用户名: 密码: 验证码:
P53高通量筛选模型的建立42-5治疗肾功能不全作用及作用机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
  • 英文题名:Establishment of P53 High Throughput Screening Model & Studies of Effects of 42-5 on Renal Insufficiency and Its Mechanisms of Action
  • 作者:郑旭光
  • 论文级别:博士
  • 学科专业名称:药理学
  • 学位年度:2005
  • 导师:陈晓光
  • 学科代码:100706
  • 学位授予单位:中国协和医科大学
  • 论文提交日期:2005-04-01
摘要
目前抗肿瘤药物筛选已经转向针对特异靶点,提高选择性、高度自动化的高通量筛选。野生型p53是一种重要的抑癌基因,其生物学功能是监视细胞基因组DNA的完整性。如果DNA受损伤,P53蛋白就使细胞停留在G1期,修复后再进入M期;如损伤不能修复,则诱导其凋亡。目前临床上常用的抗肿瘤药如阿霉素、鬼臼乙叉甙、紫杉醇、阿糖胞苷等以及放疗所采用的UV射线、γ射线等均被认为可以通过诱导p53基因依赖性的细胞凋亡而发挥抗肿瘤作用。野生型P53蛋白可以作为p53野生型表达肿瘤的抗癌药物筛选的靶点。
     与此同时,p53基因的缺失或突变已被证实存在于不同类型的肿瘤中。而野生型p53基因与肿瘤化疗和放疗所引起的副作用之间的关系已越来越引起研究者的关注。目前临床上常用的抗肿瘤药如阿霉素、鬼臼乙叉甙、紫杉醇等以及放疗所采用的UV射线、γ射线等均被认为是部分通过诱导p53基因依赖性的细胞凋亡而发挥抗肿瘤作用。但对于p53基因的缺失或突变的肿瘤,p53基因依赖性的细胞凋亡在肿瘤组织中不能发挥作用,但却可以诱导一些野生型p53基因高表达的正常组织细胞凋亡。针对p53缺损(突变或缺失)的肿瘤,放化疗的同时如果应用p53抑制剂,可以保护正常组织细胞免遭损害。既达到治疗肿瘤的目的,又可减轻副作用,使放、化疗顺利进行。
     本文构建了P53蛋白反应性的萤火虫荧光素酶表达质粒,将该质粒稳定转染于p53野生型表达的细胞株MCF-7中,建成一个以野生型P53蛋白为靶点的药物高通量细胞筛选模型,用于p53诱导剂或抑制剂的筛选。我们以该模型研究了9种化合物对P53蛋白表达的影响,发现阿霉素(ADM)、紫杉醇(Tax)和5-氟尿嘧啶(5-FU)具有较强的野生型P53蛋白诱导作用。
     肾功能不全,尤其慢性肾脏疾病(包括各类慢性肾炎、糖尿病肾病及高血压性肾损害等)是我国最为常见的难治性疾病之一。不论何种病因,也不论是免疫机制或非免疫机制参与,肾组织病变从早期病变均可逐渐进展为晚期的肾小球硬化和(或)肾间质纤维化。近年来国外研究发现,在众多的与肾脏纤维化病变相关的调控因子中,转化生长因子-β(TGF-β)和血管紧张素Ⅱ(AngⅡ)是最为关键的两类因子。其中,AngⅡ可以造成高血压、肾小球内高滤过压,并可促进一系列促细胞增生或促硬化因子的分泌,尤其是可促进TGF-β的分泌。而TGF-β可刺激其它促纤维蛋白因子合成、促进成肌纤维细胞的形成和表型转化、促进多种细胞外基质合成、粘附及沉积并减少其降解,因此被认为是直接影响肾脏纤维化过程的细胞因子
     我所谢平副研究员课题组在香豆素结构基础上,进一步修饰和优化结构,以TGF-β_1为靶点,有目的的设计、合成了大量香豆素衍生物,经筛选、结构优化、反复体内药效学验证和初步毒理学研究,筛选出来的具有明确的治疗肾功能不全作用且毒性低、生物活性较高的一个小分子新结构化合物42-5。本文对42-5治疗肾功能不全作用、作用机制和毒理学进行了初步探讨,结果如下:
     1.对cisplatin所引起肾脏细胞损伤的保护作用
     体外研究结果表明,42-5对于较低浓度cisplatin造成的大鼠肾系膜细胞(rMC)和人肾小管上皮细胞(HKC)的损伤具有一定的保护作用。0.12—1μmol/Lcisplatin合用33μmol/L或100μmol/L 42-5较之单独应用cisplatin可以降低其对rMC的抑制率。0.12—2.5μmol/L cisplatin合用2μmol/L、10μmol/L以及50μmol/L 42-5较之单独应用cisplatin可以降低其对HKC的抑制率。
     2.对cisplatin急性肾损伤、5/6肾切除、链脲霉素(STZ)致糖尿病大鼠肾衰模型的保护作用
     在体内考察了42-5对不同肾功能不全模型的保护作用,无论是cisplatin致急性肾损伤、5/6肾切除还是STZ致糖尿病大鼠肾衰模型,其血尿素氮(BUN)、血肌酐(Scr)、尿蛋白水平均较正常动物显著升高,体重下降。大鼠腹腔注射cisplatin 4天后,BUN、Scr、尿蛋白分别由正常组的27.98±4.01mg/dL、1.14±0.56mg/dL和1.24±0.72mg/24hr上升到237.10±24.34mg/dL、4.41±0.73mg/dL和5.65±3.43mg/24hr。30mg/kg 42-5给药组在造模后4天(给药7天),BUN、Scr和尿蛋白分别下降到125.84±67.06mg/dL、2.83±1.16mg/dL和2.06±1.41mg/24h。
     5/6肾切除大鼠在造模后16周,BUN、Scr、尿蛋白分别由正常组的25.34±4.52mg/dL、0.98±0.36mg/dL和11.49±5.12mg/24hr上升到46.66±9.38mg/dL、1.65±0.27mg/dL和105.38±38.61mg/24hr。30mg/kg 42-5给药组在造模后16周(给药12周),BUN、Scr、尿蛋白分别下降到37.38±6.67mg/dL、1.07±0.40mg/dL和29.21±13.70mg/24h。
     STZ致糖尿病大鼠在造模后16周,血糖(Glu)、BUN、Scr、尿蛋白分别由正常组的62.68±8.62mg/dL、22.31±1.46mg/dL、1.41±0.21mg/dL和8.62±1.71mg/24hr上升到494.35±45.89mg/dL、45.64±6.74mg/dL、2.15±0.42mg/dL和14.13±5.10mg/24hr。20mg/kg 42-5给药组在造模后16周(给药14周),Glu、BUN、Scr、尿蛋白分别下降到332.44±84.06mg/dL、32.84±4.67mg/dL、1.72±0.34mg/dL和7.41±2.04mg/24hr。
     Cisplatin急性肾损伤的肾脏病理病变特点为肾小管上皮细胞肿胀、空泡变性和坏死。42-5给药组多数动物肾小管上皮细胞变性和坏死轻于模型组,其病变程度为中度和轻度。5/6肾切除大鼠肾脏病理检查显示病变主要表现为肾小球的硬化。造模后16周(给药12周),42-5给药组肾小球的硬化程度,小球基底膜增厚及基质系膜区扩大明显轻于模型组。STZ所致糖尿病大鼠肾脏病变主要表现为肾小球血管袢节段性硬化、弥漫性硬化、近端肾小管上皮空泡变性、胞核固缩,染色,严重者满视野均可见这种病变。造模后16周(给药14周)后,42-5给药组。肾小球节段性硬化、弥漫性硬化明显少于模型组;未见球囊渗出病变;肾小管空泡变性发生率和严重程度明显轻于模型组。
     3.治疗肾功能不全的作用机制
     体外初步机制研究显示:42-5改善肾功能,抑制纤维化主要与其抑制HKC细胞的凋亡和转分化、抑制脂质过氧化、抑制TGF-β_1受体结合并增加uPA mRNA和MMP-2 mRNA的表达、增加基质金属蛋白酶活性有关。
     体内研究发现其药理作用与抑制血浆肾素活性、降低血浆TGF-β_1和AngⅡ水平、抑制肾脏TGF-β_1 mRNA表达、减少肾脏组织TGF-β_1、fibronectin和CollagenⅣ的合成和积聚相关。
     4.初步毒理学研究
     MTT实验显示42-5对不同组织来源的细胞均未见明显的细胞毒作用;口服一次性给药在小鼠的急性毒性试验MTD>5g;鼠伤寒沙门氏菌营养缺陷型回复突变(Ames)试验结果阴性;啮齿类动物骨髓嗜多染红细胞微核实验结果阴性。初步毒理学研究表明42-5毒性较低且不具有致突变作用。
