24 h肿瘤信号强度差异无统计学意义。
     结论:
     应用纳米金磁微粒与抗人PSCA单抗7F5偶联成功构建了前列腺癌特异性MR探针7F5@GoldMag,具有良好的理化性质和免疫活性,在3.0 T MR扫描仪检测对体外前列腺癌细胞及活体前列腺癌组织具有靶向性的增强效果,为下一步的临床实验打下了基础。
Objective:
     1. To cultivate prostate cancer cell lines and to establish the nude mice model grafted with human PCa and to determine the expression of PSCA.
     2. To construct the PSCA specific MR molecular probe 7F5@GoldMag, and to examine its biochemical characteristics.
     3. To investigate the feasibility of in vitro and in vivo MRI of 7F5@GoldMag in PCa by using a clinical 3.0 T MR system.
     Methods:
     1. Prostate cancer cell lines were cultured and nude mice models were established. The expression of PSCA of prostate cancer cell lines and nude mice model was determined by using indirect immunofluorescence, immunocytochemistry, flow cytometry, western blotting and immunohistochemistry.
     2. The PSCA specific MR molecular probe 7F5@GoldMag was constructed by conjugating anti-human PSCA mAb 7F5 with GoldMagTM-CS nanoparticles, and the coupling efficiency was calculated. The specific binding capability for 7F5@GoldMag to prostate cancer cells was detected by using laser confocal microscopy, transmission electron microscope and flow cytometry.
     3. MR scan sequences were established by using a clinical 3.0 T MR scanner. GoldMagTM-CS nanoparticles solution in different concentration was scanned to ascertain the lowest concentration that can be detected by MR system. The feasibility of molecular imaging of PSCA specific MR probe 7F5@GoldMag in vitro and in vivo was investigated. After conventional scan, T2W images were obtained after the probe was injected into nude mice model through caudal vein 6 h, 12 h and 24 h later, respectively. Statistical analyses were performed to assess the statistical differences of tumor signal intensity using one-way ANOVA with SPSS 11.5 software package as parameters were normally distributed. p<0.05 was considered as statistically significant difference.
     Results:
     1. The LNCaP, PC-3 and SMMC-7721 cells were injected subcutaneously in nude mice and the tumor incidence rates were LNCaP 12.5% (1/8), PC-3 100% (8/8) and SMMC-7721 100% (8/8), respactively. The results of indirect immunofluorescence, immunocytochemistry, flow cytometry, western blotting and immunohistochemistry showed that PSCA had high level expression on the plasma membrane of LNCaP and PC-3 cells, while no positive findings on the plasma membrane of SMMC-7721 cells.
     2. The PSCA specific MR molecular probe (7F5@GoldMag) was successfully constructed. The results of laser confocal microscopy, transmission electron microscope and flow cytometry proved that 7F5@GoldMag can specific bind with LNCaP and PC-3 cells.
     3. The T2WI signal intensity of GoldMagTM-CS was significantly lower than that of agarose gel even if the former was diluted by 640 times. 7F5@GoldMag could specificly decrease T2WI signal intensity of LNCaP and PC-3 cells in vitro.
     4. After the probe 7F5@GoldMag was injected into nude mice model through caudal vein 6 h, 12 h and 24 h later, T2WI signal intensity of PC-3 tumor was significantly lower than that of conventional scan (ANOVA, F=43.675, p=0.000). After the probe was injected 12 h later, the signal intensity showed further decrease than 6 h later (p=0.001). The tumor signal intensity showed no significant difference between 12 h and 24 h (p=0.145). While the signal intensity of control groups didn’t show significant difference after injection of 7F5@GoldMag and non-related IgG@GoldMag, respectively.
     Conclusion:
     1. The PSCA specific MR molecular probe (7F5@GoldMag) was successfully constructed by conjugating anti-human PSCA mAb 7F5 with GoldMagTM-CS nanoparticles. It could specificly bind with PSCA positive prostate cancer cells.
