用户名: 密码: 验证码:
p75NTR、sortilin在黑质多巴胺能神经元的表达及其参与细胞变性的病理作用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究目的
     帕金森(Parkinson’s disease,PD)是以黑质多巴胺能神经元大量变性死亡为特征的严重神经退行性疾病,其神经元变性死亡的发生原因与病理机制,仍然是制约PD临床治疗的关键问题。研究表明p75神经营养素受体(p75 neurotrophin receptor, p75NTR)是肿瘤坏死因子受体家族的重要成员,以低亲和力与神经营养素(neurotrophins,NTs)结合,介导神经元存活、分化与髓鞘形成。近来发现NT前体分子如神经生长因子前体(pro-nerve growth factor, proNGF)能够以高亲和力结合p75NTR,并通过辅助受体sortilin的协助启动细胞凋亡,在脑发育和脑损伤神经元的凋亡中发挥重要作用。成年后p75NTR主要在某些病理状态下表达,如脊髓侧索硬化症(ALS)和阿尔茨海默病(AD)等,异常表达的p75NTR参与疾病过程中的神经元变性或细胞凋亡。
     但目前p75NTR与PD病理关系问题,仍是研究空白,本研究针对这一问题,探讨p75NTR与辅助受体sortilin在黑质的表达、细胞定位、KA损伤模型的动态变化、及其参与中脑黑质多巴胺能神经元变性死亡的病理作用,为揭示p75NTR、sortilin凋亡信号参与PD病理发展机制和疾病治疗新靶点提供依据。
     研究方法
     ①采用红藻氨酸(kainic acid,KA)立体定位注射黑质建立兴奋性毒性损伤动物模型。
     ②通过半定量聚合酶链式反应(RT-PCR)检测p75NTR、sortilin、proNGFmRNA在黑质表达及其损伤后的变化。
     ③免疫细胞化学、双标记、及激光共聚焦显微镜观察等方法,研究p75NTR、sortilin、proNGF在黑质多巴胺能神经元的定位。
     ④Western Blot分析p75NTR、sortilin、proNGF蛋白在黑质的表达情况与水平变化。
     ⑤F luoro-Jade C(FJC)染色方法显示和计数分析黑质神经元变性死亡。
     ⑥细胞内凋亡信号的分析初步观察JNK、AIF细胞内信号通路的参与问题。
     主要结果
     1.发现p75NTR、sortilin在黑质多巴胺能神经元的表达,KA损伤后导致其表达上调。
     ①免疫细胞化学研究发现黑质p75NTR和sortilin的表达:在中脑黑质切片上,检测到p75NTR、sortilin阳性神经元,它们主要分布在黑质的致密部。双标记染色与激光共聚焦显微镜观察证明47%TH阳性神经元表达p75NTR,而sortilin表达于全部的TH阳性神经元。
     ②RT-PCR实验证明黑质p75NTR、sortilin mRNA的表达:RT-PCR结果发现p75NTR、sortilin mRNA阳性条带,p75NTR条带大小为309bp,sortilin条带大小为438bp,与预期的结果相符。
     ③KA损伤导致黑质p75NTR、sortilin表达上调: p75NTR mRNA相对光密度由正常黑质的0.489±0.079上升为1.06±0.11(p﹤0.01,t test);sortilin mRNA相对光密度由正常黑质的0.724±0.056上升为1.226±0.078(p﹤0.01,t test);KA损伤后p75NTR上调表达于所有的TH免疫阳性神经元,sortilin的细胞数由204±4上升到293±13,具有统计学差异(p﹤0.01)。
     2.p75NTR、sortilin表达上调参与KA损伤模型黑质多巴胺能神经元变性死亡
     ①p 75NTR、sortilin共存于黑质多巴胺能神经元:在p75NTR/TH、sortilin/TH双标结果基础上,进一步观察到大量的p75NTR/sortilin双标记神经元分布在黑质致密部,这些双标记神经元占全部p75NTR神经元的71.8%。
     ②proNGF免疫阳性存在黑质神经元及星形胶质细胞:免疫细胞化学结果显示proNGF定位于黑质致密部腹侧带的多巴胺神经元,并且发现proNGF定位于激活的星形胶质细胞。
     ③p roNGF在KA损伤后呈现与p75NTR、sortilin共同上调现象: proNGF mRNA相对光密度由正常黑质0.18±0.037上升为0.703±0.059(p﹤0.01,t test); proNGF/TH双标细胞数由正常黑质40±5,增加到75±5,具有统计学差异(p﹤0.01)。
     ④p 75NTR、sortilin、proNGF、FJC及TH阳性细胞在KA损伤后的d1、d3、d7天时的动态变化:细胞计数结果显示p75NTR、sortilin、proNGF逐渐增加,TH神经元逐渐减少,同时FJC标记的变性神经元逐步增加。p75NTR、sortilin、proNGF与TH的相关性检验结果显示,p75NTR、sortilin、proNGF与TH细胞的减少成负相关性,相关系数分别为-0.988、-0.998、-0.993。FJC的增加与TH的减少呈负相关,相关系数为-0.999。
     3. KA损伤后p75NTR上调启动细胞内凋亡信号途径
     ①KA损伤后启动JNK信号途径: c-jun属于caspase依赖的信号途径,研究发现KA损伤后黑质c-jun表达明显增加,c-jun/TH双标细胞数由10±1增加到20±2;Western Blot显示c-jun蛋白相对表达量由0.749±0.048增加到1.087±0.109。KA损伤后c-jun的磷酸化水平增高,p-c-jun/TH的双标细胞由26±2增加到65±4。
     ②KA损伤后诱导AIF表达增加: AIF属于caspase非依赖性的信号途径,发现AIF在KA损伤后细胞数明显增加,由正常195±3增加到243±14。而分布在黑质致密部AIF/TH阳性细胞由正常177±4减少到112±4。
     结论
     ①首次发现p75NTR、sortilin在黑质多巴胺能神经元的表达与KA损伤后表达上调现象。
     ②p 75NTR、sortilin表达上调参与了KA损伤模型黑质多巴胺能神经元变性死亡过程。
     ③KA损伤模型中p75NTR、sortilin表达上调可能启动JNK和AIF等细胞内凋亡信号途径,导致神经元死亡。
     本研究初步阐明了p75NTR、sortilin作为凋亡信号参与黑质多巴胺能神经元变性死亡的病理作用,为进一步揭示PD发生和发展机制、探索PD治疗的新靶点提供了重要依据。
Study purpose:
     Parkinson's disease (PD) is a severe degenerative disorder that is characterized by massive dopaminergic neuronal loss in substantia nigra (SN). The pathogenesis of PD or mechanism of neuronal degeneration is still largely obscure. The p75 neurotrophin receptor (p75NTR), one key member of tumor necrosis receptor superfamily, has a low-affinity binding to mature neurotrophins, i.e. nerve growth factor (NGF), brain-derived neurotrophic factor and neurotrophin-3, and mediate neuronal cell survival, differentiation and neurite outgrowth. Rencent evidence has shown that p75NTR can in high affinity bind to the precursor of neurotrohpins such as pro-NGF, and trigger neuronal cell apoptosis by assistance of sortilin, a co-receptor of p75NTR. A line of evidence has shown that p75NTR plays important roles in controlling cell apoptosis in the developing or injury states of brain. While expression of p75NTR was upregulated in pathological condiations in the adult such as amyotrophic lateral sclerosis (ALS) and Alzheimer’s disease (AD), its abnormal upregulation is recognized to involve in neuronal degeneration in disease onset and progression of these neurodegenerative diseases.
