用户名: 密码: 验证码:
人解整合素样金属蛋白酶22在前列腺癌中的表达及其意义探讨
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在发达国家,前列腺癌是临床上排名第二的常见肿瘤,同时也是男性肿瘤死亡率排第三的疾病。我国前列腺癌的发病率虽明显低于欧美国家,但近年随着人均寿命的延长、膳食结构的改变和诊断技术的提高,发病率有明显增高的趋势,在男性泌尿生殖系统恶性肿瘤中发病率跃居第三位。前列腺癌的发病机制未明,但是其局部微环境理应有重要作用,ADAM分子是近年新发现的具有重要作用的金属蛋白酶分子,因此,本课题拟探讨其中一种分子ADAM22在前列腺癌中的表达和意义。
     目的:探讨ADAM22在前列腺癌中的分布和意义。制备其特异性抗体。判断细胞因子对其调节及分子机理。其对肿瘤凋亡的影响,从而从新的角度探讨前列腺癌的发病及病理情况,为前列腺癌的诊治和预后建立新的评判角度。
     方法:RT-PCR法克隆ADAM22 cDNA,将其胞膜外区插入载体,诱导表达并纯化,免疫小鼠制备单克隆抗体并利用流式细胞术、western blot和免疫组织化学进行鉴定。探讨TNF-α诱导前列腺癌细胞ADAM22转录,表达及其相关信号转导途径。观察重组ADAM22对重组Fas的水解作用以及抗体对这种作用的封闭,将ADAM22与Fas基因共转染或进行基因干涉,判断其对Fas诱导凋亡的影响。
     结果:成功克隆ADAM22 cDNA并表达融合蛋白。获得3株ADAM22特异性单克隆抗体,其中一株能够用于流式鉴定,一株能够用于免疫组织化学鉴定。ADAM22在前列腺癌中阳性分布,主要集中在腺样上皮和间质细胞中。TNF-α通过活化p38MAPK和NF-κB而促进ADAM22的转录和表达。ADAM22能够水解Fas,这种水解过程能被我们制备的单抗阻断。ADAM22对Fas的水解降低肿瘤细胞对Fas介导凋亡的敏感性。
     结论:1. ADAM22在前列腺癌细胞和组织中阳性表达;2. TNF-α能够有效增强ADAM22表达;3. ADAM22通过水解Fas而介导肿瘤对凋亡的耐受。
Prostate cancer is the second ranked carcinoma in developed countries an is the third mortal disease among the male. The morbidity of prostate cancer is obviously lower than the developed countries but with the increased tendency because of increased life span, westernized diet and improvement of diagnosis technology and it ranked the third in male urine malignancy. The etiology of prostate cancers was not clear. The microenvironments of tumor should be vital. A disintegrin and metalloproteinases, abbreviated as ADAMs were nearly identified and with vital function. This study was aimed to explore ADAM22, one member of the family distribution and role in prostate carcinomas.
     Aim: To explore the distribution and function of ADAM22 in prostate cancers. To prepare its specific monoclonal antibodies. To discuss the modification of cytokines targeting ADAM22 and find its role in potential roles during tumor apoptosis. All these will help us to understand etiology and pathology of prostate cancer, which will supply new evidences for therapy and prognosis for prostate cancers.
     Methods: ADAM22 cDNA was cloned with RT-PCR and its extracellular domain subcloned and inserted into plasmid. The recombinant protein was induced and purified. Mice were immunized with the recombinant protein and the corresponding monoclonal antibodies were prepared and characterized by flow cytometry, western blot and immunohistochemistry. Transcription and expression of ADAM22 induced by TNF-αwere identified by real-time RT-PCR and flow cytomety and its involved signaling were tested by specific inhibitors. Cleavage of Fas by ADAM22 and the potential role of resistance to apoptosis were identified.
     Results: ADAM22 cDNA was cloned successfully and its recombinant proteins were expressed. Three strains of mAb specific for ADAM22 were prepared. One of them was applicable in flow cytometry and the other was usable in IHC. ADAM22 was positive in prostate cancer tissues and most of it was located in gland-like and interstitial cells. TNF-αincreased transcription and expression of ADAM22 by activation of p38MAPK and NF-κB。ADAM22 sheded Fas and induced apoptosis resistance, which was blocked by the mAb we prepared previously.