     2. 7F5@GoldMag has target-directed enhancement effect in prostate cancer cell lines in vitro and in nude mice model grafted with PC-3 in vivo using a clinical 3.0 T MR scanner. It may therefore be a new noninvasive specific MR molecular probe in early-stage diagnosis of prostate carcinoma in the future.
引文
1. Jemal A, Siegel R, Ward E, et al. Cancer statistics, 2006. CA Cancer J Clin 2006;56(2):106-130.
    2. Gu FL. Epidemiological survey of benign prostatic hyperplasia and prostatic cancer in China. Chin Med J (Engl) 2000;113(4):299-302.
    3.顾方六主编.现代前列腺病学.北京:人民军医出版社,2002.
    4. Smith J, Vallabhajosula S, Navarro V,et al. Radiolabeled Monoclonal Antibodies Specific to the Extracellular Domain of Prostate-specific Membrane Antigen: Preclinical Studies in Nude Mice Bearing LNCaP Human Prostate Tumor. J Nucl Med, 2003;44 (4): 610-617.
    5. Javier H, Ian MT. Diagnosis and Treatment of Prostate Cancer. Med Clin N Am, 2004(88): 267–279.
    6. Stephan G, J. CH, Jurgen M, et al. Prostate-specific Antigen: Effect of Pelvic Irradiation. Radiology, 2000;215: 757-760.
    7. Ornstein DK, Kang J. How to Iimprove Prostate Biopsy Detection of Prostate Cancer. Curr Urol Rep, 2001, 2(3):218-223.
    8. Matlaga BR, Eskew LA, Mccullough DL. Prostate Biopsy Indications and Techniques. J Urol, 2003;169: 12-19.
    9. Zeng J, Bauer J, Zhang W, et al. Prostate Biopsy Protocols: 3D Visualization-based Evaluation and Clinical Correlation. Comput Aided Surg, 2001;6(1): 14-21.
    10. Ewa K, Matthew AB, Helen MF, et al. Predictors of Prostate Carcinoma: Accuracy of Gray-Scale and Color Doppler US and Serum Markers. Radiology, 2001;220: 757-764.
    11. Ethan JH,Ferdinand F,Stephen ES,et al. Prostate: High-Frequency Doppler US Imaging for Cancer Detection. Radiology, 2002;225: 71-77.
    12.李松年主编,中华医学影像学泌尿生殖系统卷.北京:人民卫生出版社,2002.
    13. Jeffrey SM, Michael LP, Peter AS, et al. Frequency of Coexistent Disease at CT in Patients with Prostate Carcinoma Selected for Definitive Radiation Therapy: Is Limited Treatment-planning CT Adequate? Radiology, 2000;215: 41-44.
    14. Wang L, Zhang JB, Schwartz LH, et al. Incremental Value of Multiplanar Cross-Referencing for Prostate Cancer Staging with Endorectal MRI. AJR 2007; 188:99-104.
    15. Liang Wang, Michael M, Hui-Ni Chen, et al. Prostate Cancer: Incremental Value of Endorectal MR Imaging Findings for Prediction of Extracapsular Extension. Radiology, 2004; 232: 133-139.
    16. Fergus VC, Hedvig H, Antje EW, et al. Brachytherapy for Prostate Cancer: Endorectal MR Imaging of Local Treatment related Changes. Radiology 2001;219:817-821.
    17. Jung DC, Lee HJ, Kim SH, et al, Preoperative MR Imaging in the Evaluation of Seminal Vesicle Invasion in Prostate Cancer: Pattern Analysis of Seminal Vesicle Lesions. J Magn Reson Imaging, 2008;28:144-150.
    18. Choi YJ, Kim JK, Kim N, et a1. Functional MR Imaging of Prostate Cancer. Radio Graphics 2007;27:63-77.
    19. Bammer R. Basic Principles of Diffusion-weighted imaging. Eur J Radiol, 2003; 45(3): 169-184.
    20. Leuthardt EC, Wippold FJ, Oswood MC, et al. Diffusion-weighted MR imaging in the preoperative assessment of brain abscesses. Surg Neurol, 2002;(58):395-402.