     综上所述,42-5是具有明确肾功能不全治疗作用,且毒性低、生物活性较高、作用机理新,结构全新的小分子化合物。可以作为研制新一代治疗肾功能不全药物的后选化合物。
The growth suppressor protein p53 is a key regulator of the cell cycle and cell proliferation. Usually, level of p53 in the cell is low due to the short half life of the protein. However, in cases of DNA damage, including those induced by genotoxic anticancer drugs and environmental exposures, p53 is stabilized and induces a G1- or G2-phase arrest of the cell cycle or even causes cell death. Wild type p53 is one of main targets for many anticancer drugs to take action, including ADM, VP-16 and Taxol. Designing efficient ways to induce the expression of p53 in tumor expressing wild type p53 is therefore key issue in anticancer drug research.However, the role of wild type p53 in cancer treatment is not limited to its involvement in killing tumor cells. The wild type p53 gene is highly expressed in several normal tissues, including lymphoid and hematopoietic organs, intestinal epithelia, and the testis, and it is these tissues that are damaged by anticancer therapy. P53-dependent apoptosis occurs in sensitive tissues shortly after gamma irradiation. More than 50% of human primary tumors have lost the wild type p53 suppressor gene and instead express high level of mutant p53 protein. P53-dependented apoptosis is invalid when cure these turners with the above antitumor drugs, and the side effects associated with the activation of p53 become relative serious in normal tissues. Thus it may be an appropriate target for therapeutic suppression to reduce the damage to normal tissue. This approach would be applicable only for tumors that lack functional p53.In order to obtain an experimental tool for the analysing expression of wild type p53 with different compounds, we created a plasmid named p53-luc-pcDNA3.0 carrying a reporter luciferase gene under the control of a p53-responsive promoter with p53-binding sequences of human p21 promotor. The choice of the construct was based on its efficient and specific p53-dependent transcriptional activation. The plasmid was transfected into a human breast cancer cell line (MCF-7) which expressing wild type p53 to constructe wild type p53-specific reporter system. The reconstructed human breast cancer cells, termed p53R-MCF-7 cells can be used to screening p53 inducer or inhibitor through bioluminescent. We tested 9 conventional chemotherapeutic agents in vitro. ADM, Taxol and 5-FU activated p53 activity by about 50%or above 50%under a concentration of 10~(-7)mol/L.
     The kidney disease, especially chronic kidney disease (including all kinds of chronic nephritis, diabetic nephropathy and hypertensive nephropathy) is one of the common chronic diseases that are hard to cure. No matter what pathogeny, pathological changes of renal tissue is always advanced to the end-stage glomerular sclerosis and/or interstitial fibrosis from the early-stage changes. Recent studies show that transforming growth factor-β(TGF-β) and AngiotensinⅡ(AngⅡ) are two key factors which relate to renal fibrosis. AngⅡincreases the accumulation of extracellular matrix proteins through the induction of fibrogenic cytokines like transforming growth factor-β1(TGF-β1). TGF-β1, part of a multimember protein super-family with overlapping functions, stimulates the production of extracellular matrix proteins like collagens and fibronectin as part of a wound repair response to injury, reduces collagenase production, facilitates matrix assembly, inhibits matrix degradation, finally leads to renal scarring.