     Conclusion: 1. ADAM22 was positive in prostate cancer tissues and cells. 2. TNF-αincrease ADAM22 expression. 3. ADAM22 induced apoptosis resistance of tumor cells by shedding of Fas.
引文
1. Damber JE, Aus G. Prostate cancer. Lancet. 2008; 371(9625):1710-21.
    2.孙颖浩.我国前列腺癌的研究现状,中华泌尿外科杂志.2 004; 25 (2):77-80.
    3. Mononen N, Schleutker J. Polymorphisms in genes involved in androgen pathways as risk factors for prostate cancer. J Urol. 2009; 181(4):1541-9.
    4. Klein EA, Ciezki J, Kupelian PA, Mahadevan A. Outcomes for intermediate risk prostate cancer: are there advantages for surgery, external radiation, or brachytherapy? Urol Oncol. 2009;27(1):67-71.
    5. Oliver T, Lorinez A, Cuzick J. Prostate cancer prevention by short-term anti-androgens: the rationale behind design of pilot studies. Recent Results Cancer Res. 2009;181:195-205.
    6. Reynolds TM. Risk assessment for prevention of morbidity and mortality: lessons for pressure ulcer prevention. J Tissue Viability. 2008;17(4):115-20.
    7. Fairley L, Forman D, West R, Manda S. Spatial variation in prostate cancer survival in the Northern and Yorkshire region of England using Bayesian relative survival smoothing. Br J Cancer. 2008; 99(11):1786-93.
    8. Ba?ez LL, Terris MK, Aronson WJ, Presti JC Jr, Kane CJ, Amling CL, Freedland SJ. Race and Time from Diagnosis to Radical Prostatectomy: Does Equal Access Mean Equal Timely Access to the Operating Room?- -Results from the SEARCH Database. Cancer Epidemiol Biomarkers Prev. 2009;18(4):1208-12.
    9.刘振伟,项永兵,张薇,等.上海市区1973~1999年前列腺癌发病趋势分析.中国卫生统计, 2003, 20: 335-337.
    10. Smith RA, Cokkinides V, Brawley OW. Cancer screening in the United States, 2009: a review of current American Cancer Society guidelines and issues in cancer screening. CA Cancer J Clin. 2009;59(1):27-41.
    11.邵常霞,项永兵,刘振伟,等.上海市区泌尿系统恶性肿瘤相对生存率分析.中国肿瘤临床, 2005, 32: 321-327.
    12. Ann W. Hsing and Anand P. Chokkalingam Prostate cancer epidemiology Frontiers in Bioscience 2006; 11: 1388-1413
    13. Berasain C, Castillo J, Perugorria MJ, Latasa MU, Prieto J, Avila MA. Inflammation and liver cancer: new molecular links. Ann N Y Acad Sci. 2009, 1155:206-21.
    14. Coyle YM. Lifestyle, genes, and cancer. Methods Mol Biol. 2009;472:25-56
    15. Woenckhaus J, Fenic I. Proliferative inflammatory atrophy: a background lesion of prostate cancer? Andrologia. 2008;40(2):134-7.
    16. Schr?der FH. Review of diagnostic markers for prostate cancer. Recent Results Cancer Res. 2009;181:173-82.
    17. Roehrborn CG. Pathology of benign prostatic hyperplasia. Int J Impot Res. 2008; 20 Suppl 3:S11-8.
    18. De Marzo AM, Platz EA, Sutcliffe S, Xu J, Gr?nberg H, Drake CG, Nakai Y, Isaacs WB, Nelson WG. Inflammation in prostate carcinogenesis. Nat Rev Cancer. 2007; 7(4):256-69.
    19. Vasto S, Carruba G, Candore G, Italiano E, Di Bona D, Caruso C. Inflammation and prostate cancer. Future Oncol. 2008;4(5):637-45.