    21. Naganawa S, Kawai H, Fukatsu H, et al. Diffusion-weighted imaging of theliver: technical challenges and prospects for the future. Magnetic Resonance in Medical Science, 2005; 4(4):175-186.
    22. Gourtsoyianni S, Papanikolaou N, Yarmenitis S, et al. Respiratory gated diffusion-weighted imaging of the liver: value of apparent diffusion coefficient measurements in the differentiation between most commonly encountered benign and malignant focal liver lesions. Eur Radiol 2008;18:486-492.
    23. Matsuki M, Inada Y, Tatsugami F, et al. Diffusion-weighted MR imaging for urinary bladder carcinoma: initial results. Eur Radiol 2007;17: 201-204.
    24. Hosseinzadeh K, Schwarz SD. Endorectal Diffusion-Weighted Imaging in Prostate Cancer to Differentiate Malignant and Benign Peripheral Zone Tissue. J Magn Reson Imaging 2004;20: 654-661.
    25. Haider MA, Kwast TH, Tanguay J, et al. Combined T2-Weighted and Diffusion-Weighted MRI for Localization of Prostate Cancer. AJR 2007;189:323-328
    26. Sato C, Naganawa S, Nakamura T, et al. Differentiation of noncancerous tissue and cancer lesions by apparent diffusion coefficient values in transition and peripheral zones of the prostate. J Magn Reson Imaging 2005;21:258-262.
    27. Pickles MD, Hons BS, Gibbs P, et al. Diffusion-Weighted Imaging of Normal and Malignant Prostate Tissue at 3.0T. J Magn Reson Imaging 2006;23:130-134.
    28. Tamada T, Sone T, Jo Y, et al. Apparent Diffusion Coefficient Values in Peripheral and Transition Zones of the Prostate: Comparison between Normal and Malignant Prostatic Tissues and Correlation with Histologic Grade. J Magn Reson Imaging 2008;28:720-726.
    29. Kim CK, Choi D, Park BK, et al. Diffusion-weighted MR imaging for the evaluation of seminal vesicle invasion in prostate cancer: initial results. J Magn Reson Imaging 2008;28:963-969.
    30. Mark WP, Qing Y, Alan BP, et a1. Perfusion Magnetic Resonance Imaging Maps in Hyperacute Stroke: Relative Cerebral Blood Flow Most Accurately Identifies Tissue Destined to Infarct. Stroke 2001; 32: 1581-1587.
    31.李永忠,李坤成,蒋涛等. MR灌注成像在肺栓塞诊断中的应用.中华放射学杂志,2001,35 (4):273-276.
    32. IchiKawa T, Haradome H, Hachiya J, et al. Characterization of Hepatic Lesions by Perfusion-weighted MR Imaging with an Echoplanar Sequence. AJR, 1998, 170(4): 1029-1034.
    33. Bigler SA, Deering RE, Brawer MK. Comparison of Microscpic Vascularity in Benign and Malignant Prostate Tissue. Hum Pathol 1993;24(2): 220-226.
    34. Hara N, Okuizumi M, Koike H, et a1. Dynamic Contrast-Enhanced Magnetic Resonance Imaging Is a Useful Modality for the Precise Detection and Staging of Early Prostate Cancer. The Prostate 2005;62:140-147.
    35.倪新初,沈钧康,陆之安等.前列腺癌与良性前列腺增生症的MR动态增强与血管生成的相关性研究.中华放射学杂志,2005,(39):54-59.
    36. Ren J, Huan Y, Wang H, et al. Dynamic contrast-enhanced MR Imaging of benign prostatic hyperplasia and prostatic carcinoma: correlation with angiogenesis. Clin Radiol 2008;62:153-159.
