用户名: 密码: 验证码:
温度敏感性培养皿用于细胞层工程的初步实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
组织工程通常的方法是把种子细胞播种于生物可降解的支架材料中,利用临时充填在其中的多孔性细胞外基质塑型,期望细胞能够长入和聚集。然而,支架结构与其希望模拟的体内组织相比依然相当原始,此外,细胞向支架内部迁移不足,或者在支架内不能保持,细胞的增殖速率和支架的降解速率不一致,宿主的免疫反应和炎性反应都是存在的问题。与传统方法相比,有学者提出了一种新的以细胞层为基础的组织工程技术,这种技术作为一种新的选择,利用温敏性培养皿,经简单的温度变化,可以非损伤性的一起获得完整的培养细胞层及其所沉积的细胞外基质,从而避免了使用蛋白水解酶。利用获得相同或者不同的细胞层相互层叠,不使用支架材料来获得细胞密度高和功能化的组织,这种以温度敏感的培养皿为基础发展出技术目前被称为细胞层工程(Cell Sheet Engineering)。
     将聚N-异丙基丙烯酰胺(PNIPAm)接枝聚合培养皿表面,利用PNIPAm的温度依赖性的可溶/不溶性变化,在37℃培养细胞,降低温度至低临界溶解温度(约32℃)之下,则细胞从培养皿表面脱附,于是可以获得温度敏感性的细胞培养皿。
     本课题利用等离子处理技术和紫外线接枝的方法,在普通培养皿的表面接枝具有温度敏感性的PNIPAm,借助于表面分析技术FT-IR、XPS和AFM、SEM微观形貌观察来证实是否接枝成功,探讨了制备温敏性培养皿的可行性。以细胞毒性试验对材料的毒性做出评价,进一步观察了在PNIPAm接枝的培养皿上不同细胞的贴壁、生长、增殖状况和细胞层降温脱附行为。
     第一部分温敏性培养皿的制备
     本试验将低温等离子体预处理和紫外线照射接枝结合起来,在细胞培养皿(PS)上引入PNIPAm。以接触角变化程度作为衡量指标,采用正交设计,对影响接枝的多个因素的参数进行多个水平的分析和筛选优化,结果表明在等离子体复合参数0.08,等离子体预处理时间2min,N-异丙基丙烯酰胺单体浓度30%,紫外线照射时间15min条件的接枝反应,接触角的变化值较大。
     第二部分温敏性培养皿的表面分析
     本试验将第一部分试验制备的PNIPAm接枝表面采用FT-IR、XPS方法进行了表面分析,结果证实了PS表面有PNIPAm接枝,并且接枝物与常规方法制备的PNIPAm化学组成相似;AFM、SEM微观形貌观察,接枝和未接枝的PS表面存在明显差别。这些结果说明采用等离子体预处理和紫外线照射接枝的方法适合对PS表面用PNIPAm进行接枝改性,从而获得了具有温度敏感性的PS表面。
     第三部分温敏性培养皿的细胞培养研究
     本试验采用直接接触方式,以MMT法计算L929细胞的相对增殖率,观察了温敏性培养皿材料和普通PS培养板之间的毒性比较,结果证实前者无毒性或有轻微毒性,结果评价认为材料合格,可以用于实验室细胞培养及相关用途。进一步利用两种不同的细胞永生化的成牙本质细胞系(OLC)和人牙周膜细胞(HPLC)在接枝有PNIAPm的培养皿上进行培养,观察到细胞可以正常贴壁,生长并增殖,并且在形成连续的细胞层之后,通过降低温度,获得了完整的细胞层结构,结合前两部分实验结果,证实了利用等离子体预处理和紫外线照射接枝制备温敏性培养皿的可行性,为后续研究提供了实验基础。
Tissue engineering techniques rely largely on scaffold-based approaches, often using biodegradable and biologically derived polymersto provide a porous, space-filling, temporary extracellularmatrix (ECM) of desired macroscopic form within which cells grow and integrate. However, such scaffold architectures are primitive compared to those they intend to duplicate in vivo. Additionally, insufficient cell migration into and retention within scaffolds, different rates of cell proliferation compared to scaffold degradation,and host inflammatory reactions remain problems.Further improvements in scaffold design may overcome some of these problems.In contrast to conventional methods, a novel cell sheet-based technique has been proposed .This technique intend to achieve high cell density and function by layering confluent viable cell sheets without the use of acellular scaffolds that limit mass transport. Using thermo-sensitive cell culture surfaces, confluently cultured cells spontaneously detach as intact sheets simply by reducing the culture temperature. Covalently grafted poly (N- isopropylacrylamide) (PNIPAm),which exhibits reversible temperature- dependent soluble/insoluble changes (i.e., lower critical solution temperature of 32℃) in aqueous solution, facilitates both cell adhesion and cell detachment, eliminating use of cell-harvesting enzymes that dissociate cell cultures into dispersed cells.