     However, it is still not known if p75NTR is also involved in pathogenesis of PD. By focusing on this question in this study, cellular localization of p75NTR and its co-receptor sortilin were first identified in the substantia nigra neurons. By using kainic acid (KA)-lesioned animal model, upregulated expression of p75NTR and sortilin was then examined, and their roles in inducing neuronal degeneration and triggering intracellular apoptosis signaling were investigated. The results of this study have provided important evidence to reveal significance of p75NTR and sortilin apoptotic signalling in disease progression and new intervention target for treatment of PD.
     Material and Methods:
     ①KA-lesioned animal models were prepared by stereotaxic injection of KA into substantia nigra of adult rats.
     ②Reverse transcript polymerase chain reaction (RT-PCR) was quantitatively performed to examine expression and levels of p75NTR, sortilin, and proNGF mRNAs in the substantia nigra of control and KA-lesioned rats.
     ③Immunohistochemistry, double immunofluorescence and laser scanning confocal microscopy were used to localize p75NTR, sortilin, proNGF in the dopaminergic neurons in the substantia nigra.
     ④Western Blotting was quantitatively performed to confirm expression and levels of p75NTR, sortilin, proNGF proteins in the substantia nigra.
     ⑤Fluoro-Jade C (FJC), a specific stain for degenerating neurons, was carried out to visualizing neuronal degeneration in the substantia nigra of KA-lesioned rats.
     ⑥Analysis of intracellular apoptosis signaling was done to check activation of JNK, AIF signaling pathway in the substantia nigra neurons in KA-lesioned rats.
     Main results:
     1. Identification of p75NTR, sortilin expression in the dopaminergic neurons and their upregulation in the substantia nigra after KA insult
     ①Expression of p75NTR and sortilin in dopaminergic neurons was detected by using immunocytochemistry. In the midbrain sections, p75NTR or sortilin-positive neurons were observed, and they were mainly distributed in the substantia nigra pars compacta. Double immunofluorescence and laser scanning confocal microscopy confirmed that 47% TH-positive neurons expressed p75NTR, and sortilin was expressed in all TH-positive neuronal ones.
     ②Expression of p75NTR and sortilin mRNAs was further found in the substantia nigra by RT-PCR experiments. Results confirmed PCR bands of p75NTR, or sortilin mRNA in expected 309bp, or 438bp respectively.
     ③Up-regulation of p75NTR and sortilin was found in the substantia nigra of KA-lesioned animal model. Relative optical density of p75NTR increased from 0.489±0.079 at control to 1.06±0.11 at KA-lesion (p<0.01, t test), and sortilin increased from 0.724±0.056 at control to 1.226±0.078 at KA-lesion (p<0.01, t test). Expression of p75NTR increased into all TH-positive neurons, and sortilin-positive neurons increased from 204±4 to 293±13 in KA-lesion rats (p﹤0.01).
     2.Up-regulation of p75NTR and sortilin expression induced degeneration of the dopaminergic neuron in the substnatia nigra after KA insult
     ①Colocalization of p75NTR and sortilin was confirmed in the substantia nigra neurons. Taken together with finding on p75NTR/TH, sortlin/TH double labeled neurons, it clearly appeared that p75NTR/sortilin was most colocalized in the dopaminergic neurons in the substantia nigra pars compacta, and these p75NTR/sortilin neurons constitute about 71.8% of total p75NTR ones.
     ②Expression of proNGF was further found in TH-positive neurons and GFAP-positive astrocytes in the substantia nigra. These proNGF/TH neurons were mostly distributed in the ventral tier of substantia nigra pars compacta, and proNGF/GFAP astrcytes were seen in the KA-lesion state.
     ③Up-regulated expression of proNGF was found in KA-lesioned substantia nigra which was in consistent with upregulation of p75NTR and sortilin. Results showed that relative optical density of proNGF mRNA increased from 0.18±0.037 at control to 0.703±0.059 at KA-lesion (p <0.01, t test). Cell counts indiacted that proNGF/TH neurons increased from 40±5 at control to 75±5 at KA-lesion (p﹤0.01).
     ④Quantitative and dynamic analysis were made on p75NTR, proNGF, sortilin, FJC, or TH-positive cells at time-points of d1, d3 and d7 afte KA-lesion. The results showed that p75NTR, sortilin, proNGF-positive cells increased gradually, but TH-positive neurons decreased, and at the same time FJC-positive cells increased. The relationship between p75NTR and TH, sortilin and TH, proNGF and TH were negative correlation, correlation coefficient were -0.988, -0.998, -0.993, respectively. The increase of FJC and decrease of TH was negative correlation, the correlation coefficient was -0.999.
     3. Upregulation of p75NTR and sortilin expression might triger intracellular apoptotic JNK and AIF signals in KA-lesion state
     ①Activation of JNK signaling pathway was found in KA-lesion substantia nigra. It is well known that c-jun belongs to capase-dependent signaling pathway. The results showed that expression of c-jun and phosphorylation levels of c-jun increased dramatically in the substantia nigra after KA-lesion, c-jun/TH double labeled neurons increased from 10±1 at control to 20±2 at KA-lesion. Western blotting confirmed that relative density of c-jun protein increased from 0.749±0.048 at control to1.087±0.109 at KA-lesion (p<0.05). Besides, the p-c-jun/TH neurons increased from 26±2 at control to 65±4 at KA-lesion (p<0.01).
     ②Activation of AIF signal was also detected in the substantia nigra after KA-lesion. Evidence has shown that AIF belongs to capase-independent signaling pathway. This result indicated that AIF expression was significantly up-regulated in KA-lesioned substantia nigra. In the nigra region, AIF-positve increased from 195±3 at control to 243±14 at KA-lesion. On the other hand, AIF/TH positive neurons decreased from 177±4 at control to 112±4 at KA-lesion, indicating some AIF/TH neurons was died after KA-insult.
     Preliminary conclusion
     ①Expression of p75NTR, sortilin was first identified in dopaminergic neurons of substantia nigra in this study, and upregulated levels were found in KA injury state.
     ②Up-regulation of p75NTR and sortilin appeared to induce degenerative death of dopaminergic neurons of the substantia nigra in KA-lesioned animal model.
     ③Up-regulated p75NTR and sortilin might be involved in activation of intracellular JNK and AIF signaling in substantia nigra of KA-lesioned rats.
     These data has provided evidence that p75NTR, sortilin apoptotic signalling may be involved in inducing degeneration of dopaminergic neuron in the substantia nigra. This study also suggested that p75NTR may play important role in pathogenesis or disease progression of PD and represent new intervention target for treatment of PD.