    37. Rentsz J, Engelbrecht M, Jager G, et a1. Fast Dynamic Gadolinium-enhanced MR Imaging of Urinary Bladder and Prostate Cancer. Magn Reson Imaging 1999;(10): 295-304.
    38. Heverhagen JT, von H, Baudendistel KT. et a1. Benign ProstateHyperplasia: Evaluation of Treatment Response with DCE MRI. MAGMA, 2004;(17):5-11.
    39. Dhingsa R, Qayyum A, Coakley FV, et al. Prostate Cancer Localization with Endorectal MR Imaging and MR Spectroscopic Imaging: Effect of Clinical Data on Reader Accuracy. Radiology 2004;230:215-220.
    40. Zakian KL, Eberhardt S, Hricak H, et al. Transition Zone Prostate Cancer: Metabolic Characteristics at 1HMR Spectroscopic Imaging-Initial Results. Radiology 2003;229: 241-247.
    41. Fergus VC,Hui ST, Aliya Q, et al. Endorectal MR Imaging and MR Spectroscopic Imaging for Locally Recurrent Prostate Cancer after External Beam Radiation Therapy: Preliminary Experience. Radiology 2004;233:441-448.
    42. Weissleder R. Molecular imaging: exploring the new frontiers. Radiology 1999;212(3):609-614.
    43. Weissleder R, Mahmood U. Molecular imaging. Radiology, 2001;219(2):316-333.
    44. ThackurM, Lentle BC. Report of a summit onmolecular imaging. Radiology 2005;236(3):753-755.
    45.魏光全,宦怡.分子特异性探针构建策略.中华放射学志, 2005;39(8):887-889.
    46. Jaffer FA, Weissleder R. Molecular imaging in the clinical arena. JAMA 2005;293(7):855-862.
    47. Rudin M, Weissleder R. Molecular imaging in drug discovery and development. Nat Rev Drug Discov 2003;2(2):123-131.
    48. Kelloff GJ, Krohn KA, Larson SM, et al. The progress and promise of molecular imaging probes in oncologic drug development. Clin Cancer Res2005;11(22):7967-7985.
    49. Herschman HR. Molecular imaging: looking at problems, seeing solutions. Science 2003;302(5645): 605- 608.
    50. Massoud TF, Gambhir SS. Molecular imaging in living subjects: seeing fundamental biological processes in a new light. Genes Dev 2003;17(50):545-580.
    51. Sullivan DC, Kelloff G. Seeing into cells: the promise of in vivo molecular imaging in oncology. EMBO Rep, 2005;6(4):292-296.
    52. Fujimoto JG. Optical coherence tomography for ultrahigh resolusion in vivo imaging. Nat biotechnol 2003;21(11):1361-1367.
    53. Yang M, Jiang P, Yamamoto N, et al. Real-Time Whole-Body Imaging of an Orthotopic Metastatic Prostate Cancer Model Expressing Red Fluorescent Protein The Prostate 2005;62:374-379.
    54. Adams JY, Johnson M, Sato M, et al. Visualization of advanced human prostate cancer lesions in living mice by a targeted gene transfer vector and optical imaging. Nat Med 2002; 8(8):891-896.
    55. Mahmood U, Tung CH, Tang Y, et al. Feasibility of in vivo multichanel optical imaging of gene expression: experimental study in mice. Radiology, 2002;224(2):446-551.
    56. Yang M, Burton DW, Geller J, et al. The Bisphosphonate Olpadronate Inhibits Skeletal Prostate Cancer Progression in a Green Fluorescent Protein NudeMouseModel. Clin Cancer Res 2006;12(8):2602-2606.
    57. Ntziachristos V, Ripoll J, Wang LV, et al. Looking and listening to light: the evolution of whole body photonic imaging. Nat biotechnol 2005;23(3):313-320.
    58. Bremer C, Tung CH, Weissleder R. In vivo molecular target assessment ofmatrix metalloproteinase inhibition. Nat Med 2001;7(6):743-748.