     This paper was mainly about the surface modification of cell culture dish by conbining plasma pretreatment and UV-incued PNIPAm graft polymerization, in orer to aquire the thermo-sensitive cell culture dish. Moreover, the surface was characterized and analysed by FT-IR、XPS、AFM and SEM. Cytotoxicity of the dish was also evaluated.In the end ,two types of cells (OLC and HPLC)were cultured and cell sheets detachment can be observed by reducing the culture tempareture.
     1. The preparation of thermo-sensitive cell culcure dish
     The normal cell culture dishes (Polystyrene) were subjected to plasma pretreatment and UV-incued PNIPAm graft polymerization,without photo-initiator. The changement of contactact angle was used as the indication of the surface graft modifaction and orthogonal experimental design was used to arrange the experiment groups. Four different levels of four factors were analysed,intending to find an optimized combinations.The optimized combinations were W/FM 0.08GJ/Kg,plasma pretreatment time 2min,NIPAm monomo concentration 30%,UV irradiation time 15min,under which conditions the changement of contactact angle were maximal.
     2. The analysis and characterization of thermo-sensitive cell culcure dish surface
     The surface of prepared cell culture dish was characterized and analysed by FT-IR、XPS、AFM and SEM. The IR spectrum showed the function group-amide I peak appeared on the grafting surface,which was characteristic function group of PNIAPm.The XPS analysis showed the presence of atom C ,N ,O on the grafting surface ,which was the chemical components of NIAPm.The AFM and SEM showed the similar appearance of grating surface ,apparently different to normal suiface.Obvious difference were confirmed between the grafting and normal surface of cell culture dish,which proved the results that PNIAPm had been successfully grafted onto the surface of cell culture dish.
     3. The cytotoxic evaluation and observation of cell culcure on the thermo-sensitive cell culcure dish
     The cytotoxicity of thermo-sensitive cell culcure dish was evaluated by direct contact with MTT-based method.The relative cell groth rate of L929 cell represented the proliferation of cells on materials with respect to control over time. The result showed that cytotoxicity of thermo-sensitive cell culcure dish was none or little,which can be used for lab use.Additional cell culture was performed with two types of cell (OLC and HPLC)and cell sheets detachment were observed by reducing the culture tempareture after the confluently growth of the two types of cells.
引文
[1] Langer R, Vacanti JP. Tissue engineering. Science. 1993. 260(5110): 920-6.
    [2] Liu Y, Chen F, Liu W, et al. Repairing large porcine full-thickness defects of articular cartilage using autologous chondrocyte-engineered cartilage. Tissue Eng. 2002. 8(4): 709-21.
    [3] Cao Y, Liu Y, Liu W, Shan Q, Buonocore SD, Cui L. Bridging tendon defects using autologous tenocyte engineered tendon in a hen model. Plast Reconstr Surg. 2002. 110(5): 1280-9.
    [4] Martin I, Wendt D, Heberer M. The role of bioreactors in tissue engineering. Trends Biotechnol. 2004. 22(2): 80-6.
    [5] Evans MJ, Kaufman MH. Establishment in culture of pluripotential cells from mouse embryos. Nature. 1981. 292(5819): 154-6.
    [6] Iannaccone PM, Taborn GU, Garton RL, Caplice MD, Brenin DR. Pluripotent embryonic stem cells from the rat are capable of producing chimeras. Dev Biol. 1994. 163(1): 288-92.
    [7] Piedrahita JA, Anderson GB, Bondurant RH. Influence of feeder layer type on the efficiency of isolation of porcine embryo-derived cell lines. Theriogenology. 1990. 34(5): 865-77.
    [8] Piedrahita JA, Anderson GB, Bondurant RH. On the isolation of embryonic stem cells: Comparative behavior of murine, porcine and ovine embryos. Theriogenology. 1990. 34(5): 879-901.
    [9] Sims M, First NL. Production of calves by transfer of nuclei from cultured inner cell mass cells. Proc Natl Acad Sci U S A. 1994. 91(13): 6143-7.
    [10] Graves KH, Moreadith RW. Derivation and characterization of putative pluripotential embryonic stem cells from preimplantation rabbit embryos. Mol Reprod Dev. 1993. 36(4): 424-33.