引文
[1] Chao MV, Bothwell M. Neurotrophins: to cleave or not to cleave. Neuron. 2002. 33(1): 9-12.
    [2] Barker PA. p75NTR is positively promiscuous: novel partners and new insights. Neuron. 2004. 42(4): 529-33.
    [3] Lee FS, Kim AH, Khursigara G, Chao MV. The uniqueness of being a neurotrophin receptor. Curr Opin Neurobiol. 2001. 11(3): 281-6.
    [4] Metsis M. Genes for neurotrophic factors and their receptors: structure and regulation. Cell Mol Life Sci. 2001. 58(8): 1014-20.
    [5] Welcher AA, Bitler CM, Radeke MJ, Shooter EM. Nerve growth factor binding domain of the nerve growth factor receptor. Proc Natl Acad Sci U S A. 1991. 88(1): 159-63.
    [6] Barker PA. p75NTR: A study in contrasts. Cell Death Differ. 1998. 5(5): 346-56.
    [7] Ye X, Mehlen P, Rabizadeh S, et al. TRAF family proteins interact with the common neurotrophin receptor and modulate apoptosis induction. J Biol Chem. 1999. 274(42): 30202-8.
    [8] Carter BD, Lewin GR. Neurotrophins live or let die: does p75NTR decide. Neuron. 1997. 18(2): 187-90.
    [9] Coulson EJ, Reid K, Barrett GL, Bartlett PF. p75 neurotrophin receptor-mediated neuronal death is promoted by Bcl-2 and prevented by Bcl-xL. J Biol Chem. 1999. 274(23): 16387-91.
    [10] Coulson EJ, Reid K, Baca M, et al. Chopper, a new death domain of the p75 neurotrophin receptor that mediates rapid neuronal cell death. J Biol Chem. 2000. 275(39): 30537-45.
    [11] Underwood CK, Coulson EJ. The p75 neurotrophin receptor. Int J Biochem Cell Biol. 2008. 40(9): 1664-8.
    [12] Dechant G, Barde YA. Signalling through the neurotrophin receptor p75NTR. Curr Opin Neurobiol. 1997. 7(3): 413-8.
    [13] Roux PP, Barker PA. Neurotrophin signaling through the p75 neurotrophin receptor. Prog Neurobiol. 2002. 67(3): 203-33.
    [14] Coulson EJ, Reid K, Shipham KM, Morley S, Kilpatrick TJ, Bartlett PF. The role of neurotransmission and the Chopper domain in p75 neurotrophin receptor death signaling. Prog Brain Res. 2004. 146: 41-62.
    [15] Kanning KC, Hudson M, Amieux PS, Wiley JC, Bothwell M, Schecterson LC. Proteolytic processing of the p75 neurotrophin receptor and two homologs generates C-terminal fragments with signaling capability. J Neurosci. 2003. 23(13): 5425-36.
    [16] Barker PA, Miller FD, Large TH, Murphy RA. Generation of the truncated form ofthe nerve growth factor receptor by rat Schwann cells. Evidence for post-translational processing. J Biol Chem. 1991. 266(28): 19113-9.
    [17] Cotrina ML, Gonzalez-Hoyuela M, Barbas JA, Rodriguez-Tebar A. Programmed cell death in the developing somites is promoted by nerve growth factor via its p75(NTR) receptor. Dev Biol. 2000. 228(2): 326-36.
    [18] Wang YQ, Bian GL, Bai Y, Cao R, Chen LW. Identification and kainic acid-induced up-regulation of low-affinity p75 neurotrophin receptor (p75NTR) in the nigral dopamine neurons of adult rats. Neurochem Int. 2008. 53(3-4): 56-62.
    [19] Rende M, Provenzano C, Tonali P. Modulation of low-affinity nerve growth factor receptor in injured adult rat spinal cord motoneurons. J Comp Neurol. 1993. 338(4): 560-74.
    [20] Kokaia Z, Andsberg G, Martinez-Serrano A, Lindvall O. Focal cerebral ischemia in rats induces expression of P75 neurotrophin receptor in resistant striatal cholinergic neurons. Neuroscience. 1998. 84(4): 1113-25.
    [21] Roux PP, Colicos MA, Barker PA, Kennedy TE. p75 neurotrophin receptor expression is induced in apoptotic neurons after seizure. J Neurosci. 1999. 19(16): 6887-96.
    [22] Mufson EJ, Brashers-Krug T, Kordower JH. p75 nerve growth factor receptor immunoreactivity in the human brainstem and spinal cord. Brain Res. 1992. 589(1): 115-23.
    [23] Andsberg G, Kokaia Z, Lindvall O. Upregulation of p75 neurotrophin receptor after stroke in mice does not contribute to differential vulnerability of striatal neurons. Exp Neurol. 2001. 169(2): 351-63.
    [24] Casaccia-Bonnefil P, Kong H, Chao MV. Neurotrophins: the biological paradox of survival factors eliciting apoptosis. Cell Death Differ. 1998. 5(5): 357-64.
    [25] Rabizadeh S, Oh J, Zhong LT, et al. Induction of apoptosis by the low-affinity NGF receptor. Science. 1993. 261(5119): 345-8.
    [26] Casha S, Yu WR, Fehlings MG. Oligodendroglial apoptosis occurs along degenerating axons and is associated with FAS and p75 expression following spinal cord injury in the rat. Neuroscience. 2001. 103(1): 203-18.
    [27] Kust BM, Brouwer N, Mantingh IJ, Boddeke HW, Copray JC. Reduced p75NTR expression delays disease onset only in female mice of a transgenic model of familial amyotrophic lateral sclerosis. Amyotroph Lateral Scler Other Motor Neuron Disord. 2003. 4(2): 100-5.
    [28] Ferri CC, Bisby MA. Improved survival of injured sciatic nerve Schwann cells in mice lacking the p75 receptor. Neurosci Lett. 1999. 272(3): 191-4.
    [29] Soilu-Hanninen M, Ekert P, Bucci T, Syroid D, Bartlett PF, Kilpatrick TJ. Nerve growth factor signaling through p75 induces apoptosis in Schwann cells via a Bcl-2-independent pathway. J Neurosci. 1999. 19(12): 4828-38.
    [30] Turner BJ, Cheah IK, Macfarlane KJ, et al. Antisense peptide nucleic acid-mediated knockdown of the p75 neurotrophin receptor delays motor neuron disease in mutant SOD1 transgenic mice. J Neurochem. 2003. 87(3): 752-63.
    [31] Vargas MR, Pehar M, Cassina P, Beckman JS, Barbeito L. Increased glutathione biosynthesis by Nrf2 activation in astrocytes prevents p75NTR-dependent motor neuron apoptosis. J Neurochem. 2006. 97(3): 687-96.
    [32] Davey F, Davies AM. TrkB signalling inhibits p75-mediated apoptosis induced by nerve growth factor in embryonic proprioceptive neurons. Curr Biol. 1998. 8(16): 915-8.