    59. Weissleder R. A clear revision for in vivo imaging. Nat Biotechnol 2001;19(3): 316-317.
    60. Goldenberg DM, sharkey RM, Ford E, et al. Anti-antibody enhancement of iodine-131 anti-CEA radioimmunodetection in experimental and clinical studies. J Nucl Med 1987;28(10):1610-1615.
    61. Petronis JD, Regan F, Lin K. Indium-111 capromab pendetide (ProstaScint) imaging to detect recurrent and metastatic prostate cancer. Clin Nucl Med 1998;23(10):672-677.
    62. Hinkle GH, Burgers JK, Neal CE, et al. Multicenter radioimmuno scintigraphic evaluation of patients with prostate carcinoma using indium-111 capromab pendetide. Cancer 1998;83(4):739-747.
    63.居胜红,滕皋军,毛曦,等.脐血间充质干细胞磁探针标记和MR成像研究.中华放射学杂志, 2005;39(1):101-106.
    64. Weber A, Pedrosa I, Kawamoto A, et al. Magnetic resonance mapping of transplanted endothelial progenitor cells for therapeutic neovascularization in ischemic heart disease. Eur J Cardiothorac Surg 2004;26(6):137-143.
    65. Reddy GR, Bhojani MS, McConville P, et al. Vascular Targeted Nanoparticles for Imaging and Treatment of Brain Tumors. Clin Cancer Res 2006; 12(22):6677-6686.
    66. Shapiro EM, Skrtic S, Sharer K, et al. MRI detection of single particles for cellular imaging. PNAS 2004; 101(7):10901-10906.
    67. Williams JB, Ye Q, Hitchens TK , et al. MRI Detection of Macrophages Labeled Using Micrometer-Sized Iron Oxide Particles. J Magn Reson Imaging 2007;25:1210-1218.
    68. Cyr M, Caron MG, Johnson GA, et al. Magnetic resonance imaging atmicroscopic resolution reveals subtle morphological changes in a mouse model of dopaminergic hyperfunction. NeuroImage 2005;26:83-90.
    69. Weissleder R, Moore A, Mahmood U, et al. In vivo magnetic resonance imaging of transgene expression. Nat Med, 2000; 6(3):351-355.
    70. Gambhir SS, Barrio JR , Herschman HR , et al. Imaging gene expression: principles and assays. J Nucl Cardiol,1999; 6: 219-233.
    71. Saji H. Development of radiopharmaceuticals for molecular imaging. International congress series 2004, 126(4):139-147.
    72. Chen J, Tung CH, Mahmood U, et al. In vivo imaging of proteolytic activity in atherosclerosis. Circulation 2002;105(23):2766-2771.
    73. Ray P, Wu AM, Gambhir SS, et al. Optical bioluminescence and positron emission tomography imaging of a novel fusion reporter gene in tumor xenografts of living mice. Cancer Res 2003; 63(5): 1160-1165.
    74. Ponomarev V, Doubrovin M, Serganova I, et al. A novel triple modality reporter gene for whole-body fluorescent, bioluminescent, and nuclear noninvasive imaging. Eur J Nucl Med Mol Imaging 2004; 31(5):740-751.
    75. Kim YJ, Dubey P, Ray P, et al. Multimodality imaging of lymphocytic migration using lentiviral-based transduction of a tri-fusion reporter gene. Mol Imaging Biol 2004;6(5):331-340.
    76. Ray P, De A, Min JJ, et al. Imaging tri-fusion multimodality reporter gene expression in living subjects. Cancer Res 2004;64(4):1323-1330.
    77. Sosnovik DE, Nahrendorf M, Deliolanis N, et al. Fluorescence Tomography and Magnetic Resonance Imaging of Myocardial Macrophage Infiltration in Infarcted Myocardium In Vivo. Circulation 2007;115:1384-1391.