    20. Maitland NJ, Collins AT. Inflammation as the primary aetiological agent ofhuman prostate cancer: a stem cell connection? J Cell Biochem. 2008;105(4): 931-9.
    21. Sciarra A, Mariotti G, Salciccia S, Gomez AA, Monti S, Toscano V, Di Silverio F. Prostate growth and inflammation. J Steroid Biochem Mol Biol. 2008;108(3-5):254-60.
    22. Klyushnenkova EN, Ponniah S, Rodriguez A, Kodak J, Mann DL, Langerman A, Nishimura MI, Alexander RB. CD4 and CD8 T-lymphocyte recognition of prostate specific antigen in granulomatous prostatitis. J Immunother. 2004;27(2):136-46.
    23. Kramer G, Steiner GE, Handisurya A, Stix U, Haitel A, Knerer B, Gessl A, Lee C, Marberge r M.Increased expression of lymphocyte-derived cytokines in benign hyperplastic prostate tissue, identification of the producing cell types, and effect of differentially expressed cytokines on stromal cell proliferation. Prostate. 2002;52(1):43-58.
    24. Kottke T, Sanchez-Perez L, Diaz RM, Thompson J, Chong H, Harrington K, Calderwood SK, Pulido J, Georgopoulos N, Selby P, Melcher A, Vile R. Induction of hsp70-mediated Th17 autoimmunity can be exploited as immunotherapy for metastatic prostate cancer. Cancer Res. 2007;67(24): 11970-9.
    25. Shortliffe LM, Wehner N. The characterization of bacterial and nonbacterial prostatitis by prostatic immunoglobulins. Medicine (Baltimore). 1986;65(6): 399-414.
    26. Orhan I, Onur R, Ilhan N, Ardi?oglu A.Seminal plasma cytokine levels in the diagnosis of chronic pelvic pain syndrome. Int J Urol. 2001;8(9):495-9.
    27. Wolska A, Lech-Marańda E, Robak T Toll-like receptors and their role in carcinogenesis and anti-tumor treatment. Cell Mol Biol Lett. 2009;14(2): 248-72.
    28. Sun J, Wiklund F, Hsu FC, B?lter K, Zheng SL, Johansson JE, Chang B, Liu W, Li T, Turner AR, Li L, Li G, Adami HO, Isaacs WB, Xu J, Gr?nberg H. Interactions of sequence variants in interleukin-1 receptor-associated kinase4 and the toll-like receptor 6-1-10 gene cluster increase prostate cancer risk. Cancer Epidemiol Biomarkers Prev. 2006 Mar;15(3):480-5.
    29. Schr?der FH. Review of diagnostic markers for prostate cancer. Recent Results Cancer Res. 2009;181:173-82.
    30. Shariat SF, Scardino PT, Lilja H. Screening for prostate cancer: an update. Can J Urol. 2008;15(6):4363-74.
    31. Sardana G, Dowell B, Diamandis EP.Emerging biomarkers for the diagnosis and prognosis of prostate cancer. Clin Chem. 2008;54(12):1951-60.
    32. Engwegen JY, Gast MC, Schellens JH, Beijnen JH. Clinical proteomics: searching for better tumour markers with SELDI-TOF mass spectrometry. Trends Pharmacol Sci. 2006;27(5):251-9.
    33. Zheng Y, Xu Y, Ye B, Lei J, Weinstein MH, O'Leary MP, Richie JP, Mok SC, Liu BC. Prostate carcinoma tissue proteomics for biomarker discovery. Cancer. 2003;98(12):2576-82.
    34. Ayala AG, Ro JY. Prostatic intraepithelial neoplasia: recent advances. Arch Pathol Lab Med. 2007;131(8):1257-66.
    35. Jiang Z, Woda BA. Diagnostic utility of alpha-methylacyl CoA racemase (P504S) on prostate needle biopsy. Adv Anat Pathol. 2004;11(6):316-21.