    [33] Bamji SX, Majdan M, Pozniak CD, et al. The p75 neurotrophin receptor mediates neuronal apoptosis and is essential for naturally occurring sympathetic neuron death. J Cell Biol. 1998. 140(4): 911-23.
    [34] Srinivasan B, Roque CH, Hempstead BL, Al-Ubaidi MR, Roque RS. Microglia-derived pronerve growth factor promotes photoreceptor cell death via p75 neurotrophin receptor. J Biol Chem. 2004. 279(40): 41839-45.
    [35] Benzel I, Barde YA, Casademunt E. Strain-specific complementation between NRIF1 and NRIF2, two zinc finger proteins sharing structural and biochemical properties. Gene. 2001. 281(1-2): 19-30.
    [36] Casademunt E, Carter BD, Benzel I, Frade JM, Dechant G, Barde YA. The zinc finger protein NRIF interacts with the neurotrophin receptor p75(NTR) and participates in programmed cell death. EMBO J. 1999. 18(21): 6050-61.
    [37] Frade JM, Barde YA. Genetic evidence for cell death mediated by nerve growth factor and the neurotrophin receptor p75 in the developing mouse retina and spinal cord. Development. 1999. 126(4): 683-90.
    [38] Salehi AH, Roux PP, Kubu CJ, et al. NRAGE, a novel MAGE protein, interacts with the p75 neurotrophin receptor and facilitates nerve growth factor-dependent apoptosis. Neuron. 2000. 27(2): 279-88.
    [39] Bertrand MJ, Kenchappa RS, Andrieu D, et al. NRAGE, a p75NTR adaptor protein, is required for developmental apoptosis in vivo. Cell Death Differ. 2008. 15(12): 1921-9.
    [40] Roux PP, Barker PA. Neurotrophin signaling through the p75 neurotrophin receptor. Prog Neurobiol. 2002. 67(3): 203-33.
    [41] Salehi AH, Morris SJ, Ho WC, et al. AEG3482 is an antiapoptotic compound that inhibits Jun kinase activity and cell death through induced expression of heat shock protein 70. Chem Biol. 2006. 13(2): 213-23.
    [42] Mukai J, Hachiya T, Shoji-Hoshino S, et al. NADE, a p75NTR-associated cell death executor, is involved in signal transduction mediated by the common neurotrophin receptor p75NTR. J Biol Chem. 2000. 275(23): 17566-70.
    [43] Kimura MT, Irie S, Shoji-Hoshino S, et al. 14-3-3 is involved in p75 neurotrophinreceptor-mediated signal transduction. J Biol Chem. 2001. 276(20): 17291-300.
    [44] Yamashita T, Tucker KL, Barde YA. Neurotrophin binding to the p75 receptor modulates Rho activity and axonal outgrowth. Neuron. 1999. 24(3): 585-93.
    [45] Yamashita T, Tohyama M. The p75 receptor acts as a displacement factor that releases Rho from Rho-GDI. Nat Neurosci. 2003. 6(5): 461-7.
    [46] Kaplan DR, Miller FD. Axon growth inhibition: signals from the p75 neurotrophin receptor. Nat Neurosci. 2003. 6(5): 435-6.
    [47] Mi S, Lee X, Shao Z, et al. LINGO-1 is a component of the Nogo-66 receptor/p75 signaling complex. Nat Neurosci. 2004. 7(3): 221-8.
    [48] Dobrowsky RT, Werner MH, Castellino AM, Chao MV, Hannun YA. Activation of the sphingomyelin cycle through the low-affinity neurotrophin receptor. Science. 1994. 265(5178): 1596-9.
    [49] Dobrowsky RT, Jenkins GM, Hannun YA. Neurotrophins induce sphingomyelin hydrolysis. Modulation by co-expression of p75NTR with Trk receptors. J Biol Chem. 1995. 270(38): 22135-42.
    [50] Hirata H, Hibasami H, Yoshida T, et al. Nerve growth factor signaling of p75 induces differentiation and ceramide-mediated apoptosis in Schwann cells cultured from degenerating nerves. Glia. 2001. 36(3): 245-58.
    [51] Brann AB, Tcherpakov M, Williams IM, Futerman AH, Fainzilber M. Nerve growth factor-induced p75-mediated death of cultured hippocampal neurons is age-dependent and transduced through ceramide generated by neutral sphingomyelinase. J Biol Chem. 2002. 277(12): 9812-8.
    [52] Musatov S, Roberts J, Brooks AI, et al. Inhibition of neuronal phenotype by PTEN in PC12 cells. Proc Natl Acad Sci U S A. 2004. 101(10): 3627-31.
    [53] Wajant H, Henkler F, Scheurich P. The TNF-receptor-associated factor family: scaffold molecules for cytokine receptors, kinases and their regulators. Cell Signal. 2001. 13(6): 389-400.
    [54] Krajewska M, Krajewski S, Zapata JM, et al. TRAF-4 expression in epithelial progenitor cells. Analysis in normal adult, fetal, and tumor tissues. Am J Pathol. 1998. 152(6): 1549-61.
    [55] Khursigara G, Orlinick JR, Chao MV. Association of the p75 neurotrophin receptor with TRAF6. J Biol Chem. 1999. 274(5): 2597-600.
    [56] Khursigara G, Bertin J, Yano H, Moffett H, DiStefano PS, Chao MV. A prosurvival function for the p75 receptor death domain mediated via the caspase recruitment domain receptor-interacting protein 2. J Neurosci. 2001. 21(16): 5854-63.
    [57] Roux PP, Bhakar AL, Kennedy TE, Barker PA. The p75 neurotrophin receptor activates Akt (protein kinase B) through a phosphatidylinositol 3-kinase-dependent pathway. J Biol Chem. 2001. 276(25): 23097-104.
    [58] Hempstead BL, Martin-Zanca D, Kaplan DR, Parada LF, Chao MV. High-affinityNGF binding requires coexpression of the trk proto-oncogene and the low-affinity NGF receptor. Nature. 1991. 350(6320): 678-83.
    [59] Kaplan DR, Hempstead BL, Martin-Zanca D, Chao MV, Parada LF. The trk proto-oncogene product: a signal transducing receptor for nerve growth factor. Science. 1991. 252(5005): 554-8.
    [60] Kaplan DR, Martin-Zanca D, Parada LF. Tyrosine phosphorylation and tyrosine kinase activity of the trk proto-oncogene product induced by NGF. Nature. 1991. 350(6314): 158-60.
    [61] Battleman DS, Geller AI, Chao MV. HSV-1 vector-mediated gene transfer of the human nerve growth factor receptor p75hNGFR defines high-affinity NGF binding. J Neurosci. 1993. 13(3): 941-51.
    [62] Benedetti M, Levi A, Chao MV. Differential expression of nerve growth factor receptors leads to altered binding affinity and neurotrophin responsiveness. Proc Natl Acad Sci U S A. 1993. 90(16): 7859-63.
    [63] Mahadeo D, Kaplan L, Chao MV, Hempstead BL. High affinity nerve growth factor binding displays a faster rate of association than p140trk binding. Implications for multi-subunit polypeptide receptors. J Biol Chem. 1994. 269(9): 6884-91.
