用户名: 密码: 验证码:
特应性皮炎的综合高通量研究:通过OMICS手段探讨疾病的核心蛋白与生物标志物
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的和意义
     随着现代化和工业化进程的加快,特应性皮炎(AD)患病率增高,是皮肤病和公共卫生领域的研究热点。AD是一种慢性炎症性皮肤病,易反复发作,以湿疹性皮损分布为特征。主要病理生理表现为苔藓样硬化、瘙痒性脱皮和皮肤干燥。AD是一种系统性功能失调性疾病,可同时触发哮喘、过敏性鼻炎和食物过敏,伴有血浆IgE和嗜酸性粒细胞升高。已报道多种细胞参与了AD的发病,如嗜酸性粒细胞、T淋巴细胞、朗格汉斯细胞和角质形成细胞,这些细胞都与细胞因子、化学增活素和IgE等血液因子以及与微生物感染有关。虽然大多数AD患者血浆IgE升高,但AD疾病中存在一个亚组对空气、食物过敏原无致敏性。AD疾病可分为两个类型:内源性和外源性。外源性AD(ADe)占AD疾病的70-80%,具有Th2细胞调节的血浆IgE增高,引起IgE介导的致敏作用的特征。与ADe不同,内源性AD(ADi)占AD疾病的20-30%,没有IgE介导的致敏作用和过敏反应。
     高通量筛选(HTS)方法如DNA芯片和2D-PAGE/MALDI-TOF分析已开始用于AD相关候选基因的筛选。通过HTS,可以找出大量在AD中上调或下调的蛋白质或基因,同时,相互作用组工具如PPI图能有助于核心蛋白的挑选。因为接下来的功能研究是一个耗时、花费较大的过程,所以对目标基因的筛选显得非常重要,因此,通过对HTS结果的计算机预测分析是作出正确选择的关键。PPI图中列出的候选基因为理解复杂的AD疾病提供了重要信息。一旦PPI预测的相互反应配偶体得到证实,将为疾病相关的基因调节途径提供新的见解。已知与AD疾病相关的重要因素有IgE/FcεRI、抗微生物肽、细胞因子/化学增活素、蛋白酶及其受体、脂质基因、自身抗原、细胞外基质基因、表皮分化复合物等。在这个基础上,研发出新的治疗方法,并且已经用于AD的临床治疗。尽管目前对AD的治疗有多种途径,但是AD患者在增加,能否提供有效治疗方法如快速缓解严重症状的方案仍是个严峻的挑战。因此,需要更深入的研究AD的发病机理,进一步阐明其免疫机制。
     另外本研究还进行了分子水平的环境毒理学研究。环境小分子化学物进入体内,可以与体内最主要的生物大分子一蛋白质发生相互作用,除了通过共价作用形成蛋白加合物外,环境化学物可能会影响蛋白质的构象,导致蛋白质发生错误折叠,从而产生环境健康风险。这种途径是否与折叠病的环境因素有关,迄今为止,这方面的报道较少,有必要开展深入研究。本研究以脑型肌酸激酶(CK-BB)为模型,试图探讨小分子化合物对酶的结构与功能影响。在了解CK-BB去折叠与再折叠过程基础上,进一步对日常生活中人群接触的频率较高的十二烷基硫酸钠(SDS)作用及与CK-BB结合机制进行了探讨,而且阐述了两种可能与退行性疾病相关的环境化学物,丙烯酰胺与锌离子,对CK-BB的结构与功能影响的作用机制。
     研究方法
     1.本研究中对患者活检样本、原代细胞培养(角质形成细胞和成纤维细胞)和血清样本中的基因改变进行研究。所有的AD样本分为外源性(ADe)和内源性(ADi)两型。非特异性正常对照组(n=22),均无个人或家族史,过敏性疾病症状和体征,其样本选自整形外科手术取下的皮肤。从ADe和ADi患者(n=40)皮损处取直径3-5mm活检样本。20名ADe患者(SCORAD:50.09±15.68),20名ADi患者(SCORAD:46.38±11.77)。ADe组和ADi组总IgE水平、红细胞计数和年龄的平均值分别为:1739 U/mL,625/μL and 27.4岁和105U/mL,248/μL and 28.2岁。所有样本均取自于男性。血清按照之前报道的方法收集,等分试样后储藏在-80℃。
     DNA芯片的制备按照RNA制备、标记和杂交步骤进行:分别准备正常对照、ADe、ADi样本,每个样本均进行cDNA模板合成和标记。分别采用两种芯片对不同样本进行检测:GeneChip~(?)人U133 Plus 2.0芯片和GenePlorerTwinchip人-8K芯片。基因表达比值经过图像分析,并用LOWESS回归方程标准化。应用SAM和DEG。选择q值(按照5%)有明显表达差异(>2倍)的基因。GeneChip~(?)人U133 P1us 2.0芯片用来进行ADe和ADi皮肤组织的分析,而GenePlorer Twinchip人-8K芯片用于分析特应性角质形成细胞。自流电泳(FFE)和2-DE分别用于特应性成纤维细胞和血清处理分析。患者源性血清经多重亲和移除柱(MARC)处理后进行2-DE分析。接下来,用苯基琼脂糖树脂分段式方法进行AD血清蛋白质的分析。血清经柱子分离后TCA沉淀。
     根据以上结果,可采组学工具来进行核心基因和蛋白质的预测。PPI预测使用了PPI的主要算法,包括:1)蛋白结构相互作用使用PSIMAP(蛋白质组图谱),一种使用SCOP(蛋白结构分类)数据库结构域的方法;2)蛋白质实验性相互作用PEIMAP(蛋白质组图谱),是一种普遍的使用实验性蛋白相互反应信息资源的方法,如HPRD、BIND、DIP、MINT、IntAct和BioGid。
     2.重组人CK-BB按照之前报道的方法进行表达和纯化。CK-BB活性测定采用ATP和肌酸反应释放质子,在百里酚蓝指示剂存在下,其597nm光吸收变化速率对应于酶活性。内源荧光和ANS结合光谱方法检测CK-BB三级结构的影响。采用圆二色谱分光光度计,在190-250nm范围内记录远紫外圆二色谱(CD)光谱检测CK-BB二级结构的影响。等温滴定微量量热法采用3101TAMⅢ恒温箱按照之前报道的方法进行测量。从蛋白质数据库(PDB)中获得已知的CK-BB同源性结构。发现同系物牛的视黄醛肌酸激酶A链(PDB编码:1g0w)是一个良好的CK-BB结构模板(含97%相同序列)。结合模拟操作分为:1)计算相应的受体和3D配体,2)对接大小特征,3)计算网格评分,4)决定补充受体和配体对接。
     结果
     1.Affymetrix芯片检测出406种差异表达基因(DEG),在正常人和AD患者(ADe和ADi)之间,鉴别出130个DEG;在正常人和ADe患者之间,鉴别出327个DEG;在正常人和ADi患者之间,鉴别出146个DEG。8K cDNA芯片结果显示在原代培养的角质形成细胞AD疾病中有157个基因失调。接下来,通过FFE在AD成纤维细胞中获得93个候选基因。MARC处理后的AD血清样本检测到30个上调蛋白质和19个下调蛋白质。改进分段方法,检测到9个失调基因。Affymetrix芯片分析利用PSIMAP和PEIMAP两种不同的生物信息学计算方法得到5个和8个核心基因,分别是:PIK3R1、IGF1R、MAPK13、SFN、YWHAE和CORIN、COL14A1、CLCA4、PTPRC、IL10RA、C1S、PHLPP、SLITRK6。应用8K cDNA芯片在角质形成细胞中找出25个基因。通过FFE在AD成纤维细胞中4个核心蛋白在PSIMAP和PEIMAP算法中均检测到,即:I55423、ARR3、YWHAE和EEF1A1。AD血清样本的2-DE结果中发现26种蛋白质。AD组织中SFN和PTPRC经实时PCR进一步验证。结果发现转录水平的SFN在ADi中上调4.5倍,PTPRC在ADe和ADi中分别下调60%和46%。ELISA结果显示,MMP1和MMP10在ADi患者中均上调。ADi患者血清的ELISA研究结果表明,与正常人和ADe患者相比较,MMP1和MMP10显著上调(几乎两倍),均存在统计学差异,采用随机配对和Wilcoxon检测。
     2.对SDS使CK-BB的折叠后的失活进行了研究。SDS能非竞争性抑制CK-BB的活性(K_i=1.22mM)。SDS与CK-BB暴露的疏水表面结合诱导其三级结构的改变。SDS配体结合热力学参数的改变如焓、吉布斯自由能和熵分别为-13±7.0MJ/mol,8.39 kJ/mol and-42.754 kJ/(K·mol)。研究明确了重要的CK-BB结构以及和SDS相互反应的折叠和抑制动力学信息。预测的结构具有0.51(?)的均方根偏差。CK-BB与SDS之间对接成功,具有显著性评分(-4.67 kcal/mol,自动对接4和-48.32 kcal/mol,DOCK6)。丙烯酰胺对脑型肌酸激酶(CK-BB)的抑制效应研究发现,CK-BB能被动态的失活并伴随疏水表面的暴露。丙烯酰胺主要与CK-BB的硫氢基(-SH)残基相互作用导致烷化。计算机模拟对接支持丙烯酰胺直接结合到CK-BB的活性位点上,主要与CYS74和GLY73残基相互作用。Zn~(2+)通过剂量依赖效应失活CK-BB(IC50=0.06 mM)。Zn~(2+)显著诱导CK-BB疏水基表面破裂导致三维结构改变。还发现Zn~(2+)能使CK-BB发生聚沉。聚沉依赖于温度以及酶和Zn~(2+)的浓度。
     结论
     1.为了更深入了解AD发病机制,明确在AD病情发展中有多少基因起作用,进行了大规模的微阵列研究,得到许多新的相关信息。结果主要集中在AD相关基因大规模DNA芯片研究的描述上,这将为全面了解AD疾病提供新的见解,但是结果中尚不包括详细的功能研究。在后续的实验中进行了AD皮肤组织的研究并检测到了核心基因。然后进行角质形成细胞和成纤维细胞的研究。同时还对AD患者血清中蛋白质差异表达进行了研究。已知多种因子参与了AD的发病,不同的患者中存在多种触发因素,本研究数据提示人表皮角质形成细胞和真皮成纤维细胞活化在AD疾病中起作用。然而,在原代培养的角质形成细胞和成纤维细胞中检测到的蛋白质或基因可能提示着体内也存在相应的蛋白质变化,但是mRNA水平和表达的蛋白质水平之间的差异干扰了对AD中准确作用的理解。
     大规模的芯片研究结果能有助于深入了解AD发病机制的复杂的相关因素。结合表达数据分析和蛋白质相互作用组预测能找到更可靠的与AD疾病相关的基因。预测的蛋白质相互作用配体和核心蛋白能为下一步AD治疗的功能研究提供有效、可靠的靶点。AD患者数量迅速增多,急需找到特异性诊断和敏感性治疗方法。因此,OMICS手段的应用改善了对AD皮肤组织的表达形式以及组分如角质形成细胞和成纤维细胞的研究。根据本研究,得出以下结论:1)生物信息学工具结合HTS数据筛选新的核心基因或蛋白,在今后的功能学研究和临床药物开发中将发挥重要作用;2)本研究中发现多个在AD源性样本中表达显著改变的重要基因,如SFN、PTPRC、MMP1和MMP10,可能是AD疾病的生物学标记;3)本研究中预测出的大部分核心蛋白、以及实时PCR检测出的候选基因/蛋白在之前关于AD发病机制的研究中未见报道;4)结合基因组学、蛋白质组学和相互作用组分析方法等研究手段将有助于AD复杂病理机制的研究,以及准确的生物标记物或临床治疗靶点的探测。
     2.本部分研究我们以脑型肌酸激酶(CK-BB)为模型,探讨了小分子工业化学物通过影响酶的结构和功能,引发蛋白质错去折叠,导致酶的失活以及聚沉的毒理途径。不管是SDS(两亲变性剂),丙烯酰胺(巯基加合物),还是Zn2+(金属离子),都可以诱导蛋白质疏水表面的暴露。尤其是Zn2+促发CK-BB发生聚沉。这种由小分子化学物诱发的聚沉现象在许多退行性病变中可能具有重要的意义,其确切的病理价值有待进一步深入研究。环境中存在大量的具有慢性神经毒作用的工业化学品。这些小分子化学物是含具有协同作用,诱导蛋白质构象与功能的变化将是一个重要的研究课题。
Background