     To define TGF-β(one of the important factors that relate to renal fibrosis) as a target in vitro, by purposeful design, synthesis, screening, structure modification, optimization and repeated pharmacodynamics confirmation in vivo, we regard 42-5 as a new structure compound which has the specific effects on renal insufficiency. It is a coumarin derivative synthesized by professor Shiping Xu and Ping Xie. This study aimed to evaluate its protective effects against renal insufficiency and to clarify the mechanism of this protective action. Preliminary study was also made in its toxicological characteristics. Main results cound be summarized as follows:
     (1) Protection of 42-5 on the cisplatin-caused toxicity in renal cells In vitro, 42-5 was found to protect from damage of rat renal mesangial cells (rMC) and human kidney tubule epithelial cell (HKC) induced by low concentration cisplatin. MTT assay showed the inhibition ratios of rMC induced by cisplatin were lower in incubation with 33μmol/L or 100μml/L 42-5 compared with incubation with cisplatin (0.12—1μmol/L) alone. The inhibition ratios of HKC induced by cisplatin were lower in incubation with 2μmol/L, 10μmol/L or 50μmol/L 42-5 compared with incubation with cisplatin (0.12—2.5μmol/L) alone too.
     (2) Effects of 42-5 on renal insufficiency of ARF induced by cisplatin, 5/6 nephrectomy and diabetic induced by STZ in rats.
     In vivo, different renal insufficiency models including ARF induced by cisplatin, 5/6 nephrectomy and diabetic induced by STZ in rats were characterized with renal dysfunction (BUN and Scr increase), decrease of body weight and the development of proteinuria. Morphological examination showed renal tubule epithelial cell necrosis in acute failure model (ARF induced by cisplatin in rats) and glomerulosclerosis and interstitial fibrosis in chronic renal insufficiency model (5/6 nephrectomy and diabetic induced by STZ in rats). 42-5 administration exerted functional and morphological protection against ARF induced by cisplatin, 5/6 nephrectomy and diabetic induced by STZ in rats. BUN, Scr and urine protein were 237.10±24.34 mg/dl, 4.41±0.73mg/dl and 5.65±3.43 mg/24hr in rats 4 days following cisplatin injection compared with control values of 27.98±4.01 mg/dl, 1.14±0.56mg/dl and 1.24±0.72 mg/24hr in ARF induced by cisplatin in rats. Treatment with 42-5(30mg/kg) resulted in a significant reduction in BUN(125.84±67.06 mg/dl), Scr(2.83±1.16 mg/dl)and urine protein (2.06±1.41 mg/24hr)that after 7 day of treatment. BUN, Scr and urine protein were 46.66±9.38 mg/dl, 1.65±0.27mg/dl and 105.38±38.61 mg/24hr in rats 16 wk following surgery compared with control values of 25.34±4.52 mg/dl, 0.98±0.36mg/dl and 11.49±5.12 mg/24h in 5/6 nephrectomy rats. Treatment with 42-5(30mg/kg) resulted in a significant reduction in BUN(37.38±6.67 mg/dl), Scr(1.07±0.40 mg/dl)and urine protein (29.21±13.70 mg/24h)that after 12 wk of treatment. Glu, BUN, Scr and urine protein were 494.35±45.89 mg/dl, 45.64±6.74 mg/dl, 2.15±0.42mg/dl and 14.13±5.10mg/24hr in rats 16 wk following STZ injection compared with control values of 62.68±8.62mg/dl, 22.31±1.46 mg/dl, 1.41±0.21mg/dl and 8.62±1.71mg/24hr in diabetic induced by STZ in rats. Treatment with 42-5(20mg/kg) resulted in a significant reduction in Glu (332.44±84.06mg/di), BUN (32.84±4.67mg/dl), Scr (1.72±0.34 mg/dl) and urine protein (7.41±2.04mg/24hr)that after 14wk of treatment. Morphological examination showed that 42-5 can attenuate the renal tubule epithelial cell necrosis in ARF induced by cisplatin in rats and glomerular sclerosis and interstitial fibrosis in rats with chronic renal disease.
     (3) Main mechanisms of the protective action
     In vitro mechanism research demonstrated that the activity of 42-5 correlated with inhibiting apoptosis of HKC, transdifferentiation of HKC, lipid peroxidation, and TGF-β_1 receptor binding, increasing matrix metalloproteinase activity, uPA mRNA and matrix metalloproteinase-2(MMP-2) mRNA expression. In vivo mechanism research demonstrated that the activity of 42-5 correlated with inhibiting plasma renin activity, TGF-β_1 mRNA expression, decreasing serum TGF-β_1 and AngⅡlevel, inhibiting synthesis of TGF-β_1, Fibronectin, and CollagenⅣin kidney tissue.
     (4) Preliminary study on toxicological characteristics of 42-5
     Primary safety assay showed that 42-5 had not cytotoxicity on tested different cell lines. Acute toxicity test showed MTD>5g in mouse orally once. Using His~- type Salmonella Typhimurium TA97, TA98, TA100 and TA102, mutagenesis of 42-5 was determined at concentration of 0.05, 0.5, 5.0, 50.0, 500.0μg/plate with S9 or without S9, according to Ames (1983) revised method. The results showed that the number of colony formation of Salmonella Typhimurium TA97, TA98, TA100 and TA102 induced by 42-5 did not increase by 2 fold. The frequency of micronucleated polychromatic erythrocytes (PCE) in bone marrow cells in mice, induced by 42-5 was not increase either. It suggests that 42-5 has no mutagenesis.
     In summary, It was found in this study that 42-5, a coumarin derivative, could protect the kidney from several renal insufficiency including models induced by cisplatin, 5/6 nephrectomy and diabetic induced by STZ in rats. Mechanism research indicated TGF-β_1 and AngⅡwere two main targets which 42-5 take actions and it had no definite mutagenesis. It suggests that 42-5 may be a candidate to develop new drug used to cure renal insufficiency.
引文
1.陈晓光,抗癌药物发展策略。见曾益新主编 肿瘤学 第二版 人民卫生出版社,2003
    2. Barinaga M. Cell suicide: by ICE, not fire. Science, 1994;263:754.
    3. Ding HF and Fisher DE. Mechanism of p53-mediated apoptosis. Crit Rev Oncog, 1998, 9: 83
    4. Ying C, Knudson CM, Korsmeyer SJ et al. Bax suppresses tumorigenesis and stimulates apoptosis in vivo. Nature, 1997, 358: 637
    5. Merritt AJ, Allen TD, Potten CS, et al. Apoptosis in small intestinal epithelial from p53-nuil mice: evidence for a delayed, p53-independent G2/M-associated cell death after gamma-irradiation. Oncogene, 1997,14(23):2759-66.