    36. Eric SchiVer.Biomarkers for prostate cancerWorld J Urol (2007) 25:557–562
    37. Witte JS. Prostate cancer genomics: towards a new understanding. Nat Rev Genet. 2009;10(2):77-82.
    38. Mendiratta P, Febbo PG. Genomic signatures associated with the development, progression, and outcome of prostate cancer.Mol Diagn Ther. 2007;11(6):345-54
    39. Najimi M, Smets F, Sokal E.Hepatocyte apoptosis.Methods Mol Biol. 2009;481:59-74.
    40. Colin J, Gaumer S, Guenal I, Mignotte B.Mitochondria, Bcl-2 family proteins and apoptosomes: of worms, flies and men. Front Biosci. 2009;14: 4127-37.
    41. Bayir H, Fadeel B, Palladino MJ, Witasp E, Kurnikov IV, Tyurina YY, Tyurin VA, Amoscato AA, Jiang J, Kochanek PM, DeKosky ST, Greenberger JS, Shvedova AA, Kagan VE. Apoptotic interactions of cytochrome c: redox flirting with anionic phospholipids within and outside of mitochondria. Biochim Biophys Acta. 2006 May-Jun;1757(5-6):648-59
    42. Li J, Yuan J. Caspases in apoptosis and beyond. Oncogene. 2008 Oct 20;27(48):6194-206.
    43. Lessene G, Czabotar PE, Colman PM. BCL-2 family antagonists for cancer therapy. Nat Rev Drug Discov. 2008 Dec;7(12):989-1000.
    44. Strasser A, Jost PJ, Nagata S. The many roles of FAS receptor signaling in the immune system. Immunity. 2009 Feb;30(2):180-92.
    45. Whiteside TL. The role of death receptor ligands in shaping tumor microenvironment. Immunol Invest. 2007;36(1):25-46.
    46. Nilsson N, Ingvarsson S, Borrebaeck CA. Immature B cells in bone marrow express Fas/FasL. Scand J Immunol. 2000 Mar;51(3):279-84.
    47. Chaigne-Delalande B, Moreau JF, Legembre P. Rewinding the DISC. Arch Immunol Ther Exp (Warsz). 2008 Jan-Feb;56(1):9-14.
    48. Erb P, Ji J, Kump E, Mielgo A, Wernli M. Apoptosis and pathogenesis of melanoma and nonmelanoma skin cancer. Adv Exp Med Biol. 2008;624: 283-95.
    49. Vollmers HP, Dummrich J, Hensel F, Ribbert H, Meyer-Bahlburg A, Ufken-Gaul T, von Korff M, Müller-Hermelink HK. Differential expression of apoptosis receptors on diffuse and intestinal type stomach carcinoma. Cancer. 1997 Feb 1;79(3):433-40.
    50. Kamihira S, Yamada Y. Soluble Fas (APO-1/CD95) isoform in adult T-cell leukemia. Leuk Lymphoma. 2001 Mar;41(1-2):169-76.
    51. Lai YJ, Lin WC, Lin FT. PTPL1/FAP-1 negatively regulates TRIP6 function in lysophosphatidic acid-induced cell migration. J Biol Chem. 2007 Aug 17;282(33):24381-7.
    52. Kim SY, Song SY, Kim MS, Lee JY, Lee HM, Choi HY, Yoo NJ, Lee SH. Immunohistochemical analysis of Fas and FLIP in prostate cancers. APMIS. 2009 Jan;117(1):28-33.
    53. Stravopodis DJ, Karkoulis PK, Konstantakou EG, Melachroinou S, Lampidonis AD, Anastasiou D, Kachrilas S, Messini-Nikolaki N, Papassideri IS, Aravantinos G, Margaritis LH, Voutsinas GE. Grade- dependent effects on cell cycle progression and apoptosis in response to doxorubicin in human bladder cancer cell lines. Int J Oncol. 2009 Jan;34(1):137-60.
    54. Chen C, Zhang C, Zhuang G, Luo H, Su J, Yin P, Wang J. Decoy receptor 3 overexpression and immunologic tolerance in hepatocellular carcinoma (HCC) development. Cancer Invest. 2008 Dec;26(10):965-74.
    55. Coussens, L. M., Fingleton, B. & Matrisian, L. M. Matrix metalloproteinase inhibitors and cancer: trials and tribulations. Science 2002, 295, 2387–2392 .