     Atopic dermatitis(AD) patient populations have been prevalent along with modernization and industrialization.AD is not only a critical skin disease,but also is the hot issue of the public health.AD is a chronic relapsing inflammatory skin disease that's characterized by the distribution of eczematous skin lesions.AD typically reveals lichenification,pruritic excoriations and dry skin with a variety of pathophysiologic manifestations.Since AD is a systemic disorder,it simultaneously triggers asthma,allergic rhinitis and food allergy,where the serum IgE and peripheral eosinophils are elevated.Several cells such as eosinophils,T lymphocytes, Langerhans cells and keratinocytes have been regarded as important for the pathogenesis of AD since these cells are directly related with several blood factors such as cytokines,chemokines and IgE,and they are also related with microbial infection.Although most AD patients have high serum IgE levels,one subgroup of AD patients lacks the sensitization to aero-allergens or food allergens.Two types of AD have been defined,and they are the extrinsic and intrinsic types.The extrinsic type of AD(ADe) has a Th2 cell mediated high serum IgE level and this condition is associated with IgE-mediated sensitization;this is seen in 70-80%of AD patients.As a counterpart to ADe,the intrinsic type(ADi) is not involved with IgE-mediated sensitization and allergies,and ADi is seen in about 20-30%of AD patients.
     High-throughput screening(HTS) methods such as DNA microarray and 2D-PAGE/MALDI-TOF approaches are currently being used to determine the candidate genes associated with AD.With HTS,although we can obtain a great deal of genes/proteins that are overexpressed or down-regulated in AD disease,it is very difficult to choose the most important genes.Furthermore,it is hard to explain the meaning of those proteins.In this regard,interactomic tools such as performing PPI mapping may help to find the hub proteins among the detected candidate genes.Since the next step of functional studies is a time-and cost-consuming process,the number of target proteins must be limited;hence,to make the right choice,computational prediction on the basis of HTS results could be critical.The candidate genes listed in the PPI maps may provide important information to piece together the complex nature of AD disease.Regardless of the various approaches that are currently being used to treat AD,the number of AD patients has greatly increased and more effective treatments that offer quick relief of severe symptoms still remain to be developed. Thus,more insights regarding the complex gene/protein regulation are needed into the pathogenesis of AD,in addition to elucidating the immunologic aspects of this disease.
     Besides AD studies,we also conducted the molecular level studies of environmental toxicology.Once the environmental chemicals absorbed into the body, they can interact with the most important biological macromolecules such as proteins. The chemicals not only can form the covalent protein adducts,but also may affect the protein conformation as well as lead to protein misfolding and thus,result in environmental health problems.In this study,we used CK-BB as a model material for trying to explore the effects of small molecules on the enzyme structure and function. Based on the understanding of CK-BB unfolding and refolding,we further studied the mechanisms of CK-BB binding with sodium dodecyl sulfate(SDS) that is abundantly presented in modern life and also,studied the effects of two environmental chemicals such as acrylamide and Zn~(2+) which may be related to degenerative diseases.
     Method
     1.All AD samples were divided into the two types defined as the extrinsic(ADe) and intrinsic(ADi) types.AD skin tissues were collected from non-asthmatic atopic patients.Non-atopic control subjects who had neither a personal/family history nor any signs of atopic diseases were selected for the study.Punch biopsies of 3-5 mm diameter were individually obtained from the lesional skin of both the ADe and ADi patients.We recruited 20 ADe patients,20 ADi patients and 22 normal specimen donors.The mean values for each group's total IgE level,eosinophilia count,age and SCORAD score were 1739 U/mL,625/μL,27.4 year old and 50.09 for the ADe group and 103 U/mL,248/μL,28.2 year old and 46.3 for the ADi group,respectively. The gender of all samples was male.Serum was collected according to previously reported methods and stored at-80℃after proper aliquots.
     DNA microarray was performed following by the total RNA preparation, labeling and hybridization:the individually prepared normal,ADe,and ADi RNA samples were correspondingly prepared,and the further cDNA template synthesis and labeling for each of samples were conducted.The two kinds of commercial DNA chips(Affymetrix Human Genome U133 Plus 2.0 Array chip;and GenePlorer Twinchip Human-8K) were individually applied for different samples.These chips were hybridized with a mixture of fluorescently labeled cDNAs from the control and AD samples at 42℃for 16 h in the presence of hybridization solution.Image analysis to obtain the gene expression ratios was performed properly and the logged gene expression ratios were normalized by a LOWESS regression procedure.By using DEG and SAM,the data sets were analyzed.The genes showing significant expression changes(>2-fold) were selected with a cutoff of 5%of the q value.An Affymetrix microarray was used to analyze ADe and ADi skin tissues,and the 8K cDNA microarray was used to analyze atopic keratinocytes.These tools were probed the dysregulated genes at the transcriptional levels.The free-flow electrophoresis (FFE) was used to analyze atopic fibroblasts and two-dimensional electrophoresis (2-DE) was used to analyze serums with proper treatments.Based on the above results,the interactomic tool was also adapted to predict putative hub genes or proteins.