    78.刘敏,郭佑民,王鹏,等.基质金属蛋白酶2靶向穿膜肽表征分析及体外成像研究.中华医学杂志(中文版), 2007; 87(4): 233-240.
    79. Boutry S, Burtea C, Laurent S, et al. Magnetic resonance imaging of inflammation with a specific selectin-targeted contrast agent. Magne Reson Med 2005; 53(15):800-807.
    80. Anderson SA , Rader RK, Westlin WF, et al. Magnetic resonance contrast enhancement of neovasculature withαvβ3 targeted nanoparticles. Magn Reson Med 2000;44 (24):433-437.
    81. Wiener EC, Konda S , Shadron A, et al. Targeting dendrimer chelates to tumors and tumor cells expressing the high affinity folate receptor. Invest Radiol 1997;32(19):748-751.
    82. Mornet S, Vasseur S, Grasset F, et al. Magnetic nanoparticle design for medical diagnosis and therapy. J Mater Chem, 2004; 14: 2161-2175.
    83. Wang YX, Hussain SM, Krestin GP, et al. Superparamagnetic iron oxide contrast agents: physicochemical characteristics and applications in MR imaging. Eur Radiol 2001;11(11):2319-2331.
    84. McLachlan SJ, Morris MR, Lucas MA, et al. Phase I clinical evaluation of a new iron oxide MR contrast agent. J Magn Reson Imaging 1994;4(3):301-307.
    85. Weissleder R, Lee AS, Fischman AJ, et al. Polyclonal human immunoglobulin G labeled with polymeric iron oxide: antibody MR imaging. Radiology 1991;181(1):245-249.
    86. Toma A, Otsuji E, Kuriu Y, et al. Monoclonal antibody A7-superparamagnetic iron oxide as contrast agent of MR imaging of rectal carcinoma. Br J Cancer 2005; 93(1):131-136.
    87. Weissleder R, Simonova M, Bogdanova A, et al. MR imaging and scintigraphy of gene expression through melanin induction. Radiology 1997;204(2):425-429.
    88. Louie AY, Huber MM, Ahrens ET, et al. In vivo visualization of gene expression using magnetic resonance imaging. Nat Biotechnol 2000;18(3):321-325.
    89. Moore A, Josephson L, Bhorade B, et al. Human transferrin receptor gene as a marker gene for MR imaging. Radiology 2001; 221(1): 244-250.
    90. Bulte JW, Zhang S, Van P, et al. Neurotransplantation of magnetically labeled oligodendrocyte progenitors: magnetic resonance tracking of cell migration and myelination. Proc Natl Acad Sci USA 1999;96(26):15256-15261.
    91. Reiter RE , Gu Z , Watabe T, et al. Prostate stem cell antigen: A cell surface marker overexpressed in prostate cancer. Proc Natl Acad Sci USA 1998;95:1735-1740.
    92. Raff AB, Gray A, Kast WM. Prostate stem cell antigen: A prospective therapeutic and diagnostic target. Cancer Lett 2008;doi:10.1016/j.canlet. 2008.08.034.
    93. Reiter RE, Sato I, Thomas G, et al. Coamplification of prostate stem cell antigen (PSCA) and MYC in locally advanced prostate cancer. Genes Chromosomes Cancer 2000,27:95-103.
    94. Gu Z, Thomas G, Yamashiro J, et al. Prostate stem cell antigen (PSCA) expression increases with high Gleason score, advanced stage and bone metastasis in prostate cancer. Oncogence 2000;19:1288-1296.
    95. Dannull J, Diener PA, Prikler L, et al. Prostate Stem Cell Antigen is a promising candidate for immunotherapy of advanced prostate cancer. Cancer Res 2000;60:5522-5528.
    96. Lam JS, Yamashiro J, Shintaku P, et al. Prostate Stem Cell Antigen Is Overexpressed in Prostate Cancer Metastases. Clin Cancer Res2005;11(7)2591-2596.