    6. Botchkarev VA, Komarova EA, Siebenhaar F, Botchkareva NV, Komarov PG, Maurer M, Gilchrest BA, Gudkov AV. p53 is essential for chemotherapy-induced hair loss. Cancer Res. 2000 Sep 15;60(18):5002-6.
    7. Hirabayashi Y, Matsuda M, Matumura T, et al. The p53-deficient hemopoietic stem cells: their resistance to radiation-apoptosis, but lasted transiently. Leukemia,1997,11 Suppl 3: 489-92.
    8. Komarova EA, Gudkov AV. Could p53 be a target for therapeutic suppression Semin Cancer Biol, 1998,8(5):389-400.
    9. Komarova EA, Gudkov AV. Suppression of p53: a new approach to overcome side effects of antitumor therapy. Biochemistry (Mosc),2000,65(1):41-8
    10. Komarova EA, Gudkov AV. Chemoprotection from p53-dependent apoptosis: potential clinical applications of the p53 inhibitors. Biochem Pharmacol,2001,62(6): 657-67
    11.Sambrook,J.(2002) 分子克隆实验指南.科学出版社.
    12. Resnick-Silverman L, St Clair S, Maurer M, Zhao K, Manfredi JJ. Identification of a novel class of genomic DNA-binding sites suggests a mechanism for selectivity in target gene activation by the tumor suppressor protein p53. Genes Dev. 1998 Jul 15;12(14):2102-7.
    13.韩锐主编 抗癌药物研究与实验技术 北京医科大学中国协和医科大学联合出版社 第一版 1998
    14. Sikic BI. Anticancer drug discovery. J Natl Cancer Inst, 1991; 83(11): 738.
    15. Kerkviliet GJ. Drug discovery screen adapts to change. J Natl Cancer Inst, 1990;82(13): 1087.
    16.杜冠华 任德成,药物筛选与新药研究 见陈晓光主编 新药药理学 中国协和医科大学联合出版社 2004
    17. Cclarke AR, Purdie CA and Harrison DJ et al. Thymocyte apoptosis induced by p53-dependent and independent pathways. Nature, 1993;362:849.
    18. Amati B, Littlewood T and Evan G et al. The c-myc protein induces cell cycle progression and apoptosis through dimorisation with Max EMBO. J, 1994; 12: 5083.
    19. Cheng J, Zhou T and Liu C et al. Protection from fas-mediated apoptosis by a so9luble form of the fas moleculo. Science, 1994;263:1759.
    20. Jain KK.Tech.Sight. Biochips for gene spotting. Science. 2001 Oct 19;294(5542):621-3.
    21. Komarov PG, Komarova EA, Kondratov RV, et al. A chemical inhibitor of p53 that protects mice from the side effects of cancer therapy. Science, 1999,285(5434):1733-7.
    22. Culmsee C, Zhu X, Yu QS, et al. A synthetic inhibitor of p53 protects neurons against death induced by ischemic and excitotoxic insults, and amyloid beta-peptide.J Neurochem,2001,77(1): 220-8.
    23. Bassi L, Carloni M, Fonti E, et al. Pifithrin-alpha, an inhibitor of p53, enhances the genetic instability induced by etoposide (VP16) in human lymphoblastoid cells treated in vitro[J]. Mutat Res, 2002, 499(2): 163-76.
    24. Chernov MV, Stark GR. The p53 activation and apoptosis induced by DNA damage are reversibly inhibited by salicylate. Oncogene, 1997, 14(21): 2503-10.
    1. Valenzuela MT, Nunez MI, Villalobos M, et al. A comparison of p53 and p16 expression in human tumor cells treated with hyperthermia or ionizing radiation[J]. Int J Cancer,1997,72(2):307-12.
    2. Gottlieb E, Oren M. p53 facilitates pRb cleavage in IL-3-deprived cells: novel pro-apoptotic activity of p53[J]. EMBO J, 1998,17(13):3587-96.
    3. Woo RA, McLure KG, Lees-Miller SP, et al. DNA-dependent protein kinase acts upstream of p53 in response to DNA damage[J]. Nature,1998, 394(6694):700-4.
    4. Haupt Y, Maya R, Kazaz A, et al. Mdm2 promotes the rapid degradation of p53[J]. Nature, 1997, 387(6630): 296-9.
    5. Gu W, Shi XL, Roeder RG. Synergistic activation of transcription by CBP and p53[J]. Nature, 1997, 387(6635): 819-23.
    6. Lill NL, Grossman SR, Ginsberg D, et al. Binding and modulation of p53 by p300/CBP coactivators[J]. Nature, 1997,387(6635): 823-7.
    7. Atadja P, Wong H, Garkavtsev I, et al. Increased activity of p53 in senescing fibroblasts[J]. Proc Natl Acad Sci U S A,1995,92(18): 8348-52.
    8. Deichman GJ, Matveeva VA, Kashkina LM, et al. Cell transforming genes and tumor progression: in vivo unified secondary phenotypic cell changes[J]. Int J Cancer, 1998, 75(2): 277-83.
    9. Komarova EA, Diatchenko L, Rokhlin OW, et al. Stress-induced secretion of growth inhibitors: a novel tumor suppressor function of p53[J]. Oncogene, 1998, 17(9): 1089-96.
    10. Armstrong JF, Kaufman MH, Harrison DJ, et al. High-frequency developmental abnormalities in p53-deficient mice[J]. Curr Biol, 1995, 5(8): 931-6.
    11. Shick L, Carman JH, Choi JK, et al. Decreased immunoglobulin deposition in tumors and increased immature B cells in p53-null mice[J]. Cell Growth Differ, 1997, 8(2): 121-31.
    12. Komarova EA, Chernov MV, Franks R, et al. Transgenic mice with p53-responsive lacZ: p53 activity varies dramatically during normal development and determines radiation and drug sensitivity in vivo[J]. EMBO J, 1997, 16(6): 1391-400.
    13. Merritt AJ, Allen TD, Potten CS, et al. Apoptosis in small intestinal epithelial from p53-null mice: evidence for a delayed, p53-independent G2/M-associated cell death after gamma-irradiation[J]. Oncogene, 1997, 14(23): 2759-66.