    56. Lopez-Otin, C. & Matrisian, L. M. Emerging roles of proteases in tumour suppression. Nature Rev. Cancer 2007, 7, 800–808.
    57. St?cker, W. & Bode, W. Structural features of a superfamily of zinc- endopeptidases: the metzincins. Curr. Opin. Struct. Biol. 1995, 5, 383–390.
    58. Cuniasse, P. et al. Future challenges facing the development of specific active-site-directed synthetic inhibitors of MMPs. Biochimie 2005, 87, 393–402.
    59. Singh, R. J. et al. Cytokine stimulated vascular cell adhesion molecule-1 (VCAM-1) ectodomain release is regulated by TIMP-3. Cardiovasc. Res. 2005, 67, 39–49.
    60. Lambert, D. W., Clarke, N. E., Hooper, N. M. & Turner, A. J. Calmodulin interacts with angiotensin-converting enzyme-2 (ACE2) and inhibits shedding of its ectodomain. FEBS Lett. 2008, 582, 385–390.
    61. Hart, S., Fischer, O. M. & Ullrich, A. Cannabinoids induce cancer cell proliferation via tumor necrosis factor a-converting enzyme (TACE/ ADAM17)-mediated transactivation of the epidermal growth factor receptor. Cancer Res. 2004, 64, 1943–1950.
    62. Fox, J. W. & Serrano, S. M. Structural considerations of the snake venommetalloproteinases, key members of the M12 reprolysin family of metalloproteinases. Toxicon 2005, 45, 969–985.
    63. Rocks, N. et al. Emerging roles of ADAM and ADAMTS metalloproteinases in cancer. Biochimie 2008, 90, 369–379.
    64. Cho, C., Primakoff, P., White, J. M. & Myles, D. G. Chromosomal assignment of four testis-expressed mouse genes from a new family of transmembrane proteins (ADAMs) involved in cell–cell adhesion and fusion. Genomics 1996, 34, 413–417.
    65. Mochizuki, S. & Okada, Y. ADAMs in cancer cell proliferation and progression. Cancer Sci. 2007, 98, 621–628.
    66. Garton, K. J., Gough, P. J. & Raines, E. W. Emerging roles for ectodomain shedding in the regulation of inflammatory responses. J. Leukoc. Biol. 2006, 79, 1105–1116.
    67. Holgate, S. T. et al. The genetics of asthma: ADAM33 as an example of a susceptibility gene. Proc. Am. Thorac. Soc. 2006, 3, 440–443.
    68. Deuss, M., Reiss, K. & Hartmann, D. Part-time -secretases: the functional biology of ADAM 9, 10 and 17. Curr. Alzheimer Res. 2008, 5, 187–201.
    69. Gilpin, B. J. et al. A novel secreted form of human ADAM 12 (Meltrin a) provokes myogenesis in vivo. J. Biol. Chem. 1998, 273, 157–166.
    70. Powell, R. M., Wicks, J., Holloway, J. W., Holgate, S. T. & Davies, D. E. The splicing and fate of ADAM33 transcripts in primary human airways fibroblasts. Am. J. Respir. Cell. Mol. Biol. 2004, 31, 13–21.
    71. Mazzocca, A. et al. A secreted form of ADAM9 promotes carcinoma invasion through tumor-stromal interactions. Cancer Res. 2005, 65, 4728–4738.
    72. Blanchot-Jossic, F. et al. Up-regulated expression of ADAM17 in human colon carcinoma: co-expression with EGFR in neoplastic and endothelial cells. J. Pathol. 2005, 207, 156–163.
    73. Peduto, L. et al. ADAM12 is highly expressed in carcinoma-associated stroma and is required for mouse prostate tumor progression. Oncogene 2006, 25, 5462–5466.
    74. Kuefer, R. et al. ADAM15 disintegrin is associated with aggressive prostate and breast cancer disease. Neoplasia 2006, 8, 319–329.
    75. Luo, J. et al. Human prostate cancer and benign prostatic hyperplasia: molecular dissection by gene expression profiling. Cancer Res. 2001 , 61, 4683–4688.