    97. Zhao ZG, Shen WL. Prostate Stem Cell Antigen (PSCA) mRNA Expression in Prostatic Intraepithelial Neoplasia: Implications for the Development of Prostate Cancer. The Prostate 2007;67:1143-1151.
    98. Tran CP, Lin C, Yamashiro J, et al. Prostate Stem Cell Antigen Is a Marker of Late Intermediate Prostate Epithelial Cells. Molecular Cancer Research 2002;1(12),113-121.
    99. Bahrenberg G, Brauers A, Joost HG, et al. PSCA expression is regulated by phorbol ester and cell adhesion in the bladder carcinoma cell line RT112. Cancer Lett 2001 ,168 : 37-43.
    100. Argani P, Rosty C, Reiter RE, et al. Discovery of new markers of cancer through serial analysis of gene expression: prostate stem cell antigen is overexpressed in pancreatic adenocarcinoma. Cancer Res 2001,61:4320-4324.
    101. Dubey P, Wu H, Reiter RE, et al. Alternative Pathways to Prostate Carcinoma Activate Prostate Stem Cell Antigen Expression. Cancer Res 2001;61:3256-3261.
    102. Tricoli JV, Schoenfeldt M, Conley BA. Detection of Prostate Cancer and Predicting Progression: Current and Future Diagnostic Markers. Clin Cancer Res 2004;10(6), 3943-3953.
    103. Han KR, Seligson DB, Liu X, et al. Prostate stem cell antigen expression is associated with gleason score, seminal vesicle invasion and capsular invasion in prostate cancer. J Urol 2004,171(3):1117-1121.
    104. Gu Z, Yamashiro J, Kono E. Anti-Prostate Stem Cell Antigen Monoclonal Antibody 1G8 Induces Cell Death In vitro and Inhibits Tumor Growth In vivo via a Fc-Independent Mechanism. Cancer Res 2005;65(20):9495-9500.
    105. Morgenroth A, Cartellieri M, Schmitz M, et al. Targeting of Tumor Cells Expressing the Prostate Stem Cell Antigen (PSCA) Using Genetically Engineered T-Cells. The Prostate 2007;67:1121-1131.
    106. Olafsen T, Gu Z, Sherman MA, et al. Targeting, Imaging, and Therapy Using a Humanized Antiprostate Stem Cell Antigen (PSCA) Antibody J Immunother 2007;30:396-405.
    107. Zhao ZG, Shen WL. Complete Androgen Ablation Suppresses Prostate Stem Cell Antigen (PSCA) mRNA Expression in Human Prostate Carcinoma. The Prostate 2005;65:299-305.
    108. Faulk WP, Taylor GM. An immunocolloid method for the electron microscope. Immunochemistry 1971; 8(11): 1081-1083
    109. Daniel MC, Astruc D. Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem Rev 2004; 104(1): 293-346.
    110.崔亚丽,胡道道,房喻,等核/壳型Fe3O4/Au超顺磁性微粒的制备及机理研究.中国科学(B辑)2001; 31(4): 319-324.
    111. Cui Y, Wang Y, Hui W, et al. The synthesis of GoldMag nano-particles and their application for antibody immobilization. Biomed Microdevices 2005;7(2):153-156.
    112. Lyon JL, Fleming DA, Stone MB, et al. Synthesis of Fe Oxide Core/Au Shell Nanoparticles by Iterative Hydroxylamine Seeding. Nano Lett 2004;4(4):719-723.
    113.崔亚丽,惠文利,汪慧蓉,等Fe3O4/Au复合微粒制备条件及性质研究.中国科学(B辑)2003; 33(6): 482-488.
    114.崔亚丽,惠文利,苏婧,等Fe3O4/Au纳米复合粒子及其光学性质.中国科学(B辑)2005; 35(2): 89-93.
    115. Horoszewicz JS, Leong SS, Chu TM, et al. The LNCaP cell line: a new model for studies on human prostatic carcinoma. Prog Clin Biol Res 1980;37:115-132.