    14. Hirabayashi Y, Matsuda M, Matumura T, et al. The p53-deficient hemopoietic stem cells: their resistance to radiation-apoptosis, but lasted transiently[J]. Leukemia, 1997, 11 Suppl 3: 489-92.
    15. Komarova EA, Gudkov AV. Could p53 be a target for therapeutic suppression[J] Semin Cancer Biol, 1998, 8(5): 389-400.
    16. Komarova EA, Gudkov AV. Suppression of p53: a new approach to overcome side effects of antitumor therapy[J]. Biochemistry (Mosc), 2000, 65(1): 41-8.
    17. Komarova EA, Gudkov AV. Chemoprotection from p53-dependent apoptosis: potential clinical applications of the p53 inhibitors[J]. Biochem Pharmacol, 2001, 62(6): 657-67.
    18. Komarov PG, Komarova EA, Kondratov RV, et al. A chemical inhibitor of p53 that protects mice from the side effects of cancer therapy[J]. Science, 1999, 285(5434): 1733-7.
    19. Culmsee C, Zhu X, Yu QS, et al. A synthetic inhibitor of p53 protects neurons against death induced by ischemic and excitotoxic insults, and amyloid beta-peptide[J].J Neurochem, 2001, 77(1): 220-8.
    20. Chernov MV, Stark GR. Related Articles The p53 activation and apoptosis induced by DNA damage are reversibly inhibited by salicylate[J]. Oncogene, 1997, 14(21): 2503-10.
    21. Bassi L, Carloni M, Fonti E, et al. Pifithrin-alpha, an inhibitor of p53, enhances the genetic instability induced by etoposide (VP16) in human lymphoblastoid cells treated in vitro[J]. Mutat Res, 2002, 499(2): 163-76.
    1. Reeves WB, Andreoli TE. Transforming growth factor beta contributes to progressive diabetic nephropathy. Proc Natl Acad Sci U S A. 2000 Jul 5; 97(14): 7667-9.
    2. Kashiwagi M, Shinozaki M, Hirakata H, Tamaki K, Hirano T, Tokumoto M, Goto H, Okuda S, Fujishima M.Locally activated renin-angiotensin system associated with TGF-betal as a major factor for renal injury induced by chronic inhibition of nitric oxide synthase in rats. J Am Soc Nephrol. 2000 Apr; 11(4): 616-24.
    3. Yoo KH, Thornhill BA, Chevalier RL.Angiotensin stimulates TGF-betal and clusterin in the hydronephrotic neonatal rat kidney. Am J Physiol Regul Integr Comp Physiol. 2000 Mar; 278(3): R640-5.
    4. Gaedeke J, Noble NA, Border WA. Angiotensin II and progressive renal insufficiency. Curr Hypertens Rep. 2002 Oct; 4(5): 403-7.
    5. Grande JP, Warner GM, Walker HJ, Yusufi AN, Cheng J, Gray CE, Kopp JB, Nath KA. TGF-betal is an autocrine mediator of renal tubular epithelial cell growth and collagen IV production. Exp Biol Med (Maywood). 2002 Mar; 227(3): 171-81.
    6. Jacobsen P, Andersen S, Jensen BR, Parving HH.Additive effect of ACE inhibition and angiotensin II receptor blockade in type I diabetic patients with diabetic nephropathy. J Am Soc Nephrol. 2003 Apr; 14(4): 992-9.
    7. Rodby RA, Rohde RD, Clarke WR, Hunsicker LG, Anzalone DA, Atkins RC, Ritz E, Lewis EJ.The Irbesartan type II diabetic nephropathy trial: study design and baseline patient characteristics. For the Collaborative Study Group. Nephrol Dial Transplant. 2000 Apr; 15(4): 487-97.
    8. Fisman EZ, Tenenbaum A, Motro M. Losartan and diabetic nephropathy: commentaries on the RENAAL study. Cardiovasc Diabetol. 2002 Apr 8;1(1):2.
    9. Lewis EJ, Hunsicker LG, Clarke WR, Berl T, Pohl MA, Lewis JB, Ritz E, Atkins RC, Rohde R, Raz I; Collaborative Study Group. Renoprotective effect of the angiotensin-receptor antagonist irbesartan in patients with nephropathy due to type 2 diabetes. N Engl J Med. 2001 Sep 20;345(12):851-60.
    10. Ahuja TS, Freeman D Jr, Mahnken JD, Agraharkar M, Siddiqui M, Memon A. Predictors of the development of hyperkalemia in patients using angiotensin-converting enzyme inhibitors. Am J Nephrol. 2000 Jul-Aug;20(4):268-72.
    11. Mizuno A, Takata M, Okada Y, Okuyama T, Nishino H, Nishino A, Takayasu J, Iwashima A.Structures of new coumarins and antitumor-promoting activity of coumarins from Angelica edulis. Planta Med. 1994 Aug;60(4):333-6.
    12. Mosmann T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Method, 1983, 65: 55-63
    13. Pierce J, Suelter CH.An evaluation of the Coomassie brillant blue G-250 dye-binding method for quantitative protein determination. Anal Biochem. 1977 Aug;81(2): 478-80.
    14. Liu BC, Chen Q, Luo DD, Sun J, Phillips AO, Ruan XZ, Liu NF. Mechanisms of irbesartan in prevention of renal lesion in streptozotocin-induced diabetic rats.Acta Pharmacol Sin. 2003 Jan;24(1):67-73.
    15.赵卫红主编 细胞凋亡 河南医科大学出版社 第一版 1997
    16.韩锐主编 抗癌药物研究与实验技术 北京医科大学中国协和医科大学联合出版社 第一版 1998
    17. Wang QL, Lin M, Liu GT.Antioxidative activity of natural isorhapontigenin. Jpn J Pharmacol. 2001 Sep;87(1):61-6.
    18. Uehiyama M, Mihara M. Determination of malonaldehydede precursor in tissues by thiobarbituric acid test. Anal Bilchem. 1978; 86: 271-278
    19.曹恩华,张健.抗氧化及自由基实验方法与技术.见:张均田主编,现代药理实验方法(下册),第一版.北京:北京医科大学中国协和医科大学联合出版社,1998,p1226-1229
    20. Kuemmerle JF, Murthy KS, Bowers JG.IGFBP-3 activates TGF-beta receptors and directly inhibits growth in human intestinal smooth muscle cells. Am J Physiol Gastrointest Liver Physiol. 2004 Oct;287(4):G795-802.