     2-DE analyses of AD patient-derived serums were conducted after treating with multiple affinity removal columns(MARC).In addition,fractionation method by using Phenyl Sepharose resin was conducted to analyze AD serum proteins.Serums were properly fractionation with a column following by TCA precipitation.
     In the next step,PPI of AD related proteins were predicted by bioinformatics algorithms.The prediction of PPI uses most of the major types of PPI algorithms. They are:1) Protein Structural Interactome MAP(PSIMAP),a method that uses the structural domain of the SCOP(Structural Classification of Proteins) database;2) Protein Experimental Interactome MAP(PEIMAP),a common method that uses public resources of experimental protein interaction information such as HPRD, BIND,DIP,MINT,IntAct and BioGrid.
     2.Recombinant human CK-BB was expressed and purified according to the previous reports.CK-BB activity was measured following proton generation during the reaction of ATP and creatine with the indicator thymol blue at 597 nm.The fluorescence emission spectra and the ANS labeling fluorescence were studied for monitoring the tertiary structural changes.The far-UV circular dichroism(CD) spectra were recorded in the range of 190-250 nm for measuring secondary structural changes.Isothermal titration microcalorimetric measurements were performed with a 3101 TAM III Thermostat in accordance with a previous report.We retrieved the known homologous structures of CK-BB from the Protein Data Bank(PDB) and found that bovine retinal creatine kinase chain A(PDB entry:1g0w) was a very good structural template(97%sequence identity) as a close homologue for CK-BB.The docking procedures were categorized to 1)calculate receptor and ligand 3D coordinates,2)characterize docking site,3)compute grid score,and 4)determine the docking for complementarity with receptors and ligand.
     Result
     1.From the Affymetrix microarray results,406 genes were selected:130 genes were obtained from normal vs.AD(ADe and ADi);327 genes were obtained from normal vs.ADe;146 genes were obtained from normal vs.ADi.The 8K cDNA microarray results showed that 157 genes were significantly dysregulated in primary atopic keratinocytes compared to the control subjects.In the next step,we obtained 93 candidate proteins by using FFE in AD fibroblasts.In AD serums,30 proteins were detected as up-regulated and 19 proteins were down-regulated in AD serums after using MARC treatment.With adapting fractionation method,9 proteins were detected as dysregulated.
     In Affymetrix microarray analysis,five hub genes such as the PIK3R1,IGF1R, MAPK13,SFN and YWHAE were predicted by using the PSIMAP algorithm and eight_genes such as CQRIN,COL14A1,CLCA4,PTPRC,IL10RA,C1S,PHLPP and SLITRK6 were predicted by using the PEIMAP algorithm.In 8K cDNA microarray, 25 genes were predicted for AD keratinocytes hub proteins.In FFE result, overlapping of the PEIMAP and PSIMAP algorithms detected 4 hub proteins:I55423, ARR3,YWHAE,and EEF1A1.In 2-DE results of AD serums,26 proteins were predicted for AD serum samples.
     SFN and PTPRC were also further validated by real-time PCR in AD tissues. The results showed that the transcriptional level of SFN is up-regulated 4.5-fold in ADi,and PTPRC is down-regulated 60%in ADe and 46%in ADi.In the ELISA results,MMP1 and MMP10 were consistently detected as up-regulated in the serum of ADi patients.The results of ELISA studies of the serum of ADi patients showed that both MMP1 and MMP10 were significantly up-regulated(almost 2-fold) compared to normal and ADe patients.Statistical significance was confirmed by p-values.Randomized pairings and the Wilcoxon-rank sum test were applied.
     2.We have also investigated the inactivation by using SDS to study CK-BB's folding behaviors.SDS strongly inhibited the CK-BB activity in a noncompetitive inhibition manner(K_i=1.22 mM).The tertiary structural change was induced by SDS binding with the exposure of hydrophobic surface.The changes of thermodynamic parameters for the SDS ligand binding such as enthalpy,Gibbs free-energy,and entropy were obtained as-13±7.0 MJ/mol,8.39 kJ/mol and-42.754 kJ/(K·mol),respectively.The predicted structure had a Root Mean Square Deviation of 0.51 A.The docking between CK-BB and SDS was successful with significant scores(-4.67 kcal/mol, AutoDock4 and-48.32 kcal/mol,DOCK6).
     We studied the inhibitory effects of acrylamide on CK-BB.We found that CK-BB was kinetically inactivated by acrylamide accompanied by the disruption of the hydrophobic surface.Acrylamide mainly interacted with the thiol(-SH) residue of CK-BB and resulted in alkylation.A computational docking simulation supported that acrylamide directly bound to the active site of CK-BB where CYS74 and GLY73 residues interacted mainly.
     Zn~(2+) inactivated the activity of CK-BB in a dose dependent manner(IC_(50)=0.06 mM).The spectroflurorimetry results showed that Zn~(2+) conspicuously induced the tertiary structural change of CK-BB with exposure of its hydrophobic surfaces.We also found that CK-BB aggregation was induced by Zn~(2+).This aggregation was dependent on the temperature and the enzyme and Zn~(2+) concentrations.
     Conclusion
     1.With respect to explaining all the events that occur in the pathogenesis of AD or for probing how many genes are involved in the development of AD,our large-scale microarray data can suggest new information.In the initial part of results,the data were mainly focused on profiling the AD associated genes in a large scale DNAchip array and this provides useful information for the overall insight into the AD disease at the level of skin tissues,but our results do not include any detailed functional study. Then,primary cultured keratinocytes and fibroblasts were studies.The profiling of differentially expressed proteins in AD serums was also conducted.In respect to the complexity of the AD pathogenesis where many factors are associated with AD and various triggers are known to exist among different patient,our data suggest that human epidermal keratinocytes and dermal fibroblasts actively participate in AD disease along with the other types of cells.However,some of the genes/proteins observed in the primary cultured keratinocytes and fibroblasts may not be representative of the in vivo changes,and the differences between the mRNA levels and the expressed protein levels limit our understanding with regard to their exact roles in AD.
     Taken together,the large scale microarray provided information to further understand the complex factors associated with pathogenesis of AD.The approach of combining the expression data analysis and predicted protein interaction partners performed in large scales can bring valuable and more reliable gene targets for AD. The predicted protein interaction partners and validated hub proteins can offer valuable and reliable targets for further functional studies of AD treatment.The number of the AD patients is increasing rapidly and being able to make a specific diagnosis and administering case sensitive treatment are needed.Therefore,OMICS approaches that are based on high-throughput technologies may help researchers gain additional insight or they may reveal pieces of the puzzle into the pathogenesis of AD.
     According to the results,several points are suggested in this study:i)the bioinformatic tools combined with the HTS data identified the new candidate hub genes/proteins,which can be useful in the further studies,especially for the functional studies or clinical trials of drug development;ii)several important genes such as SFN, PTPRC,MMP1 and MMP10 have been newly suggested in this study,which they are significantly up-regulated or down-regulated in AD patients-derived samples and they can be biomarkers for AD;iii)most of the predicted hub proteins and real-time PCR probing candidate genes/proteins detected in this study have not been previously reported to be involved in AD pathogenesis.This may be due to the unknown role of these factors in AD pathogenesis;iv)in addition to the fact that the combinations of several research areas such as genomics,proteomics,and interactomics can help guide research into the complex pathogenesis of AD and assist in designing precise therapeutic strategies to find biomarkers or to determine the right clinical target molecules.
     2.In this section,we used CK-BB as a model enzyme to explore changes of structures and functions induced by small chemical molecules and elucidated the toxicological pathways of CK-BB unfolding and inactivation,as well as aggregation. The aggregation phenomenon has been generally recognized as an important factor of degenerative disease.Furthermore,it is worthy to study further for relationships between industrial chemicals and chronic neurotoxicity of human health.
引文
1.Williams HC.Epidemiology of atopic dermatitis:recent advances and future predictions.Curr Probl Dermatol 1999;28:9-17.
    2.赵双,谭升顺.特应性皮炎发病机制的最新研究进展.世界核心医学期刊文摘.皮肤病学 2006;2(6/7):1-5.
    3.Wahlgren CF.Itch and atopic dermatitis:an overview.J Dermatol 1999;26(11):770-9.
    4.Koblenzer CS.Itching and the atopic skin.J Allergy Clin Immunol 1999;104(3Pt 2):S109-13.
    5.Wahlgren CF,Tengvall Linder M,Hagermark O,Scheynius A.Itch and inflammation induced by intradermally injected interleukin-2 in atopic dermatitis patients and healthy subjects.Arch Dermatol Res 1995;287(6):572-80.