    [64] Arima N, Kamio M, Okuma M, Ju G, Uchiyama T. The IL-2 receptor alpha-chain alters the binding of IL-2 to the beta-chain. J Immunol. 1991. 147(10): 3396-401.
    [65] Ross AH, Daou MC, McKinnon CA, et al. The neurotrophin receptor, gp75, forms a complex with the receptor tyrosine kinase TrkA. J Cell Biol. 1996. 132(5): 945-53.
    [66] Ross GM, Shamovsky IL, Lawrance G, et al. Reciprocal modulation of TrkA and p75NTR affinity states is mediated by direct receptor interactions. Eur J Neurosci. 1998. 10(3): 890-8.
    [67] Wolf DE, McKinnon-Thompson C, Daou MC, Stephens RM, Kaplan DR, Ross AH. Mobility of TrkA is regulated by phosphorylation and interactions with the low-affinity NGF receptor. Biochemistry. 1998. 37(9): 3178-86.
    [68] Kahle P, Barker PA, Shooter EM, Hertel C. p75 nerve growth factor receptor modulates p140trkA kinase activity, but not ligand internalization, in PC12 cells. J Neurosci Res. 1994. 38(5): 599-606.
    [69] Verdi JM, Birren SJ, Ibanez CF, et al. p75LNGFR regulates Trk signal transduction and NGF-induced neuronal differentiation in MAH cells. Neuron. 1994. 12(4): 733-45.
    [70] Mazzoni IE, Said FA, Aloyz R, Miller FD, Kaplan D. Ras regulates sympathetic neuron survival by suppressing the p53-mediated cell death pathway. J Neurosci. 1999. 19(22): 9716-27.
    [71] Atwal JK, Massie B, Miller FD, Kaplan DR. The TrkB-Shc site signals neuronal survival and local axon growth via MEK and P13-kinase. Neuron. 2000. 27(2): 265-77.
    [72] Bilderback TR, Gazula VR, Lisanti MP, Dobrowsky RT. Caveolin interacts with Trk A and p75(NTR) and regulates neurotrophin signaling pathways. J Biol Chem. 1999. 274(1): 257-63.
    [73] Plo I, Bono F, Bezombes C, Alam A, Bruno A, Laurent G. Nerve growth factor-induced protein kinase C stimulation contributes to TrkA-dependent inhibition of p75 neurotrophin receptor sphingolipid signaling. J Neurosci Res. 2004. 77(4): 465-74.
    [74] Epa WR, Markovska K, Barrett GL. The p75 neurotrophin receptor enhances TrkA signalling by binding to Shc and augmenting its phosphorylation. J Neurochem. 2004. 89(2): 344-53.
    [75] Makkerh JP, Ceni C, Auld DS, Vaillancourt F, Dorval G, Barker PA. p75 neurotrophin receptor reduces ligand-induced Trk receptor ubiquitination and delays Trk receptor internalization and degradation. EMBO Rep. 2005. 6(10): 936-41.
    [76] Yamashita T, Tucker KL, Barde YA. Neurotrophin binding to the p75 receptor modulates Rho activity and axonal outgrowth. Neuron. 1999. 24(3): 585-93.
    [77] Wong ST, Henley JR, Kanning KC, Huang KH, Bothwell M, Poo MM. A p75(NTR) and Nogo receptor complex mediates repulsive signaling by myelin-associated glycoprotein. Nat Neurosci. 2002. 5(12): 1302-8.
    [78] Wang KC, Kim JA, Sivasankaran R, Segal R, He Z. P75 interacts with the Nogo receptor as a co-receptor for Nogo, MAG and OMgp. Nature. 2002. 420(6911): 74-8.
    [79] Lee X, Yang Z, Shao Z, et al. NGF regulates the expression of axonal LINGO-1 to inhibit oligodendrocyte differentiation and myelination. J Neurosci. 2007. 27(1): 220-5.
    [80] Mi S, Lee X, Shao Z, et al. LINGO-1 is a component of the Nogo-66 receptor/p75 signaling complex. Nat Neurosci. 2004. 7(3): 221-8.
    [81] Lee R, Kermani P, Teng KK, Hempstead BL. Regulation of cell survival by secreted proneurotrophins. Science. 2001. 294(5548): 1945-8.
    [82] Nykjaer A, Lee R, Teng KK, et al. Sortilin is essential for proNGF-induced neuronal cell death. Nature. 2004. 427(6977): 843-8.
    [83] Harrington AW, Leiner B, Blechschmitt C, et al. Secreted proNGF is a pathophysiological death-inducing ligand after adult CNS injury. Proc Natl Acad Sci U S A. 2004. 101(16): 6226-30.
    [84] Fan YJ, Wu LL, Li HY, Wang YJ, Zhou XF. Differential effects of pro-BDNF on sensory neurons after sciatic nerve transection in neonatal rats. Eur J Neurosci. 2008. 27(9): 2380-90.
    [85] Pehar M, Cassina P, Vargas MR, et al. Astrocytic production of nerve growth factor in motor neuron apoptosis: implications for amyotrophic lateral sclerosis. J Neurochem. 2004. 89(2): 464-73.
    [86] Volosin M, Song W, Almeida RD, Kaplan DR, Hempstead BL, Friedman WJ. Interaction of survival and death signaling in basal forebrain neurons: roles of neurotrophins and proneurotrophins. J Neurosci. 2006. 26(29): 7756-66.
    [87] Bierl MA, Isaacson LG. Increased NGF proforms in aged sympathetic neurons and their targets. Neurobiol Aging. 2007. 28(1): 122-34.
    [88] Stoica G, Lungu G, Kim HT, Wong PK. Up-regulation of pro-nerve growth factor, neurotrophin receptor p75, and sortilin is associated with retrovirus-induced spongiform encephalomyelopathy. Brain Res. 2008. 1208: 204-16.
    [89] Barrett GL. The p75 neurotrophin receptor and neuronal apoptosis. Prog Neurobiol. 2000. 61(2): 205-29.
    [90] Rabizadeh S, Oh J, Zhong LT, et al. Induction of apoptosis by the low-affinity NGF receptor. Science. 1993. 261(5119): 345-8.
    [91] Casaccia-Bonnefil P, Carter BD, Dobrowsky RT, Chao MV. Death of oligodendrocytes mediated by the interaction of nerve growth factor with its receptor p75. Nature. 1996. 383(6602): 716-9.
    [92] Yoon SO, Casaccia-Bonnefil P, Carter B, Chao MV. Competitive signaling between TrkA and p75 nerve growth factor receptors determines cell survival. J Neurosci. 1998. 18(9): 3273-81.
    [93] Gu C, Casaccia-Bonnefil P, Srinivasan A, Chao MV. Oligodendrocyte apoptosis mediated by caspase activation. J Neurosci. 1999. 19(8): 3043-9.