    21. Ramesh G, Reeves WB.TNF-alpha mediates chemokine and cytokine expression and renal injury in cisplatin nephrotoxicity. J Clin Invest. 2002 Sep; 110(6): 835-42.
    22.萨姆布鲁克 J,弗里奇 EF,曼尼阿蒂斯 T.分子克隆实验指南.第二版,北京:科学出版社,1992
    23. Miyazaki T, Aoyama I, Ise M, Seo H, Niwa T. An oral sorbent reduces overload of indoxyl sulphate and gene expression of TGF-beta1 in uraemic rat kidneys. Nephrol Dial Transplant. 2000 Nov; 15(11): 1773-81
    24. Wallace KB, Bailie MD, Hook JB. Development of angiotensin-converting enzyme in fetal rat lungs. Am J Physiol. 1979 Jan;236(1): R57-60.
    25. Wallace KB, Bailie MD, Hook JB. Angiotensin-converting enzyme in developing lung and kidney. Am J Physiol. 1978 Mar;234(3):R141-5.
    26. Heussen C, Dowdle EB. Electrophoretic analysis of plasminogen activators in polyacrylamide gels containing sodium dodecyl sulfate and copolymerized substrates. Analyt Biochem, 1980, 102: 196-202
    27. Yang L, Fan J, Mi X, Liu X, Xu G .Protective effect of angiotensin Ⅱ receptor blockage on rats with experimental diabetes nephropathy in early stage Sichuan Da Xue Xue Bao Yi Xue Ban. 2003 Apt;34(2):317-9.
    28. Courtoy PJ, Kanwar YS, Hynes RO, Farquhar MG. Fibronectin localization in the rat glomerulus. J Cell Biol. 1980 Dec;87(3 Pt 1):691-6.
    29. Erensoy N, Yilmazer S, Ozturk M, Tuncdemir M, Uysal O, Hatemi H. Effects of ACE inhibition on the expression of type Ⅳ collagen and laminin in renal glomeruli in experimental diabetes. Acta Histochem. 2004;106(4):279-87.
    30. Hocher B, Schwarz A, Reinbacher D, Jacobi J, Lun A, Priem F, Bauer C, Neumayer HH, Raschack M. Effects of endothelin receptor antagonists on the progression of diabetic nephropathy. Nephron. 2001 Feb;87(2): 161-9.
    31.文晓彦,郑法雷,高瑞通,等马兜铃酸Ⅰ诱导人肾小管上皮细胞转分化作用及机制.肾脏病与透析肾移植杂志,2000,9(3):206-209
    32. Fan JM, Huang XR, Ng YY, Nikolic-Paterson DJ, Mu W, Atkins RC, Lan HY.Interleukin-1 induces tubular epithelial-myofibroblast transdifferentiation through a transforming growth factor-beta1-dependent mechanism in vitro.Am J Kidney Dis. 2001 Apt;37(4):820-31.
    33. Fan JM, Ng YY, Hill PA, Nikolic-Paterson DJ, Mu W, Atkins RC, Lan HY. Transforming growth factor-beta regulates tubular epithelial-myofibroblast transdifferentiation in vitro. Kidney Int. 1999 Oct; 56(4): 1455-67.
    34.秦伯益主编,新药评价概论 第二版 人民卫生出版社
    35.王治乔,袁伯俊主编,新药临床前安全性评价与实践 军事医学科学出版社
    36.王海燕,见王海燕主编,肾衰竭 上海科学技术出版社 p2
    37. Yu L, Border WA, Huang Y, Noble NA. TGF-beta isoforms in renal fibrogenesis. Kidney Int. 2003 Sep;64(3):844-56.
    38. Chen S, Jim B, Ziyadeh FN. Diabetic nephropathy and transforming growth factor-beta: transforming our view of glomerulosclerosis and fibrosis build-up. Semin Nephrol. 2003 Nov;23(6):532-43.
    39. Dai C, Yang J, Liu Y. Transforming growth factor-beta1 potentiates renal tubular epithelial cell death by a mechanism independent of Smad signaling. J Biol Chem. 2003 Apr 4;278(14): 12537-45.
    40. Schena FP. Role of growth factors in acute renal failure. Kidney Int Suppl. 1998; 66(3): S11-15
    41. Basile DP. The transforming growth factor beta system in kidney disease and repair: recent progress and future directions. Curr Opin Nephrol Hypertens. 1999; 8(1): 21-30
    42. Grande JP. Mechanisms of progression of renal damage in lupus nephritis: pathogenesis of renal scarring. Lupus. 1998; 7(9): 604-610
    43. Wilson HM, Minto AWM, Brown PAJ, et al. Transforming growth factor-β isoforms and glomerular injury in nephrotoxic nephritis. Kidney Int. 2000; 57: 2434-2444
    44. Schiffer M, Gersdorff GV, Brtzer M, et al. Smad proteins and transforming growth factor-β signaling. Kidney Int. 2000; 58(suppl. 77): S45-S52
    45. Frishberg Y, Kelly CJ. TGF-β and regulation of interstitial nephritis. Miner Electrolyte Metab. 1998; 24: 181-189.
    46.毕增祺 慢性肾功能衰竭的病因和发病基机理,见王海燕主编,肾脏病学 人民卫生出版社 p1385
    47. Lynch ED, Gu R, Pierce C, Kil J. Reduction of acute cisplatin ototoxicity and nephrotoxicity in rats by oral administration of allopurinol and ebselen. Hear Res. 2005 Mar; 201(1-2): 81-9.
    48. Nishida M, Fujimoto S, Toiyama K, Sato H, Hamaoka K. Effect of hematopoietic cytokines on renal function in cisplatin-induced ARF in mice. Biochem Biophys Res Commun. 2004 Nov 5;324(1):341-7.