    6.Urashima R,Mihara M.Cutaneous nerves in atopic dermatitis A histological immunohistochemical and electron microscopic study.Virchos Arch 1998;432(363-370).
    7.Elias PM,Wood LC,Feingold KR.Epidermal pathogenesis of inflammatory dermatoses.Am J Contact Dermat 1999;10(3):119-26.
    8.Effendy J,Loffier H,Maibach HI.Epidermat cytokines in murine cutaneous irritant responses.J Apppl Toxicol 2000;20:335-341.
    9.Leyden JJ,Marples RR,Kligman AM.Staphylococcus aureus in the lesions of atopic dermatitis.Br J Dermatol 1974;90(5):525-30.
    10.Broberg A,Faergemann J,Johansson S,Johansson SG,Strannegard IL,Svejgaard E.Pityrosporum ovale and atopic dermatitis in children and young adults.Acta Derm Venereol 1992;72(3):187-92.
    11.张宇,张玉环.马拉色菌与特应性皮炎相关性研究进展.中国麻风皮肤病杂 志2006;22(9):757-760.
    12.Steiger T,borelli S.Significance of climatic factors in the treatment of atopic eczema.In Ruzicka R 1991:415-428.
    13.Kemmett D,Tidman MJ.The influence of the menstrual cycle and pregnancy on atopic dermatitis.Br J Dermatol 1991;125(1):59-61.
    14.Wurthrich B.Epidemiology and natural history of atopic dermratitis.Allergy Clin Immunol Int 1996;8:77-82.
    15.Beltrani VS.The clinical spectrum of atopic dermatitis.J Allergy Clin Immunol 1999;104(3 Pt2):S87-98.
    16.Uehara M,Ofuji S.Abnormal vascular reactions in atopic dermatitis.Arch Dermatol 1977;113(5):627-9.
    17.Lewis-Jones MS,Finlay AY.The Children's Dermatology Life Quality Index(CDLQI):initial validation and practical use.Br J Dermatol 1995;132(6):942-9.
    18.Rhodes HL,Sporik R,Thomas P,Holgate ST,Cogswell JJ.Early life risk factors for adult asthma:a birth cohort study of subjects at risk.J Allergy Clin Immunol 2001;108(5):720-5.
    19.Gustafsson D,Sjoberg O,Foucard T.Development of allergies and asthma in infants and young children with atopic dermatitis-a prospective follow-up to 7 years of age.Allergy 2000;55(3):240-5.
    20.Leung DY.Atopic dermatitis and the immune system:the role of superantigens and bacteria.J Am Acad Dermatol 2001;45(1 Suppl):S13-6.
    21.Oettgen HC,Geha RS.IgE regulation and roles in asthma pathogenesis.J Allergy Clin Immunol 2001;107(3):429-40.
    22.Burrows B,Martinez FD,Halonen M,Barbee RA,Cline MG.Association of asthma with serum IgE levels and skin-test reactivity to allergens.N Engl J Med 1989;320(5):271-7.
    23.Kulig M,Bergmann R,Klettke U,Wahn V,Tacke U,Wahn U.Natural course of sensitization to food and inhalant allergens during the first 6 years of life.J Allergy Clin Immunol 1999;103(6):1173-9.
    24.Ohshima Y,Yamada A,Hiraoka M,Katamura K,Ito S,Hirao T,et al.Early sensitization to house dust mite is a major risk factor for subsequent development of bronchial asthma in Japanese infants with atopic dermatitis:results of a 4-year followup study.Ann Allergy Asthma Immunol 2002;89(3):265-70.
    25.Anonymous.Worldwide variation in prevalence of symptoms of asthma,allergic rhinoconjunctivitis,and atopic eczema:ISAAC—The International Study of Asthma and Allergies in Childhood(ISAAC) Steering Committee.Lancet 1998;351:1225-1232.
    26.Buffum WP,Settipane GA.Prognosis of asthma in childhood.Am J Dis Child 1966;112(3):214-7.
    27.COokson WO,Ubhi B,Lawrence R,Abecasis GR.Genetic linkage of childhood atopic dermatitis to psoriasis susceptibility loci.Nature genetics 2001;27:372-373.
    28.Beyer K,Nickel R,Freidhoff L,Bjorksten B,Huang SK,Barnes KC,et al.Association and linkage of atopic dermatitis with chromosome 13q12-14 and 5q31-33 markers.J Invest Dermatol 2000;115(5):906-8.
    29.Spergel JM,Paller AS.Atopic dermatitis and the atopic march.J Allergy Clin Immunol 2003;112(6 Suppl):S1 18-27.
    30.Leung DY,Boguniewicz M,Howell MD,Nomura I,Hamid QA.New insights into atopic dermatitis.J Clin Invest 2004;113(5):651-7.
    31.Williams HC.Is the prevalence of atopic dermatitis increasing?.Clin Exp Dermatol 1992;17(6):385-91.
    32.Aberg N,Hesselmar B,Aberg B,Eriksson B.Increase of asthma,allergic rhinitis and eczema in Swedish schoolchildren between 1979 and 1991.Clin Exp Allergy 1995;25(9):815-9.
    33.Novak N,Bieber T,Leung DY.Immune mechanisms leading to atopic dermatitis.J Allergy Clin Immunol 2003;112(6 Suppl):S 128-39.
    34.Norback D,Zhao ZH,Wang ZH,Wieslander G,Mi YH,Zhang Z.Asthma,eczema,and reports on pollen and cat allergy among pupils in Shanxi province,China.Int Arch Occup Environ Health 2007;80(3):207-16.
    35.李劲,罗奎章,林弈.深圳市学龄前儿童异位性皮炎现况调查.中国基层医药 2004;11:798-799.
    36.顾恒,尤立平,刘永生,颜艳,陈昆.我国10城市学龄前儿童特应性皮炎现况调查.中华皮肤科杂志 2004;1:29-31.
    37.Lee YL,Li CW,Sung FC,Guo YL.Increasing prevalence of atopic eczema in Taiwanese adolescents from 1995 to 2001.Clin Exp Allergy 2007;37(4):543-51.
    38.Mar A,Tam M,Jolley D,Marks R.The cumulative incidence of atopic dermatitis in the first 12 months among Chinese,Vietnamese,and Caucasian infants born in Melbourne,Australia.J Am Acad Dermatol 1999;40:597-602.
    39.Baldacci S,Modena P,Carrozzi L,Pedreschi M,Vellutini M,Biavati P,et al.Skin prick test reactivity to common aeroallergens in relation to total IgE,respiratory symptoms,and smoking in a general population sample of northern Italy.Allergy 1996;51(3):149-56.
    40.Ingordo V,D'Andria G,D'Andria C,Tortora A.Results of atopy patch tests with house dust mites in adults with'intrinsic'and'extrinsic'atopic dermatitis.J Eur Acad Dermatol Venereol 2002;16(5):450-4.
    41.Novak N,Kruse S,Kraft S,Geiger E,Kluken H,Fimmers R,et al.Dichotomic nature of atopic dermatitis reflected by combined analysis of monocyte immunophenotyping and single nucleotide polymorphisms of the interleukin-4/interleukin-13 receptor gene:the dichotomy of extrinsic and intrinsic atopic dermatitis.J Invest Dermatol 2002;119(4):870-5.
    42.Bradley M,Kockum I,Soderhall C,Van Hage-Hamsten M,Luthman H,Nordenskjold M,et al.Characterization by phenotype of families with atopic dermatitis.Acta Derm Venereol 2000;80(2):106-10.
    43.Schultz Larsen F.Atopic dermatitis:a genetic-epidemioiogic study in a population-based twin sample.J Am Acad Dermatol 1993;28(5 Pt l):719-23.
    44.Lee YA,Wahn U,Kehrt R,Tarani L,Businco L,Gustafsson D,et al.A major susceptibility locus for atopic dermatitis maps to chromosome 3q21.Nat Genet 2000;26(4):470-3.
    45.Bradley M,Soderhall C,Luthman H,Wahlgren CF,Kockum I,Nordenskjold M.Susceptibility loci for atopic dermatitis on chromosomes 3,13,15,17 and 18 in a Swedish population.Hum Mol Genet 2002;11(13):1539-48.
    46.Haagerup A,Bjerke T,Schiotz PO,Dahl R,Binderup HG,Tan Q,et al.Atopic dermatitis ~ a total genome-scan for susceptibility genes.Acta Derm Venereol 2004;84(5):346-52.
    47.Tazawa T,Sugiura H,Sugiura Y,Uehara M.Relative importance of IL-4 and IL-13 in lesional skin of atopic dermatitis.Arch Dermatol Res 2004;295(11):459-64.