    [94] Soilu-Hanninen M, Ekert P, Bucci T, Syroid D, Bartlett PF, Kilpatrick TJ. Nerve growth factor signaling through p75 induces apoptosis in Schwann cells via a Bcl-2-independent pathway. J Neurosci. 1999. 19(12): 4828-38.
    [95] Trim N, Morgan S, Evans M, et al. Hepatic stellate cells express the low affinity nerve growth factor receptor p75 and undergo apoptosis in response to nerve growth factor stimulation. Am J Pathol. 2000. 156(4): 1235-43.
    [96] Salehi AH, Roux PP, Kubu CJ, et al. NRAGE, a novel MAGE protein, interacts with the p75 neurotrophin receptor and facilitates nerve growth factor-dependent apoptosis. Neuron. 2000. 27(2): 279-88.
    [97] Frade JM. Unscheduled re-entry into the cell cycle induced by NGF precedes cell death in nascent retinal neurones. J Cell Sci. 2000. 113 ( Pt 7): 1139-48.
    [98] Vazquez E, Calzada B, Naves J, et al. Developmental changes in nerve growth factor (NGF) binding and NGF receptor proteins trkA and p75 in the facial nerve. Anat Embryol (Berl). 1994. 190(1): 73-85.
    [99] Singh KK, Park KJ, Hong EJ, et al. Developmental axon pruning mediated by BDNF-p75NTR-dependent axon degeneration. Nat Neurosci. 2008. 11(6): 649-58.
    [100]Frade JM, Rodriguez-Tebar A, Barde YA. Induction of cell death by endogenous nerve growth factor through its p75 receptor. Nature. 1996. 383(6596): 166-8.
    [101]Majdan M, Lachance C, Gloster A, et al. Transgenic mice expressing theintracellular domain of the p75 neurotrophin receptor undergo neuronal apoptosis. J Neurosci. 1997. 17(18): 6988-98.
    [102]Ernfors P, Henschen A, Olson L, Persson H. Expression of nerve growth factor receptor mRNA is developmentally regulated and increased after axotomy in rat spinal cord motoneurons. Neuron. 1989. 2(6): 1605-13.
    [103]Armstrong DM, Brady R, Hersh LB, Hayes RC, Wiley RG. Expression of choline acetyltransferase and nerve growth factor receptor within hypoglossal motoneurons following nerve injury. J Comp Neurol. 1991. 304(4): 596-607.
    [104]Dusart I, Morel MP, Sotelo C. Parasagittal compartmentation of adult rat Purkinje cells expressing the low-affinity nerve growth factor receptor: changes of pattern expression after a traumatic lesion. Neuroscience. 1994. 63(2): 351-6.
    [105]Syroid DE, Maycox PJ, Soilu-Hanninen M, et al. Induction of postnatal schwann cell death by the low-affinity neurotrophin receptor in vitro and after axotomy. J Neurosci. 2000. 20(15): 5741-7.
    [106]Bagum MA, Miyamoto O, Toyoshima T, Masada T, Nagahata S, Itano T. The contribution of low affinity NGF receptor (p75NGFR) to delayed neuronal death after ischemia in the gerbil hippocampus. Acta Med Okayama. 2001. 55(1): 19-24.
    [107]Volosin M, Trotter C, Cragnolini A, et al. Induction of proneurotrophins and activation of p75NTR-mediated apoptosis via neurotrophin receptor-interacting factor in hippocampal neurons after seizures. J Neurosci. 2008. 28(39): 9870-9.
    [108]Ferri CC, Moore FA, Bisby MA. Effects of facial nerve injury on mouse motoneurons lacking the p75 low-affinity neurotrophin receptor. J Neurobiol. 1998. 34(1): 1-9.
    [109]Deshmukh M, Johnson EM Jr. Evidence of a novel event during neuronal death: development of competence-to-die in response to cytoplasmic cytochrome c. Neuron. 1998. 21(4): 695-705.
    [110]Bruckner SR, Tammariello SP, Kuan CY, Flavell RA, Rakic P, Estus S. JNK3 contributes to c-Jun activation and apoptosis but not oxidative stress in nerve growth factor-deprived sympathetic neurons. J Neurochem. 2001. 78(2): 298-303.
    [111]Harding TC, Xue L, Bienemann A, et al. Inhibition of JNK by overexpression of the JNL binding domain of JIP-1 prevents apoptosis in sympathetic neurons. J Biol Chem. 2001. 276(7): 4531-4.
    [112]Beattie MS, Harrington AW, Lee R, et al. ProNGF induces p75-mediated death of oligodendrocytes following spinal cord injury. Neuron. 2002. 36(3): 375-86.
    [113]Sutter A, Riopelle RJ, Harris-Warrick RM, Shooter EM. Nerve growth factor receptors. Characterization of two distinct classes of binding sites on chick embryo sensory ganglia cells. J Biol Chem. 1979. 254(13): 5972-82.
    [114]Whitfield J, Neame SJ, Paquet L, Bernard O, Ham J. Dominant-negative c-Jun promotes neuronal survival by reducing BIM expression and inhibitingmitochondrial cytochrome c release. Neuron. 2001. 29(3): 629-43.
    [115]Freund-Michel V, Frossard N. The nerve growth factor and its receptors in airway inflammatory diseases. Pharmacol Ther. 2008. 117(1): 52-76.
    [116]Sorensen B, Tandrup T, Koltzenburg M, Jakobsen J. No further loss of dorsal root ganglion cells after axotomy in p75 neurotrophin receptor knockout mice. J Comp Neurol. 2003. 459(3): 242-50.
    [117]Higuchi H, Yamashita T, Yoshikawa H, Tohyama M. Functional inhibition of the p75 receptor using a small interfering RNA. Biochem Biophys Res Commun. 2003. 301(3): 804-9.
    [118]Yaar M, Zhai S, Fine RE, et al. Amyloid beta binds trimers as well as monomers of the 75-kDa neurotrophin receptor and activates receptor signaling. J Biol Chem. 2002. 277(10): 7720-5.
    [119]Kuner P, Schubenel R, Hertel C. Beta-amyloid binds to p57NTR and activates NFkappaB in human neuroblastoma cells. J Neurosci Res. 1998. 54(6): 798-804.
    [120]Perini G, Della-Bianca V, Politi V, et al. Role of p75 neurotrophin receptor in the neurotoxicity by beta-amyloid peptides and synergistic effect of inflammatory cytokines. J Exp Med. 2002. 195(7): 907-18.
    [121]Sotthibundhu A, Sykes AM, Fox B, Underwood CK, Thangnipon W, Coulson EJ. Beta-amyloid(1-42) induces neuronal death through the p75 neurotrophin receptor. J Neurosci. 2008. 28(15): 3941-6.
    [122]Della-Bianca V, Rossi F, Armato U, et al. Neurotrophin p75 receptor is involved in neuronal damage by prion peptide-(106-126). J Biol Chem. 2001. 276(42): 38929-33.
    [123]Yaar M, Arble BL, Stewart KB, Qureshi NH, Kowall NW, Gilchrest BA. p75NTR antagonistic cyclic peptide decreases the size of beta amyloid-induced brain inflammation. Cell Mol Neurobiol. 2008. 28(8): 1027-31.