    49. Arany I, Safirstein RL. Cisplatin nephrotoxicity. Semin Nephrol. 2003 Sep;23(5):460-4.
    50. Moskowitz DW, Schneider AN, Lane PH, Schmitz PG, Gillespie KN. Effect of epidermal growth factor in the rat 5/6 renal ablation model. J Am Soc Nephrol. 1992 Nov; 3(5): 1113-8.
    51. Kanazawa M, Kohzuki M, Yoshida K, Kurosawa H, Minami N, Saito T, Yasujima M, Abe K. Combination therapy with an angiotensin-converting enzyme (ACE) inhibitor and a calcium antagonist: beyond the renoprotective effects of ACE inhibitor monotherapy in a spontaneous hypertensive rat with renal ablation.Hypertens Res. 2002 May; 25(3): 447-53.
    52. Zhao JR, Qu L, Li XM. Preventive and therapeutic effects of astragalus and angelica mixture on renal tubulointerstitial fibrosis after unilateral ureteral obstruction in rats] Beijing Da Xue Xue Bao. 2004 Apr; 36(2): 119-23
    53. Cheng Q, Chen X, Ye Y. Antisense oligonucleotide attenuates renal tubulointerstitial injury in mice with unilateral ureteral obstruction] Zhonghua Yi Xue Za Zhi. 1999 Jul; 79(7): 533-7.
    54. Lee LM, Liu CF, Yang PP. Effect of tetramethylpyrazine on lipid peroxidation in streptozotocin-induced diabetic mice. Am J Chin Med. 2002; 30(4): 601-8.
    55. Imaeda A, Kaneko T, Aoki T, Kondo Y, Nakamura N, Nagase H, Yoshikawa T. Antioxidative effects of fluvastatin and its metabolites against DNA damage in streptozotocin-treated mice. Food Chem Toxicol. 2002 Oct; 40(10): 1415-22.
    56. Imaeda A, Kaneko T, Aoki T, Kondo Y, Nagase H. DNA damage and the effect of antioxidants in streptozotocin-treated mice. Food Chem Toxicol. 2002 Jul; 40(7): 979-87.
    57. Scott LA, Madan E, Valentovic MA.Attenuation of cisplatin nephrotoxicity by streptozotocin-induced diabetes. Fundam Appl Toxicol. 1989 Apr; 12(3): 530-9.
    58. Shirwaikar A, Issac D, Malini S. Effect of Aerva lanata on cisplatin and gentamicin models of acute renal failure.J Ethnopharmacol. 2004 Jan; 90(1): 81-6.
    59. Sueishi K, Mishima K, Makino K, Itoh Y, Tsuruya K, Hirakata H, Oishi R. Protection by a radical scavenger edaravone against cisplatin-induced nephrotoxicity in rats. Eur J Pharmacol. 2002 Sep 13; 451(2): 203-8.
    60. Liu S, Shi L, Liu X. Effect of heme oxygenase-1 inducer hemin on chronic renal failure rats. J Huazhong Univ Sci Technolog Med Sci. 2004;24(3):250-3
    61. Yang N, Wu LL, Nikolic-Paterson DJ, Ng YY, Yang WC, Mu W, Gilbert RE, Cooper ME, Atkins RC, Lan HY. Local macrophage and myofibroblast proliferation in progressive renal injury in the rat remnant kidney. Nephrol Dial Transplant. 1998 Aug; 13(8): 1967-74.
    62. Davila-Esqueda ME, Vertiz-Hernandez AA, Martinez-Morales F. Comparative analysis of the renoprotective effects of pentoxifylline and vitamin E on streptozotocin-induced diabetes mellitus. Ren Fail. 2005; 27(1): 115-22.
    63. Mifsud S, Kelly DJ, Qi W, Zhang Y, Pollock CA, Wilkinson-Berka JL, Gilbert RE. Intervention with tranilast attenuates renal pathology and albuminuria in advanced experimental diabetic nephropathy.Nephron Physiol. 2003;95(4):p83-91.
    64. Kelly DJ, Cox AJ, Tolcos M, Cooper ME, Wilkinson-Berka JL, Gilbert RE. Attenuation of tubular apoptosis by blockade of the renin-angiotensin system in diabetic Ren-2 rats. Kidney Int. 2002 Jan;61(1):31-9.
    65. Thomas ME, Brunskill NJ, Harris KP, Bailey E, Pringle JH, Furness PN, Walls J. Proteinuda induces tubular cell turnover: A potential mechanism for tubular atrophy. Kidney Int. 1999 Mar;55(3):890-8.
    66. Wang SN, Lapage J, Hirschberg R. Glomerular ultrafiltration and apical tubular action of IGF-Ⅰ, TGF-beta, and HGF in nephrotic syndrome. Kidney Int. 1999 Oct; 56(4): 1247-51.
    67. Gerschenson L.E. et al.Apoptosis:a different type of cell death[J]. FASEB.J. 1992,6:2450..
    68. Wyllie A.H. Glucocorticoid-induced thymocyte apoptosis is associated with endogenous endonuclease activation[J].Nature 1980,284:555.
    69.李晓玫,急性肾小管坏死时的肾小管上皮细胞凋亡及其机制。见王海燕主编 肾衰竭 上海科学技术出版社 p46-48
    70. Sutton TA, Molitoris BA. Mechanisms of cellular injury in ischemic acute renal failure. Semin Nephrol. 1998 Sep; 18(5):490-7.
    71. Edelstein CL, Ling H, Schrier RW. The nature of renal cell injury. Kidney Int. 1997 May; 51(5): 1341-51.
    72.韩咏梅,朱永康.减轻顺铂毒性的研究进展.国外医学肿瘤学分册.1999;26(2):86-89
    73. Norris K, Vaughn C. The role of renin-angiotensin-aldosterone system inhibition in chronic kidney disease. Expert Rev Cardiovasc Ther. 2003 May; 1(1): 51-63.
    74. Everett AD, Scott J, Wilfong N, Marino B, Rosenkranz RP, Inagami T, Gomez RA. Renin and angiotensinogen expression during the evolution of diabetes. Hypertension. 1992 Jan;19(1): 70-8.
    75. Erman A, Veksler S, Gafter U, Boner G, Wittenberg C, van Dijk DJ. Renin-angiotensin system blockade prevents the increase in plasma transforming growth factor beta 1, and reduces proteinuria and kidney hypertrophy in the streptozotocin-diabetic rat.