    48.van der Pouw Kraan TC,van Veen A,Boeije LC,van Tuyl SA,de Groot ER,Stapel SO,et al.An IL-13 promoter polymorphism associated with increased risk of allergic asthma.Genes Immun 1999;1(1):61-5.
    49.Arima K,Umeshita-Suyama R,Sakata Y,Akaiwa M,Mao XQ,Enomoto T,et al.Upregulation of IL-13 concentration in vivo by the IL13 variant associated with bronchial asthma.J Allergy Clin Immunol 2002;109(6):980-7.
    50.Howard TD,Whittaker PA,Zaiman AL,Koppelman GH,Xu J,Hanley MT,et al.Identification and association of polymorphisms in the interleukin-13 gene with asthma and atopy in a Dutch population.Am J Respir Cell Mol Biol 2001;25(3):377-84.
    51.Liu X,Nickel R,Beyer K,Wahn U,Ehrlich E,Freidhoff LR,et al.An IL13 coding region variant is associated with a high total serum IgE level and atopic dermatitis in the German multicenter atopy study(MAS-90).J Allergy Clin Immunol 2000;106(1 Pt 1):167-70.
    52.Graves PE,Kabesch M,Halonen M,Holberg CJ,Baldini M,Fritzsch C,et al.A cluster of seven tightly linked polymorphisms in the IL-13 gene is associated with total serum IgE levels in three populations of white children.J Allergy Clin Immunol 2000;105(3):506-13.
    53.Hershey GK,Friedrich MF,Esswein LA,Thomas ML,Chatila TA.The association of atopy with a gain-of-function mutation in the alpha subunit of the interleukin-4 receptor.N Engl J Med 1997;337(24):1720-5.
    54.Oiso N,Fukai K,Ishii M.Interleukin 4 receptor alpha chain polymorphism Gln551Arg is associated with adult atopic dermatitis in Japan.Br J Dermatol 2000;142(5):1003-6.
    55.Callard RE,Hamvas R,Chatterton C,Blanco C,Pembrey M,Jones R,et al.An interaction between the IL-4Ralpha gene and infection is associated with atopic eczema in young children.Clin Exp Allergy 2002;32(7):990-3.
    56.Tanaka K,Sugiura H,Uehara M,Hashimoto Y,Donnelly C,Montgomery DS.Lack of association between atopic eczema and the genetic variants of interleukin-4 and the interleukin-4 receptor alpha chain gene:heterogeneity of genetic backgrounds on immunoglobulin E production in atopic eczema patients.Clin Exp Allergy 2001;31(10):1522-7.
    57.Hackstein H,Hecker M,Kruse S,Bohnert A,Ober C,Deichmann KA,et al.A novel polymorphism in the 5' promoter region of the human interleukin-4 receptor alpha-chain gene is associated with decreased soluble interleukin-4 receptor protein levels.Immunogenetics 2001;53(4):264-9.
    58.Hosomi N,Fukai K,Oiso N,Kato A,Ishii M,Kunimoto H,et al.Polymorphisms in the promoter of the interleukin-4 receptor alpha chain gene are associated with atopic dermatitis in Japan.J Invest Dermatol 2004;122(3):843-5.
    59.Cookson WO,Sharp PA,Faux JA,Hopkin JM.Linkage between immunoglobulin E responses underlying asthma and rhinitis and chromosome 11q.Lancet 1989;1(8650):1292-5.
    60.Young RP,Sharp PA,Lynch JR,Faux JA,Lathrop GM,Cookson WO,et al.Confirmation of genetic linkage between atopic IgE responses and chromosome 1 lql3.J Med Genet 1992;29(4):236-8.
    61.Hill MR,Cookson WO.A new variant of the beta subunit of the high-affinity receptor for immunoglobulin E(Fc epsilon Rl-beta E237G):associations with measures of atopy and bronchial hyper-responsiveness.Hum Mol Genet 1996;5(7):959-62.
    62.Hill MR,James AL,Faux JA,Ryan G,Hopkin JM,le Souef P,et al.Fc epsilon Rl-beta polymorphism and risk of atopy in a general population sample.BMJ 1995;311(7008):776-9.
    63.Mao XQ,Shirakawa T,Yoshikawa T,Yoshikawa K,Kawai M,Sasaki S,et al.Association between genetic variants of mast-cell chymase and eczema.Lancet 1996;348(9027):581-3.
    64.On M,Billingsley JM,Jouvin MH,Kinet JP.Molecular dissection of the FcRbeta signaling amplifier.J Biol Chem 2004;279(44):45782-90.
    65.Andrasfalvy M,Peterfy H,Toth G,Matko J,Abramson J,Kerekes K,et al.The beta subunit of the type I Fcepsilon receptor is a target for peptides inhibiting IgE-mediated secretory response of mast cells.J Immunol 2005;175(5):2801-6.
    66.Soderhall C,Bradley M,Kockum I,Wahlgren CF,Luthman H,Nordenskjold M.Linkage and association to candidate regions in Swedish atopic dermatitis families.Hum Genet 2001;109(2):129-35.
    67.He S,Walls AF.The induction of a prolonged increase in microvascular permeability by human mast cell chymase.Eur J Pharmacol 1998;352(1):91-8.
    68.He S,Walls AF.Human mast cell chymase induces the accumulation of neutrophils,eosinophils and other inflammatory cells in vivo.Br J Pharmacol 1998;125(7):1491-500.
    69.Saarinen J,Kalkkinen N,Welgus HG,Kovanen PT.Activation of human interstitial procollagenase through direct cleavage of the Leu83-Thr84 bond by mast cell chymase.J Biol Chem 1994;269(27):18134-40.
    70.Kofford MW,Schwartz LB,Schechter NM,Yager DR,Diegelmann RF,Graham MF.Cleavage of type I procollagen by human mast cell chymase initiates collagen fibril formation and generates a unique carboxyl-terminal propeptide.J Biol Chem 1997;272(11):7127-31.
    71.Taipale J,Lohi J,Saarinen J,Kovanen PT,Keski-Oja J.Human mast cell chymase and leukocyte elastase release latent transforming growth factor-beta 1 from the extracellular matrix of cultured human epithelial and endothelial cells.J Biol Chem 1995;270(9):4689-96.
    72.Mao XQ,Shirakawa T,Enomoto T,Shimazu S,Dake Y,Kitano H,et al.Association between variants of mast cell chymase gene and serum IgE levels in eczema.Hum Hered 1998;48(1):38-41.
    73.Alam R.Chemokines in allergic inflammation.J Allergy Clin Immunol 1997;99(3):273-7.
    74.Ponath PD,Qin S,Ringler DJ,Clark-Lewis I,Wang J,Kassam N,et al.Cloning of the human eosinophil chemoattractant,eotaxin.Expression,receptor binding,and functional properties suggest a mechanism for the selective recruitment of eosinophils.J Clin Invest 1996;97(3):604-12.
    75.Cheng SS,Lukacs NW,Kunkel SL.Eotaxin/CCLl 1 is a negative regulator of neutrophil recruitment in a murine model of endotoxemia.Exp Mol Pathol 2002;73(1):l-8.
    76.Cheng SS,Lukacs NW,Kunkel SL.Eotaxin/CCLl 1 suppresses IL-8/CXCL8 secretion from human dermal microvascular endothelial cells.J Immunol 2002;168(6):2887-94.
    77.Kaburagi Y,Shimada Y,Nagaoka T,Hasegawa M,Takehara K,Sato S.Enhanced production of CC-chemokines(RANTES,MCP-1,MIP-1 alpha,MlP-lbeta,and eotaxin) in patients with atopic dermatitis.Arch Dermatol Res 2001;293(7):350-5.
    78.Yawalkar N,Uguccioni M,Scharer J,Braunwalder J,Karlen S,Dewald B,et al.Enhanced expression of eotaxin and CCR3 in atopic dermatitis.J Invest Dermatol 1999;113(1):43-8.
    79.Park CW,Lee BH,Han HJ,Lee CH,Ahn HK.Tacrolimus decreases the expression of eotaxin,CCR3,RANTES and interleukin-5 in atopic dermatitis.Br J Dermatol 2005;152(6):1173-81.
    80.Arakawa S,Hatano Y,Katagiri K,Terashi H,Fujiwara S.Effects of ultraviolet B irradiation on the production of regulated upon activation normal T-cell expressed and secreted protein in cultured human epidermal keratinocytes.Arch Dermatol Res 2006;297(8):377-80.
    81.Bai B,Tanaka K,Tazawa T,Yamamoto N,Sugiura H.Association between RANTES promoter polymorphism -401A and enhanced RANTES production in atopic dermatitis patients.J Dermatol Sci 2005;39(3):189-91.
    82.Nickel RG,Casolaro V,Wahn U,Beyer K,Barnes KC,Plunkett BS,et al.Atopic dermatitis is associated with a functional mutation in the promoter of the C-C chemokine RANTES.J Immunol 2000;164(3):1612-6.