    116. Kaighn ME, Narayan KS, Ohnuki Y, et al. Establishment and characterization of a human prostatic carcinoma cell line (PC-3). Invest Urol 1979;17(1):16-23.
    117. Sobel RE, Sadar MD. Cell lines used in prostate cancer research: a compendium of old and new lines: part 1. J Urol 2005;173(2):342-359.
    118. Lim DJ, Liu XL, Sutkowski DM, et al. Growth of an androgen-sensitive human prostate cancer cell line, LNCaP, in nude mice. Prostate 1993;22(2):109-118.
    119.刘博,黄志强,周宁新等.肝癌细胞系SMMC-7721蛋白质组学初步分析.中华实验外科杂志. 2004; 21(12):1439-1440.
    120. Berg WT, Strand M, Lempert TE, et al. Nuclear magnetic resonance and gamma camera tumor imaging using gadolinium labeled monoclonal antibodies. J Nucl Med 1986; 27: 829-833.
    121. Weissleder R, Lee AS, Khaw BA , et al. Antimyosin-labeled monocrystal iron oxidate allows detection of myocardial infarct: MR antibody imaging. Radiology 1992;182 :381-383.
    122. Artemov D, Mori N, Ravi R, et al. Magnetic resonance molecular imaging of the HER-2/neu receptor. Cancer Res 2003; 63(11):2723-2727.
    123. Selvakannan P, Mandal S, Phadtare S, et al. Capping of Gold Nanoparticles by the Amino Acid Lysine Renders Them Water-Dispersible. Langmuir 2003;19 (8):3545-3549.
    124.习东,宁琴,卢强华,等Fe3O4(核)/Au(壳)纳米颗粒探针的制备及其在检测乙型肝炎病毒DNA中的应用.中华检验医学杂志2006; 29(4):339-345.
    125. Schmittgen TD, Teske S, Vessella RL, et al. Expression of prostate specific membrane antigen and three alternatively spliced variants of PSMA in prostate cancer patients. Int J Cancer 2003;107(2):323-329.
    126. Visser M, Bernard HF, Erion JL, et al. Novel 111In-labelled bombesin analogues for molecular imaging of prostate tumours. Eur J Nucl Med Mol Imaging 2007;34:1228-1238.
    127. Foss CA, Mease RC, Fan H, et al. Radiolabeled Small-Molecule Ligands for Prostate-Specific Membrane Antigen: In vivo Imaging in Experimental Models of Prostate Cancer. Clin Cancer Res 2005;11(11):4022-4028.
    128. Pan MH, Gao DW, Feng JJ, et al. Biodistributions of 177Lu- and 111In-Labeled 7E11 Antibodies to Prostate-Specific Membrane Antigen in Xenograft Model of Prostate Cancer and Potential Use of 111In-7E11 as a Pre-therapeutic Agent for 177Lu-7E11 Radioimmunotherapy. Mol Imaging Biol 2008;DOI:10.1007/s11307-008-0185-9.
    129. Belloli S, Jachetti E, Moresco RM, et al. Characterization of preclinical models of prostate cancer using PET-based molecular imaging. Eur J Nucl Med Mol Imaging 2009;DOI 10.1007/s00259-009-1091-3.
    130. McAteer MA, Sibson NR, Muhlen1 C, et al. In vivo magnetic resonance imaging of acute brain inflammation using microparticles of iron oxide. Nat Med 2007;13(10): 1253-1258.
    131. Botnar RM, Pere AS, Witte S, et al. In Vivo Molecular Imaging of Acute and Subacute Thrombosis Using a Fibrin-Binding Magnetic Resonance Imaging Contrast Agent. Circulation 2004;109:2023-2029.
    132. Saborowski O, Simon GH, Raatschen HJ, et al. MR imaging of antigen-induced arthritis with a new, folate receptor-targeted contrast agent. Contrast Media Mol Imaging 2007;2:72-81.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700