    76.郑法雷,于阳,慢性肾衰竭病程进展的机制与预防 见王海燕主编 肾衰竭 上海科学技术出版社 p306-311
    77. Jeong HS, Park KK, Park KK, Kim SP, Choi IJ, Lee IK, Kim HC. Effect of antisense TGF-beta1 oligodeoxynucleotides in streptozotocin-induced diabetic rat kidney. J Korean Med Sci. 2004 Jun; 19(3):374-83.
    78. Tojo A, Onozato ML, Kurihara H, Sakai T, Goto A, Fujita T. Angiotensin Ⅱ blockade restores albumin reabsorption in the proximal tubules of diabetic rats. Hypertens Res. 2003 May;26(5):413-9.
    79. Murali B, Umrani DN, Goyal RK. Effect of chronic treatment with losartan on streptozotocin-induced renal dysfunction. Mol Cell Biochem. 2003 Jul;249(1-2):85-90.
    80. Liu BC, Luo DD, Sun J, Ma KL, Ruan XZ. Influence of irbesartan on renal hypertrophy and thickening of glomerular basement-membrane in streptozotocin-induced diabetic rats Zhonghua Nei Ke Za Zhi. 2003 May;42(5):320-3.
    81. Hejna M, Raderer M, Zielinski CC. Inhibition by anticogulants. J Natl Cancer Inst, 1999, 91: 22
    82. Reuning U, Magdolen V, Wilhelm, et al. Multifunctional potential of the plasminogen activation system in tumor invasion and metastasis. Int J Oncol, 1998, 13: 893
    83. Ng YY, Fan JM, Mu W, Nikolic-Paterson DJ, Yang WC, Huang TP, Atkins RC, Lan HY. Glomerular epithelial-myofibroblast transdifferentiation in the evolution of glomerular crescent formation. Nephrol Dial Transplant. 1999 Dec; 14(12): 2860-72.
    84. Strutz F, Caron R, Tomaszewski J, et al. Transdifferentiation: A new concept in renal fibrogenesis. JASN, 1994; 5: 819.
    85. Ng YY, Huang TP, Yang WC, et al. Tubular epithelial-myofibroblast transdifferentiation in progressive tubulointerstitial fibrosis in 5/6 nephrectomized rats. Kidney Int, 1998, 54: 864-876.
    86. Zeisberg M, Bonnet G, Maeshima Y, Colorado P, Muller GA, Strutz F, Kalluri R. Renal fibrosis: collagen composition and assembly regulates epitheliai-mesenchymal transdifferentiation. Am J Pathol. 2001 Oct; 159(4): 1313-21.
    87. Okada H, Danoff TM, Kalluri R, Neilson EG. Early role of Fspl in epithelial-mesenchymal transformation. Am J Physiol. 1997 Oct;273(4 Pt 2): F563-74.
    88.苏震,导师:郑法雷 马兜铃酸和生长因子诱导人类肾小管上皮细胞转分化作用的实验研究 中国协和医科大学硕士生论文。
    1. Hill C, Flyvbjerg A, Gronbaek H, The renal expression of transforming growth factor-beta isoforms and their receptors in acute and chronic experimental diabetes in rats.Endocrinology. 2000 Mar;141(3): 1196-208.
    2. Docherty NG, Perez-Barriocanal F, Balboa NE, Transforming growth factor-beta1 (TGF-beta1): a potential recovery signal in the post-ischemic kidney. Ren Fail. 2002 Jul;24(4): 391-406.
    3. Derynck R, Feng XH, TGF-beta receptor signaling. Biochim Biophys Acta. 1997 Oct 24;1333(2):F105-50.
    4. Attisano L, Wrana JL. Signal transduction by the TGF-beta superfamily. Science. 2002 May 31; 296(5573): 1646-7.
    5. Mehra A, Wrana JL. TGF-beta and the Smad signal transduction pathway.Biochem Cell Biol. 2002;80(5):605-22.
    6. Wolf G, Neilson EG.Angiotensin as a renal growth factor.J AM Soc Nephrol, 1993,3:1531.20.
    7. Anderson PW, Do YS,Hsueh WA.Angiotensin causes mesangial cell hypertrophy.Hypertension, 1993, 21: 29.21.
    8. Kagami S, Border WA, Miller DE, etal. Angiotensin stimulates extracellular matrix protein synthesis through induction of transforming growth factor-βexpression in rat glomerular mesangial cells. J Clin Invest, 1994, 93: 2431.
    9. Van Loon JA, Szumlanski CL, Weinshilboum RM. Human kidney thiopurine methyltransferase. Photoaffinity labeling with S-adenosyl-L-methionine.Biochem Pharmacol. 1992 Aug 18; 44(4): 775-85.
    10. Szumlanski C, Otterness D, Her C, Lee D, Brandriff B, Kelsell D, Spurr N, Lennard L, Wieben E, Weinshilboum R. Thiopurine methyltransferase pharmacogenetics: human gene cloning and characterization of a common polymorphism.DNA Cell Biol. 1996 Jan; 15(1): 17-30.
    11. Wogensen L, Nielsen CB, Hjorth P, Rasmussen LM, Nielsen AH, Gross K, Sarvetnick N, Ledet T. Under control of the Ren-1c promoter, locally produced transforming growth factor-betal induces accumulation of glomerular extracellular matrix in transgenic mice. Diabetes. 1999 Jan; 48(1): 182-92.
    12. Wang SN, Hirschberg R. Growth factor ultrafiltration in experimental diabetic nephropathy contributes to interstitial fibrosis. Am J Physiol Renal Physiol. 2000 Apr; 278(4): F554-60.
    13. Gilbert RE, Cox A, Wu LL, Allen TJ, Hulthen UL, Jerums G, Cooper ME. tubulointerstitium in experimental diabetes: effects of ACE inhibition. Diabetes. 1998 Mar; 47(3): 414-22.
    14. Park IS, Kiyomoto H, Abboud SL, Abboud HE. Expression of transforming growth factor-beta and type IV collagen in early streptozotocin-induced diabetes.Diabetes. 1997 Mar; 46(3): 473-80.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700