    83.Kozma GT,Falus A,Bojszko A,Krikovszky D,Szabo T,Nagy A,et al.Lack of association between atopic eczema/dermatitis syndrome and polymorphisms in the promoter region of RANTES and regulatory region of MCP-1.Allergy 2002;57(2):160-3.
    84.Tsunemi Y,Saeki H,Nakamura K,Sekiya T,Hirai K,Fujita H,et al.Eotaxin gene single nucleotide polymorphisms in the promoter and exon regions are not associated with susceptibility to atopic dermatitis,but two of them in the promoter region are associated with serum IgE levels in patients with atopic dermatitis.J Dermatol Sci 2002;29(3):222-8.
    85.Suzuki K,Morokata T,Morihira K,Sato I,Takizawa S,Kaneko M,et al.In vitro and in vivo characterization of a novel CCR3 antagonist,YM-344031.Biochem Biophys Res Commun 2006;339(4):1217-23.
    86.Marsh DG,Neely JD,Breazeale DR,Ghosh B,Freidhoff LR,Ehrlich-Kautzky E,et al.Linkage analysis of IL4 and other chromosome 5q31.1 markers and total serum immunoglobulin E concentrations.Science 1994;264(5162):1152-6.
    87.Kawashima T,Noguchi E,Arinami T,Yamakawa-Kobayashi K,Nakagawa H,Otsuka F,et al.Linkage and association of an interleukin 4 gene polymorphism with atopic dermatitis in Japanese families.J Med Genet 1998;35(6):502-4.
    88.He JQ,Chan-Yeung M,Becker AB,Dimich-Ward H,Ferguson AC,Manfreda J,et al.Genetic variants of the IL13 and IL4 genes and atopic diseases in at-risk children.Genes Immun 2003;4(5):385-9.
    89.Tsunemi Y,Saeki H,Nakamura K,Sekiya T,Hirai K,Kakinuma T,et al.Interleukin-13 gene polymorphism G4257A is associated with atopic dermatitis in Japanese patients.J Dermatol Sci 2002;30(2):100-7.
    90.Chae SC,Song JH,Lee YC,Kim JW,Chung HT.The association of the exon 4 variations of Tim-1 gene with allergic diseases in a Korean population.Biochem Biophys Res Commun 2003;312(2):346-50.
    91.Kato A,Fukai K,Oiso N,Hosomi N,Murakami T,Ishii M.Association of SPINK5 gene polymorphisms with atopic dermatitis in the Japanese population.Br J Dermatol 2003;148(4):665-9.
    92.Jeong CW,Ahn KS,Rho NK,Park YD,Lee DY,Lee JH,et al.Differential in vivo cytokine mRNA expression in lesional skin of intrinsic vs.extrinsic atopic dermatitis patients using semiquantitative RT-PCR.Clin Exp Allergy 2003;33(12):1717-24.
    93.Li M,Messaddeq N,Teletin M,Pasquali JL,Metzger D,Chambon P.Retinoid X receptor ablation in adult mouse keratinocytes generates an atopic dermatitis triggered by thymic stromal lymphopoietin.Proc Natl Acad Sci U S A 2005;102(41):14795-800.
    94.Ong PY,Ohtake T,Brandt C,Strickland I,Boguniewicz M,Ganz T,et al.Endogenous antimicrobial peptides and skin infections in atopic dermatitis.N Engl J Med 2002;347(15):1151-60.
    95.Nomura I,Gao B,Boguniewicz M,Darst MA,Travers JB,Leung DY.Distinct patterns of gene expression in the skin lesions of atopic dermatitis and psoriasis:a gene microarray analysis.J Allergy Clin Immunol 2003;112(6):1195-202.
    96.Homey B,Alenius H,Muller A,Soto H,Bowman EP,Yuan W,et al.CCL27-CCR10 interactions regulate T cell-mediated skin inflammation.Nat Med 2002;8(2):157-65.
    97.Leung DY,Bieber T.Atopic dermatitis.Lancet 2003;361(9352):151-60.
    98.Reiss Y,Proudfoot AE,Power CA,Campbell JJ,Butcher EC.CC chemokine receptor(CCR)4 and the CCR10 ligand cutaneous T cell-attracting chemokine(CTACK) in lymphocyte trafficking to inflamed skin.J Exp Med 2001;194(10):1541-7.
    99.Campbell JJ,Butcher EC.Chemokines in tissue-specific and microenvironment-specific lymphocyte homing.Curr Opin Immunol 2000;12(3):336-41.
    100.Gilliet M,Soumelis V,Watanabe N,Hanabuchi S,Antonenko S,de Waal-Malefyt R,et al.Human dendritic cells activated by TSLP and CD40L induce proallergic cytotoxic T cells.J Exp Med 2003;197(8):1059-63.
    101.Liu YJ.Thymic stromal lymphopoietin:master switch for allergic inflammation.J Exp Med 2006;203(2):269-73.
    102.Yoo J,Omori M,Gyarmati D,Zhou B,Aye T,Brewer A,et al.Spontaneous atopic dermatitis in mice expressing an inducible thymic stromal lymphopoietin transgene specifically in the skin.J Exp Med 2005;202(4):541-9.
    103.Soumelis V,Reche PA,Kanzler H,Yuan W.Human epithelial cells trigger dendritic cell mediated allergic inflammation by producing TSLP.Nature Immunology 2002;3:673-680.
    104.Steinhoff M,Bienenstock J,Schmelz M,Maurer M,Wei E,Biro T.Neurophysiological,neuroimmunological,and neuroendocrine basis of pruritus.J Invest Dermatol 2006;126(8):1705-18.
    105.Dillon SR,Sprecher C,Hammond A,Bilsborough J,Rosenfeld-Franklin M,Presnell SR,et al.Interleukin 31,a cytokine produced by activated T cells,induces dermatitis in mice.Nat Immunol 2004;5(7):752-60.
    106.Schmelz M.Itch-mediators and mechanisms.J Dermatol Sci 2002;28(2):91-6.
    107.Steinhoff M,Neisius U,Ikoma A,Fartasch M,Heyer G,Skov PS,et al.
    Proteinase-activated receptor-2 mediates itch:a novel pathway for pruritus in human skin.J Neurosci 2003;23(15):6176-80.
    108.Wood LC,Jackson SM,Elias PM,Grunfeld C,Feingold KR.Cutaneous barrier perturbation stimulates cytokine production in the epidermis of mice.J Clin Invest 1992;90(2):482-7.
    109.Matsubara M,Harada D,Manabe H,Hasegawa K.Staphylococcus aureus peptidoglycan stimulates granulocyte macrophage colony-stimulating factor production from human epidermal keratinocytes via mitogen-activated protein kinases.FEBS Lett 2004;566(1-3):195-200.
    110.Kanda N,Watanabe S.Histamine enhances the production of granulocyte-macrophage colony-stimulating factor via protein kinase Calpha and extracellular signal-regulated kinase in human keratinocytes.J Invest Dermatol 2004;122(4):863-72.
    111.Konishi H,Tsutsui H,Murakami T,Yumikura-Futatsugi S,Yamanaka K,Tanaka M,et al.IL-18 contributes to the spontaneous development of atopic dermatitis-like inflammatory skin lesion independently of IgE/stat6 under specific pathogen-free conditions.Proc Natl Acad Sci U S A 2002;99(17):11340-5.
    112.Zlotnik A,Yoshie O.Chemokines:a new classification system and their role in immunity.Immunity 2000;12(2):121-7.
    113.Rossi D,Zlotnik A.The biology of chemokines and their receptors.Annu Rev Immunol 2000;18:217-42.
    114.Gombert M,Dieu-Nosjean MC,Winterberg F,Bunemann E,Kubitza RC,Da Cunha L,et al.CCL1-CCR8 interactions:an axis mediating the recruitment of T cells and Langerhans-type dendritic cells to sites of atopic skin inflammation.J Immunol 2005;174(8):5082-91.
    115.Ruzicka T,Bieber T,Schopf E,Rubins A,Dobozy A,Bos JD,et al.A short-term trial of tacrolimus ointment for atopic dermatitis.European Tacrolimus Multicenter Atopic Dermatitis Study Group.N Engl J Med 1997;337(12):816-21.
    116.Pivarcsi A,Gombert M,Dieu-Nosjean MC,Lauerma A,Kubitza R,Meller S,et al.CC chemokine ligand 18,an atopic dermatitis-associated and dendritic cell-derived chemokine,is regulated by staphylococcal products and allergen exposure.J Immunol 2004;173(9):5810-7.