    [124]Fahnestock M, Michalski B, Xu B, Coughlin MD. The precursor pro-nerve growth factor is the predominant form of nerve growth factor in brain and is increased in Alzheimer's disease. Mol Cell Neurosci. 2001. 18(2): 210-20.
    [125]Peng S, Wuu J, Mufson EJ, Fahnestock M. Increased proNGF levels in subjects with mild cognitive impairment and mild Alzheimer disease. J Neuropathol Exp Neurol. 2004. 63(6): 641-9.
    [126]Lee R, Kermani P, Teng KK, Hempstead BL. Regulation of cell survival by secreted proneurotrophins. Science. 2001. 294(5548): 1945-8.
    [127]Podlesniy P, Kichev A, Pedraza C, et al. Pro-NGF from Alzheimer's disease and normal human brain displays distinctive abilities to induce processing and nuclear translocation of intracellular domain of p75NTR and apoptosis. Am J Pathol. 2006. 169(1): 119-31.
    [128]Pedraza CE, Podlesniy P, Vidal N, et al. Pro-NGF isolated from the human brainaffected by Alzheimer's disease induces neuronal apoptosis mediated by p75NTR. Am J Pathol. 2005. 166(2): 533-43.
    [129]Costantini C, Weindruch R, Della VG, Puglielli L. A TrkA-to-p75NTR molecular switch activates amyloid beta-peptide generation during aging. Biochem J. 2005. 391(Pt 1): 59-67.
    [130]Wang G, Silva J, Dasgupta S, Bieberich E. Long-chain ceramide is elevated in presenilin 1 (PS1M146V) mouse brain and induces apoptosis in PS1 astrocytes. Glia. 2008. 56(4): 449-56.
    [131]Vila M, Jackson-Lewis V, Guegan C, et al. The role of glial cells in Parkinson's disease. Curr Opin Neurol. 2001. 14(4): 483-9.
    [132]Fahnestock M, Yu G, Coughlin MD. ProNGF: a neurotrophic or an apoptotic molecule. Prog Brain Res. 2004. 146: 101-10.
    [133]Wang YQ, Bian GL, Bai Y, Cao R, Chen LW. Identification and kainic acid-induced up-regulation of low-affinity p75 neurotrophin receptor (p75NTR) in the nigral dopamine neurons of adult rats. Neurochem Int. 2008. 53(3-4): 56-62.
    [134]Oh JD, Chartisathian K, Chase TN, Butcher LL. Overexpression of neurotrophin receptor p75 contributes to the excitotoxin-induced cholinergic neuronal death in rat basal forebrain. Brain Res. 2000. 853(2): 174-85.
    [135]Greferath U, Mallard C, Roufail E, Rees SM, Barrett GL, Bartlett PF. Expression of the p75 neurotrophin receptor by striatal cholinergic neurons following global ischemia in rats is associated with neuronal degeneration. Neurosci Lett. 2002. 332(1): 57-60.
    [136]Sofroniew MV, Howe CL, Mobley WC. Nerve growth factor signaling, neuroprotection, and neural repair. Annu Rev Neurosci. 2001. 24: 1217-81.
    [137]Fayard B, Loeffler S, Weis J, Vogelin E, Kruttgen A. The secreted brain-derived neurotrophic factor precursor pro-BDNF binds to TrkB and p75NTR but not to TrkA or TrkC. J Neurosci Res. 2005. 80(1): 18-28.
    [138]Hempstead BL. Dissecting the diverse actions of pro- and mature neurotrophins. Curr Alzheimer Res. 2006. 3(1): 19-24.
    [139]Sedel F, Bechade C, Triller A. Nerve growth factor (NGF) induces motoneuron apoptosis in rat embryonic spinal cord in vitro. Eur J Neurosci. 1999. 11(11): 3904-12.
    [140]Tan J, Shepherd RK. Aminoglycoside-induced degeneration of adult spiral ganglion neurons involves differential modulation of tyrosine kinase B and p75 neurotrophin receptor signaling. Am J Pathol. 2006. 169(2): 528-43.
    [141]Naumann T, Casademunt E, Hollerbach E, et al. Complete deletion of the neurotrophin receptor p75NTR leads to long-lasting increases in the number of basal forebrain cholinergic neurons. J Neurosci. 2002. 22(7): 2409-18.
    [142]Friedman WJ. Neurotrophins induce death of hippocampal neurons via the p75receptor. J Neurosci. 2000. 20(17): 6340-6.
    [143]Dawbarn D, Allen SJ. Neurotrophins and neurodegeneration. Neuropathol Appl Neurobiol. 2003. 29(3): 211-30.
    [144]Domeniconi M, Hempstead BL, Chao MV. Pro-NGF secreted by astrocytes promotes motor neuron cell death. Mol Cell Neurosci. 2007. 34(2): 271-9.
    [145]Lowry KS, Murray SS, McLean CA, et al. A potential role for the p75 low-affinity neurotrophin receptor in spinal motor neuron degeneration in murine and human amyotrophic lateral sclerosis. Amyotroph Lateral Scler Other Motor Neuron Disord. 2001. 2(3): 127-34.
    [146]Kuner P, Hertel C. NGF induces apoptosis in a human neuroblastoma cell line expressing the neurotrophin receptor p75NTR. J Neurosci Res. 1998. 54(4): 465-74.
    [147]Florez-McClure ML, Linseman DA, Chu CT, et al. The p75 neurotrophin receptor can induce autophagy and death of cerebellar Purkinje neurons. J Neurosci. 2004. 24(19): 4498-509.
    [148]Teng HK, Teng KK, Lee R, et al. ProBDNF induces neuronal apoptosis via activation of a receptor complex of p75NTR and sortilin. J Neurosci. 2005. 25(22): 5455-63.
    [149]Lu LX, Yon JH, Carter LB, Jevtovic-Todorovic V. General anesthesia activates BDNF-dependent neuroapoptosis in the developing rat brain. Apoptosis. 2006. 11(9): 1603-15.
    [150]Chen LW, Yung KL, Chan YS. Reactive astrocytes as potential manipulation targets in novel cell replacement therapy of Parkinson's disease. Curr Drug Targets. 2005. 6(7): 821-33.
    [151]Twiss JL, Chang JH, Schanen NC. Pathophysiological mechanisms for actions of the neurotrophins. Brain Pathol. 2006. 16(4): 320-32.
    [152]Nyborg AC, Ladd TB, Zwizinski CW, Lah JJ, Golde TE. Sortilin, SorCS1b, and SorLA Vps10p sorting receptors, are novel gamma-secretase substrates. Mol Neurodegener. 2006. 1: 3.
    [153]Nakamura K, Namekata K, Harada C, Harada T. Intracellular sortilin expression pattern regulates proNGF-induced naturally occurring cell death during development. Cell Death Differ. 2007. 14(8): 1552-4.
    [154]Bian GL, Wei LC, Shi M, Wang YQ, Cao R, Chen LW. Fluoro-Jade C can specifically stain the degenerative neurons in the substantia nigra of the 1-methyl-4-phenyl-1,2,3,6-tetrahydro pyridine-treated C57BL/6 mice. Brain Res. 2007. 1150: 55-61.