    76. McCulloch, D. R., Akl, P., Samaratunga, H., Herington, A. C. & Odorico, D. M. Expression of the disintegrin metalloprotease, ADAM-10, in prostate cancer and its regulation by dihydrotestosterone, insulin-like growth factor I, and epidermal growth factor in the prostate cancer cell model LNCaP. Clin. Cancer Res. 2004, 10, 314–323.
    77. Arima, T. et al. Nuclear translocation of ADAM-10 contributes to the pathogenesis and progression of human prostate cancer. Cancer Sci , 2007.
    78. Fritzsche, F. R. et al. ADAM9 expression is a significant and independent prognostic marker of PSA relapse in prostate cancer. Eur. Urol. 2007 , 54, 1106–1107.
    79. Peduto, L., Reuter, V. E., Shaffer, D. R., Scher, H. I. & Blobel, C. P. Critical function for ADAM9 in mouse prostate cancer. Cancer Res. 2005 , 65,9312–9319.
    80. McGowan, P. M. et al. ADAM-17 predicts adverse outcome in patients with breast cancer. Ann. Oncol. 2008 , 19, 1075–1081.
    81. Borrell-Pages, M., Rojo, F., Albanell, J., Baselga, J. & Arribas, J. TACE is required for the activation of the EGFR by TGF- in tumors. EMBO J. 2003 , 22, 1114–1124.
    82. O'Shea, C. et al. Expression of ADAM-9 mRNA and protein in human breast cancer. Int. J. Cancer 2003, 105, 754–761.
    83. Sjoblom, T. et al. The consensus coding sequences of human breast and colorectal cancers. Science 2006, 314, 268–274.
    84. Dyczynska, E., Syta, E., Sun, D. & Zolkiewska, A. Breast cancer-associated mutations in metalloprotease disintegrin ADAM12 interfere with the intracellular trafficking and processing of the protein. Int. J. Cancer 2008, 122, 2634–2640.
    85. Prenzel, N. et al. EGF receptor transactivation by G-protein-coupled receptors requires metalloproteinase cleavage of proHB-EGF. Nature 1999, 402, 884–888.
    86. Blobel, C. P. ADAMs: key components in EGFR signalling and development. Nature Rev. Mol. Cell. Biol. 2005, 6, 32–43.
    87. Zheng, Y., Saftig, P., Hartmann, D. & Blobel, C. Evaluation of the contribution of different ADAMs to tumor necrosis factor (TNF) shedding and of the function of the TNF ectodomain in ensuring selective stimulated shedding by the TNF convertase (TACE/ADAM17). J. Biol. Chem.2004, 279, 42898–42906.
    88. Balkwill, F. TNF- in promotion and progression of cancer. Cancer Metastasis Rev. 2006, 25, 409–416.
    89. Schulte, M. et al. ADAM10 regulates FasL cell surface expression and modulates FasL-induced cytotoxicity and activation-induced cell death. Cell Death Differ. 2007, 14, 1040–1049.
    90. Edwards, D. R., Handsley, M. M. & Pennington, C. J. The ADAM metalloproteinases. Mol. Aspects Med. 2008, 29, 258–259.
    91. Rose-John, S., Scheller, J., Elson, G. & Jones, S. A. Interleukin-6 biology is coordinated by membrane-bound and soluble receptors: role in inflammation and cancer. J. Leukoc. Biol. 2006, 80, 227–236.
    92. Garton, K. J. et al. Tumor necrosis factor--converting enzyme (ADAM17) mediates the cleavage and shedding of fractalkine (CX3CL1). J. Biol. Chem. 2001, 276, 37993–38001.
    93. Tousseyn, T., Jorissen, E., Reiss, K. & Hartmann, D. (Make) stick and cut loose - disintegrin metalloproteases in development and disease. Birth Defects Res. C Embryo Today 2006, 78, 24–46.
    94. White, J. M. ADAMs: modulators of cell–cell and cell–matrix interactions. Curr. Opin. Cell Biol. 2003, 15, 598–606.
    95. Reiss, K., Ludwig, A. & Saftig, P. Breaking up the tie: disintegrin-like metalloproteinases as regulators of cell migration in inflammation and invasion. Pharmacol. Ther. 2006, 111, 985–1006.