    117.Gunther C,Bello-Fernandez C,Kopp T,Kund J,Carballido-Perrig N,Hinteregger S,et al.CCL18 is expressed in atopic dermatitis and mediates skin homing of human memory T cells.J Immunol 2005;174(3):1723-8.
    118.Caux C,Ait-Yahia S,Chemin K,de Bouteiller O,Dieu-Nosjean MC,Homey B,et al.Dendritic cell biology and regulation of dendritic cell trafficking by chemokines.Springer Semin Immunopathol 2000;22(4):345-69.
    119.Koch S,Kohl K,Klein E,von Bubnoff D,Bieber T.Skin homing of Langerhans cell precursors:adhesion,chemotaxis,and migration.J Allergy Clin Immunol 2006;117(1):163-8.
    120.Dieu MC,Vanbervliet B,Vicari A,Bridon JM,Oldham E,Ait-Yahia S,et al.Selective recruitment of immature and mature dendritic cells by distinct chemokines expressed in different anatomic sites.J Exp Med 1998;188(2):373-86.
    121.Vanbervliet B,Homey B,Durand I,Massacrier C,Ait-Yahia S,de Bouteiller O,et al.Sequential involvement of CCR2 and CCR6 ligands for immature dendritic cell recruitment:possible role at inflamed epithelial surfaces.Eur J Immunol 2002;32(1):231-42.
    122.Dohi M,Okudaira H,Sugiyama H,Tsurumachi K,Suko M,Nakagawa T,et al. Bronchial responsiveness to mite allergen in atopic dermatitis without asthma.Int Arch Allergy Appl Immunol 1990;92(2):138-42.
    123.Lack G,Fox D,Northstone K,Golding J.Factors associated with the development of peanut allergy in childhood.N Engl J Med 2003;348(11):977-85.
    124.Tinkle SS,Antonini JM,Rich BA,Roberts JR,Salmen R,DePree K,et al.Skin as a route of exposure and sensitization in chronic beryllium disease.Environ Health Perspect 2003;111(9):1202-8.
    125.Spergel JM,Mizoguchi E,Brewer JP,Martin TR,Bhan AK,Geha RS.Epicutaneous sensitization with protein antigen induces localized allergic dermatitis and hyperresponsiveness to methacholine after single exposure to aerosolized antigen in mice.J Clin Invest 1998;101(8):1614-22.
    126.Park YD,Lyou YJ,Lee KJ,et al.Towards profiling the gene expression of fibroblasts from atopic dermatitis petients:human 8K complementary DNA microarray.Clin Exp Allergy 2006;36:649-657.
    127.Park YD,Kim SY,Jang HS,Seo EY,Namkung JH,Park HS,et al.Towards a proteomic analysis of atopic dermatitis:a two-dimensional-polyacrylamide gel electrophoresis/mass spectrometric analysis of cultured patient-derived fibroblasts.Proteomics 2004;4(11):3446-55.
    128.Park YD,Jang HS,Kim SY,Ko SK,Lyou YJ,Lee DY,et al.Two-dimensional electrophoretic profiling of atopic dermatitis in primary cultured keratinocytes from patients.Proteomics 2006;6(4):1362-70.
    129.Valet GK,Tarnok A.Cytomics in predictive medicine.Cytometry B Clin Cytom 2003;53(1):l-3.
    130.Fonslow BR,Bowser MT.Optimizing band width and resolution in micro-free flow electrophoresis.Anal Chem 2006;78(24):8236-44.
    131.Park J,Lappe M,Teichmann SA.Mapping protein family interactions:intramolecular and intermolecular protein family interaction repertoires in the PDB and yeast.J Mol Biol 2001;307(3):929-38.
    132.Howell MD,Boguniewicz M,Pastore S,Novak N,Bieber T,Girolomoni G,et al.Mechanism of HBD-3 deficiency in atopic dermatitis.Clin Immunol 2006;121(3):332-8.
    133.Breuckmann F,von Kobyletzki G,Avermaete A,Kreuter A,Altmeyer P,Gambichler T.Modulation of cathepsin G expression in severe atopic dermatitis following medium-dose UVA1 phototherapy.BMC Dermatol 2002;2:12.
    134.Groneberg DA,Bester C,Grutzkau A,Serowka F,Fischer A,Henz BM,et al.Mast cells and vasculature in atopic dermatitis-potential stimulus of neoangiogenesis.Allergy 2005;60(1):90-7.
    135.Iwanaga T,McEuen A,Walls AF,Clough JB,Keith TP,Rorke S,et al.Polymorphism of the mast cell chymase gene(CMA1) promoter region:lack of association with asthma but association with serum total immunoglobulin E levels in adult atopic dermatitis.Clin Exp Allergy 2004;34(7):1037-42.
    136.Hansson L,Backman A,Ny A,Edlund M,Ekholm E,Ekstrand Hammarstrom B,et al.Epidermal overexpression of stratum corneum chymotryptic enzyme in mice:a model for chronic itchy dermatitis.J Invest Dermatol 2002;118(3):444-9.
    137.Stander S,Steinhoff M.Pathophysiology of pruritus in atopic dermatitis:an overview.Exp Dermatol 2002;1 1(1):12-24.
    138.Imaizumi A,Kawakami T,Murakami F,Soma Y,Mizoguchi M.Effective treatment of pruritus in atopic dermatitis using HI antihistamines(second-generation antihistamines):changes in blood histamine and tryptase levels.J Dermatol Sci 2003;33(1):23-9.
    139.Watanabe N,Tomimori Y,Saito K,Miura K,Wada A,Tsudzuki M,et al.Chymase inhibitor improves dermatitis in NC/Nga mice.Int Arch Allergy Immunol 2002;128(3):229-34.
    140.Schafer L,Kragballe K.Abnormalities in epidermal lipid metabolism in patients with atopic dermatitis.J Invest Dermatol 1991;96(1):10-5.
    141.Burke JR.Targeting phospholipase A2 for the treatment of inflammatory skin diseases.Curr Opin Investig Drugs 2001;2(11):1549-52.
    142.Murzin AG,Brenner SE,Hubbard T,Chothia C.SCOP:a structural classification of proteins database for the investigation of sequences and structures.J Mol Biol 1995;247(4):536-40.
    143.Kall L,Krogh A,Sonnhammer EL.A combined transmembrane topology and signal peptide prediction method.J Mol Biol 2004;338(5):1027-36.
    144.Lee S,Lee B,Jang I,Kim S,Bhak J.Localizome:a server for identifying transmembrane topologies and TM helices of eukaryotic proteins utilizing domain information.Nucleic Acids Res 2006;34(Web Server issue):W99-103.
    145.Boniface K,Diveu C,Morel F,Pedretti N,Froger J,Ravon E,et al.Oncostatin M secreted by skin infiltrating T lymphocytes is a potent keratinocyte activator involved in skin inflammation.J Immunol 2007;178(7):4615-22.
    146.Yamaguchi T,Suzuki M,Kimura H,Kato M.Role of protein kinase C in eosinophil function.Allergol Int 2006;55(3):245-52.
    147.Akdis CA,Akdis M,Trautmann A,Blaser K.Immune regulation in atopic dermatitis.Curr Opin Immunol 2000;12(6):641-6.
    148.Ogawa K,Ito M,Takeuchi K,Nakada A,Heishi M,Suto H,et al.Tenascin-C is upregulated in the skin lesions of patients with atopic dermatitis.J Dermatol Sci 2005;40(1):35-41.
    1.McLeish,M.J.and Kenyon,G.L.Relating structure to mechanism in creatine kinase.Crit.Rev.Biochem.Mol.Biol.2005,40:1-20.
    2.Schlattner,U.,Tokarska-Schlattner,M.,and Wallimann,T.Mitochondrial creatine kinase in human health and disease.Biochim.Biophys.Acta.2006,1762:164-180.
    3.Grossman,S.H.and Sellers,D.S.Subunit conformation and dynamics in a heterodimeric protein:studies of the hybrid isozyme of creatine kinase.Biochim.Biophys.Acta,1998,1387:447-453.
    4.Abendschein,D.R.Rapid diagnosis of myocardial infarction and reperfusion by assay of plasma isoforms of creatine kinase isoenzymes.Clin.Biochem.1990,23:399-407.
    5.Aksenov,M.,Aksenova,M.,Butterfield,D.A.,and Markesbery,W.R.Oxidative modification of creatine kinase BB in Alzheimer's disease brain.J.Neurochem.2000,74:2520-2527.
    6.David,S.,Shoemaker,M.,and Haley,B.E.Abnormal properties of creatine kinase in Alzheimer's disease brain:correlation of reduced enzyme activity and active site photolabeling with aberrant cytosol-membrane partitioning.Brain Res.Mol.Brain Res.1998,54:276-287.