    [155]Nykjaer A, Willnow TE, Petersen CM. p75NTR-live or let die. Curr Opin Neurobiol. 2005. 15(1): 49-57.
    [156]Al-Shawi R, Hafner A, Olson J, et al. Neurotoxic and neurotrophic roles of proNGF and the receptor sortilin in the adult and ageing nervous system. Eur J Neurosci.2008. 27(8): 2103-14.
    [157]Arnett MG, Ryals JM, Wright DE. Pro-NGF, sortilin, and p75NTR: potential mediators of injury-induced apoptosis in the mouse dorsal root ganglion. Brain Res. 2007. 1183: 32-42.
    [158]Provenzano MJ, Xu N, Ver MMR, Clark JJ, Hansen MR. p75NTR and sortilin increase after facial nerve injury. Laryngoscope. 2008. 118(1): 87-93.
    [159]Jansen P, Giehl K, Nyengaard JR, et al. Roles for the pro-neurotrophin receptor sortilin in neuronal development, aging and brain injury. Nat Neurosci. 2007. 10(11): 1449-57.
    [160]Wei Y, Wang N, Lu Q, Zhang N, Zheng D, Li J. Enhanced protein expressions of sortilin and p75NTR in retina of rat following elevated intraocular pressure-induced retinal ischemia. Neurosci Lett. 2007. 429(2-3): 169-74.
    [161]Vila M, Jackson-Lewis V, Guegan C, et al. The role of glial cells in Parkinson's disease. Curr Opin Neurol. 2001. 14(4): 483-9.
    [162]Nakamura K, Harada C, Okumura A, et al. Effect of p75NTR on the regulation of photoreceptor apoptosis in the rd mouse. Mol Vis. 2005. 11: 1229-35.
    [163]Turner BJ, Murray SS, Piccenna LG, Lopes EC, Kilpatrick TJ, Cheema SS. Effect of p75 neurotrophin receptor antagonist on disease progression in transgenic amyotrophic lateral sclerosis mice. J Neurosci Res. 2004. 78(2): 193-9.
    [164]Chen LW, Hu HJ, Liu HL, Yung KK, Chan YS. Identification of brain-derived neurotrophic factor in nestin-expressing astroglial cells in the neostriatum of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-treated mice. Neuroscience. 2004. 126(4): 941-53.
    [165]Chen LW, Zhang JP, Kwok-Yan SD, Chan YS. Localization of nerve growth factor, neurotrophin-3, and glial cell line-derived neurotrophic factor in nestin-expressing reactive astrocytes in the caudate-putamen of 1-methyl-4-phenyl-1,2,3,6- tetrahydropyridine-treated C57/Bl mice. J Comp Neurol. 2006. 497(6): 898-909.
    [166]Al-Shawi R, Hafner A, Chun S, et al. ProNGF, sortilin, and age-related neurodegeneration. Ann N Y Acad Sci. 2007. 1119: 208-15.
    [167]Longo FM, Yang T, Knowles JK, Xie Y, Moore LA, Massa SM. Small molecule neurotrophin receptor ligands: novel strategies for targeting Alzheimer's disease mechanisms. Curr Alzheimer Res. 2007. 4(5): 503-6.
    [168]Price RD, Milne SA, Sharkey J, Matsuoka N. Advances in small molecules promoting neurotrophic function. Pharmacol Ther. 2007. 115(2): 292-306.
    [169]Longo FM, Massa SM. Small molecule modulation of p75 neurotrophin receptor functions. CNS Neurol Disord Drug Targets. 2008. 7(1): 63-70.
    [170]Turner BJ, Cheah IK, Macfarlane KJ, et al. Antisense peptide nucleic acid-mediated knockdown of the p75 neurotrophin receptor delays motor neuron disease in mutant SOD1 transgenic mice. J Neurochem. 2003. 87(3): 752-63.
    [171]Kust BM, Brouwer N, Mantingh IJ, Boddeke HW, Copray JC. Reduced p75NTR expression delays disease onset only in female mice of a transgenic model of familial amyotrophic lateral sclerosis. Amyotroph Lateral Scler Other Motor Neuron Disord. 2003. 4(2): 100-5.
    [172]Naumann T, Casademunt E, Hollerbach E, et al. Complete deletion of the neurotrophin receptor p75NTR leads to long-lasting increases in the number of basal forebrain cholinergic neurons. J Neurosci. 2002. 22(7): 2409-18.
    [173]Bhakar AL, Howell JL, Paul CE, et al. Apoptosis induced by p75NTR overexpression requires Jun kinase-dependent phosphorylation of Bad. J Neurosci. 2003. 23(36): 11373-81.
    [174]Okuno S, Saito A, Hayashi T, Chan PH. The c-Jun N-terminal protein kinase signaling pathway mediates Bax activation and subsequent neuronal apoptosis through interaction with Bim after transient focal cerebral ischemia. J Neurosci. 2004. 24(36): 7879-87.
    [175]Gentry JJ, Barker PA, Carter BD. The p75 neurotrophin receptor: multiple interactors and numerous functions. Prog Brain Res. 2004. 146: 25-39.
    [176]Hasegawa Y, Yamagishi S, Fujitani M, Yamashita T. p75 neurotrophin receptor signaling in the nervous system. Biotechnol Annu Rev. 2004. 10: 123-49.
    [177]Linggi MS, Burke TL, Williams BB, et al. Neurotrophin receptor interacting factor (NRIF) is an essential mediator of apoptotic signaling by the p75 neurotrophin receptor. J Biol Chem. 2005. 280(14): 13801-8.
    [178]Coulson EJ, May LM, Osborne SL, et al. p75 neurotrophin receptor mediates neuronal cell death by activating GIRK channels through phosphatidylinositol 4,5-bisphosphate. J Neurosci. 2008. 28(1): 315-24.
    [179]Susin SA, Lorenzo HK, Zamzami N, et al. Molecular characterization of mitochondrial apoptosis-inducing factor. Nature. 1999. 397(6718): 441-6.
    [180]Lorenzo HK, Susin SA, Penninger J, Kroemer G. Apoptosis inducing factor (AIF): a phylogenetically old, caspase-independent effector of cell death. Cell Death Differ. 1999. 6(6): 516-24.
    [181]Hisatomi T, Sakamoto T, Goto Y, et al. Critical role of photoreceptor apoptosis in functional damage after retinal detachment. Curr Eye Res. 2002. 24(3): 161-72.
    [182]Yu SW, Wang H, Poitras MF, et al. Mediation of poly(ADP-ribose) polymerase-1-dependent cell death by apoptosis-inducing factor. Science. 2002. 297(5579): 259-63.
    [183]Gentry JJ, Casaccia-Bonnefil P, Carter BD. Nerve growth factor activation of nuclear factor kappaB through its p75 receptor is an anti-apoptotic signal in RN22 schwannoma cells. J Biol Chem. 2000. 275(11): 7558-65.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700