    96. Maretzky, T. et al. ADAM10 mediates E-cadherin shedding and regulates epithelial cell-cell adhesion, migration, and b-catenin translocation. Proc. Natl Acad. Sci. USA 2005, 102, 9182–9187.
    97. Waldhauer, I. et al. Tumor-associated MICA is shed by ADAM proteases. Cancer Res. 2008, 68, 6368–6376.
    98. Hakulinen, J. & Keski-Oja, J. ADAM10-mediated release of complement membrane cofactor protein during apoptosis of epithelial cells. J. Biol. Chem. 2006, 281, 21369–21376.
    99. Hynes, N. E. & Lane, H. A. ERBB receptors and cancer: the complexity of targeted inhibitors. Nature Rev. Cancer 2005, 5, 341–354.
    100. Zhou, B. B. et al. ADAM proteases, ErbB pathways and cancer. Expert Opin. Investig. Drugs 2005, 14, 591–606.
    101. Revillion, F., Lhotellier, V., Hornez, L., Bonneterre, J. & Peyrat, J. P. ErbB/HER ligands in human breast cancer, and relationships with their receptors, the bio-pathological features and prognosis. Ann. Oncol. 2008, 19, 73–80.
    102. Fridman, J. S. et al. Selective inhibition of ADAM metalloproteases as a novel approach for modulating ErbB pathways in cancer. Clin. Cancer Res. 2007, 13, 1892–1902 .
    103. Kenny, P. A. & Bissell, M. J. Targeting TACE-dependent EGFR ligand shedding in breast cancer. J. Clin. Invest. 2007, 117, 337–345.
    104. Liu, X. et al. Selective inhibition of ADAM metalloproteases blocks HER-2 extracellular domain (ECD) cleavage and potentiates the anti-tumor effects of trastuzumab. Cancer Biol. 2006, Ther. 5, 648–656.
    105. Lafky, J. M., Wilken, J. A., Baron, A. T. & Maihle, N. J. Clinical implications of the ErbB/epidermal growth factor (EGF) receptor family and its ligands in ovarian cancer. Biochim. Biophys. Acta 2008, 1785, 232–265.
    106. Horiuchi, K. et al. Substrate selectivity of epidermal growth factor-receptor ligand sheddases and their regulation by phorbol esters and calcium influx. Mol. Biol. Cell 2007, 18, 176–188.
    107. Schulte, A. et al. Sequential processing of the transmembrane chemokines CX3CL1 and CXCL16 by - and -secretases. Biochem. Biophys. Res. Commun. 2007, 358, 233–240.
    108. Williams, C. C. et al. The ERBB4/HER4 receptor tyrosine kinase regulates gene expression by functioning as a STAT5A nuclear chaperone. J. Cell Biol. 2004, 167, 469–478.
    109. Selkoe, D. J. & Wolfe, M. S. Presenilin: running with scissors in the membrane. Cell 2007, 131, 215–221.
    110. Linggi, B. & Carpenter, G. ErbB receptors: new insights on mechanisms and biology. Trends Cell Biol. 2006, 16, 649–656.
    111. Nanba, D. et al. An intermediary role of proHB-EGF shedding in growth factor-induced c-Myc gene expression. J. Cell Physiol. 2008, 214, 465–473.
    112. Shih Ie, M. & Wang, T. L. Notch signaling, -secretase inhibitors, and cancer therapy. Cancer Res. 2007, 67, 1879–1882.
    113. Murphy, G., Murthy, A. & Khokha, R. Clipping, shedding and RIPping keep immunity on cue. Trends Immunol. 2008, 29, 75–82.
    114. Schlondorff, J., Becherer, J. D. & Blobel, C. P. Intracellular maturation and localization of the tumour necrosis factor convertase (TACE). Biochem. J. 2000, 347 (Pt 1), 131–138.
    115. Doedens, J. R. & Black, R. A. Stimulation-induced down-regulation of tumor necrosis factor- converting enzyme. J. Biol. Chem. 2000, 275, 14598–14607.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700