    7.Ozawa,E.,Hagiwara,Y.,and Yoshida,M.Creatine kinase,cell membrane and Duchenne muscular dystrophy.Mol.Cell Biochem.1999,190:143-151.
    8.Schlattner,U.,Mockli,N.,Speer,O.,Werner,S.,and Wallimann,T.Creatine kinase and creatine transporter in normal,wounded,and diseased skin.J.Invest.Dermatol.2002,118:416-423.
    9.Takubo,H.,Shimoda-Matsubayashi,S.,and Mizuno,Y Serum creatine kinase is elevated in patients with Parkinson's disease:a case controlled study. Parkinsonism Relat.Disord.2003,9:S43-S46.
    10.M.Tornqvist,Acrylamide in food:the discovery and its implications:a historical perspective,Adv.Exp.Med.Biol.2005,561:1-19.
    11.M.Friedman,Biological effects of Maillard browning products that may affect acrylamide safety in food:biological effects of Maillard products,Adv.Exp.Med.Biol.561,2005:135-156.
    12.I.Blank,Current status of acrylamide research in food:measurement,safety assessment,and formation,Ann.N.Y.Acad.Sci.2005:104330-104340.
    13.E.Dybing,P.B.Farmer,M.Andersen,T.R.Fennell,S.P.Lalljie,D.J.Muller,S.Olin,B.J.Petersen,J.Schlatter,G.Scholz,J.A.Scimeca,N.Slimani,M.Tornqvist,S.Tuijtelaars,P.Verger,Human exposure and internal dose assessments of acrylamide in food,Food Chem.Toxicol.2005,43:365-410.
    14.A.Besaratinia,G.P.Pfeifer,DNA adduction and mutagenic properties of acrylamide,Mutat.Res.2005,580:31-40.
    15.J.M.Rice,The carcinogenicity of acrylamide,Mutat.Res.2005,580:3-20.
    16.L.S.Erdreich,M.A.Friedman,Epidemiologic evidence for assessing the carcinogenicity of acrylamide,Regul.Toxicol.Pharmacol.2004,39:150-157.
    17.E.A.Smith,F.W.Oehme,Acrylamide and polyacrylamide:a review of production,use,environmental fate and neurotoxicity,Rev.Environ.Health.1991,9:215-228.
    18.R.M.LoPachin,The changing view of acrylamide neurotoxicity,Neurotoxicology,2004,25:617-630.
    19.K.L.Dearfield,CO.Abernathy,M.S.Ottley,J.H.Brantner,P.F.Hayes,Acrylamide:its metabolism,developmental and reproductive effects,genotoxicity,and carcinogenicity,Mutat.Res.1988,195:45-77.
    20.C.Ruden,Acrylamide and cancer risk-expert risk assessments and the public debate,Food Chem.Toxicol.2004,42:335-349.
    21.R.M.LoPachin,D.S.Barber,Synaptic cysteine sulfhydryl groups as targets of electrophilic neurotoxicants,Toxicol.Sci.2006,94:240-255.
    22.B.L.Vallee,D.S.Auld,Zinc coordination,function,and structure of zinc enzymes and other proteins.Biochemistry,1990,29:5647-5659.
    23.R.Tudor,RD.Zalewski,R.N.Ratnaike,Zinc in health and chronic disease.J.Nutr.Health Aging,2005,9:45-51.
    24.R.E.Miller,E.Shelton,E.R.Stadtman,Zinc-induced paracrystalline aggregation of glutamine synthetase.Arch.Biochem.Biophys.1974,163:155-171.
    25.W.P.Esler,E.R.Stimson,J.M.Jennings,J.R.Ghilardi,P.W.Mantyh,J.E.Maggio,Zinc-induced aggregation of human and rat beta-amyloid peptides in vitro.J.Neurochem.1996,66:723-732.
    26.C.F.Zhang,P.Yang,Zinc-induced aggregation of Abeta(10-21) potentiates its action on voltage-gated potassium channel.Biochem.Biophys.Res.Commun.2006,345:43-49.
    27.X.Tong,X.Zeng,H.M.Zhou,Effects of zinc on creatine kinase:activity changes,conformational changes,and aggregation.J.Protein Chem.2000,19:553-562.
    28.C.A.Ross,M.A.Poirier,Protein aggregation and neurodegenerative disease.Nat.Med.2004,10:S10-S17.
    29.N.Gregersen,L.Bolund,P.Bross,Protein misfolding,aggregation,and degradation in disease.Mol.Biotechnol.2005,31:141-150.
    30.CM.Dobson,Protein aggregation and its consequences for human disease.Protein.Pept.Lett.2006,13:219-227.
    31.T.Scheibel,J.Buchner,Protein aggregation as a cause for disease.Handb.Exp.Pharmacol.2006,172:199-219.
    32.S.Diamant,N.Eliahu,D.Rosenthal,P.Goloubinoff,Chemical chaperones regulate molecular chaperones in vitro and in cells under combined salt and heat stresses.J.Biol.Chem.2001,276:39586-39591.
    33.W.B.Ou,Y.D.Park,H.M.Zhou,Effect of osmolytes as folding aids on creatine kinase refolding pathway.Int.J.Biochem.Cell Biol.2002,34:136-147.
    34.F.Meng,Y.Park,H.Zhou,Role of proline,glycerol,and heparin as protein folding aids during refolding of rabbit muscle creatine kinase.Int.J.Biochem.Cell Biol.2001,33:701-709.
    35.Chen,L.H.,White,C.B.,Babbitt,P.C,McLeish,M.J.,and Kenyon,GL.A comparative study of human muscle and brain creatine kinases expressed in Escherichia coli.J.Protein Chem.2000,19:59-66.
    36.Mourad-Terzian,T.,SteghensJ.R,Min,K.L.,Collombel,C,and Bozon,D.Creatine kinase isoenzymes specificities:histidine 65 in human CK-BB,a role in protein stability,not in catalysis.FEBS Lett.2000,475:22-26.
    37.Y.D.Park,Z.F.Cao,H.M.Zhou,Reactivation kinetics of guanidine hydrochloride-denatured creatine kinase measured using the substrate reaction.J.Protein.Chem.2001,20:67-72.
    38.Han,H.Y.,Zou,H.C.,Jeon,J.Y,Wang,Y.J.,Xu,W.A.,Yang,J.M.,and Park,Y.D.The inhibition kinetics and thermodynamic changes of tyrosinase via the zinc ion.Biochim.Biophys.Acta,2007,1774:822-827.
    39.John,B.and Sali,A.Comparative protein structure modeling by iterative alignment,model building and model assessment.Nucleic Acids Res.2003,31:3982-3992.
    40.Rodriguez,R.,Chinea,G,Lopez,N.,Pons,T.,and Vriend,G Homology modeling,model and software evaluation:three related resources.Bioinformatics,1998,14:523-528.
    41.Jung,J.and Lee,B.Protein structure alignment using environmental profiles.Protein Eng.2000,13,535-543.
    42.R.Huey,G.M.Morris,A.J.Olson,D.S.Goodsell,A semiemprical free energy force field with charge-based desolvation,J.Comput.Chem.2007,28:1145-1152.
    43.D.T.Moustakas,P.T.Lang,S.Pegg,E.Pettersen,I.D.Kuntz,N.Brooijmans,R.C.Rizzo,Development and validation of a modular,extensible docking program:DOCK 5,J.Comput.Aided Mol.Des.2006,20:601-619.
    44.X.Q.Xie,J.Z.Chen,Data Mining a Small Molecule Drug Screening Representative Subset from NIH PubChem,J.Chem.Inf.Model.2008,48:465-475.
    45.M.Hendlich,F.Rippmann,G Barnickel,LIGSITE:automatic and efficient detection of potential small molecule-binding sites in proteins,J.Mol.Graph.Model.1997,15:359-63,389.
    46.Tarns,J.W.and Welinder,K..G.Unfolding and refolding of Coprinus cinereus peroxidase at high pH,in urea,and at high temperature.Effect of organic and ionic additives on these processes.Biochemistry,1996,35:7573-7579.
    47.Rozema,D.and Gellman,S.H.Artificial chaperone-assisted refolding of carbonic anhydrase B.J.Biol.Chem.1996,271:3478-3487.
    48.C.L.Tsou,Active site flexibility in enzyme catalysis,Ann.N.Y Acad.Sci.1998,864:1-8.
    49.H.C.Zou,Z.R.Lu,Y.J.Wang,Y.M.Zhang,F.Zou,YD.Park,Effect of cysteine modification on creatine kinase aggregation.Appl Biochem Biotechnol.2009,152(1):15-28.
    50.Z.Ignatova,LM.Gierasch,Inhibition of protein aggregation in vitro and in vivo by a natural osmoprotectant.Proc.Natl.Acad.Sci.USA.2006,103:13357-13361.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700