    [11] Rathjen PD, Lake J, Whyatt LM, Bettess MD, Rathjen J. Properties and uses of embryonic stem cells: prospects for application to human biology and gene therapy. Reprod Fertil Dev. 1998. 10(1): 31-47.
    [12] Gearhart J. New potential for human embryonic stem cells. Science. 1998. 282(5391):1061-2.
    [13] Pera MF, Reubinoff B, Trounson A. Human embryonic stem cells. J Cell Sci. 2000. 113 ( Pt 1): 5-10.
    [14] Rajasingh J, Bord E, Hamada H, et al. STAT3-dependent mouse embryonic stem cell differentiation into cardiomyocytes: analysis of molecular signaling and therapeutic efficacy of cardiomyocyte precommitted mES transplantation in a mouse model of myocardial infarction. Circ Res. 2007. 101(9): 910-8.
    [15] Zhang WJ, Park C, Arentson E, Choi K. Modulation of hematopoietic and endothelial cell differentiation from mouse embryonic stem cells by different culture conditions. Blood. 2005. 105(1): 111-4.
    [16] Fraser ST, Yamashita J, Jakt LM, et al. In vitro differentiation of mouse embryonic stem cells: hematopoietic and vascular cell types. Methods Enzymol. 2003. 365: 59-72.
    [17] Nakayama N, Duryea D, Manoukian R, Chow G, Han CY. Macroscopic cartilage formation with embryonic stem-cell-derived mesodermal progenitor cells. J Cell Sci. 2003. 116(Pt 10): 2015-28.
    [18] Vadivelu S, Platik MM, Choi L, et al. Multi-germ layer lineage central nervous system repair: nerve and vascular cell generation by embryonic stem cells transplanted in the injured brain. J Neurosurg. 2005. 103(1): 124-35.
    [19] Kahan BW, Jacobson LM, Hullett DA, et al. Pancreatic precursors and differentiated islet cell types from murine embryonic stem cells: an in vitro model to study islet differentiation. Diabetes. 2003. 52(8): 2016-24.
    [20] Paek HJ, Moise LJ, Morgan JR, Lysaght MJ. Origin of insulin secreted from islet-like cell clusters derived from murine embryonic stem cells. Cloning Stem Cells. 2005. 7(4): 226-31.
    [21] Duplomb L, Dagouassat M, Jourdon P, Heymann D. Concise review: embryonic stem cells: a new tool to study osteoblast and osteoclast differentiation. Stem Cells. 2007. 25(3): 544-52.
    [22] Billon N, Jolicoeur C, Raff M. Generation and characterization of oligodendrocytes from lineage-selectable embryonic stem cells in vitro. Methods Mol Biol. 2006. 330: 15-32.
    [23] Hodgson DM, Behfar A, Zingman LV, et al. Stable benefit of embryonic stem cell therapy in myocardial infarction. Am J Physiol Heart Circ Physiol. 2004. 287(2): H471-9.
    [24] Dai W, Kloner RA. Myocardial regeneration by embryonic stem cell transplantation: present and future trends. Expert Rev Cardiovasc Ther. 2006. 4(3): 375-83.
    [25] Schuldiner M, Eiges R, Eden A, et al. Induced neuronal differentiation of human embryonic stem cells. Brain Res. 2001. 913(2): 201-5.
    [26] Sathananthan AH, Trounson A. Human embryonic stem cells and their spontaneous differentiation. Ital J Anat Embryol. 2005. 110(2 Suppl 1): 151-7.
    [27] Chang KH, Nelson AM, Fields PA, et al. Diverse hematopoietic potentials of five human embryonic stem cell lines. Exp Cell Res. 2008. 314(16): 2930-40.
    [28] Wang L. Endothelial and hematopoietic cell fate of human embryonic stem cells. Trends Cardiovasc Med. 2006. 16(3): 89-94.
    [29] Tielens S, Declercq H, Gorski T, Lippens E, Schacht E, Cornelissen M. Gelatin-based microcarriers as embryonic stem cell delivery system in bone tissue engineering: an in-vitro study. Biomacromolecules. 2007. 8(3): 825-32.
    [30] Hwang YS, Cho J, Tay F, et al. The use of murine embryonic stem cells, alginate encapsulation, and rotary microgravity bioreactor in bone tissue engineering. Biomaterials. 2009. 30(4): 499-507.
    [31] Jukes JM, Both SK, Leusink A, Sterk LM, van BCA, de Boer J. Endochondral bone tissue engineering using embryonic stem cells. Proc Natl Acad Sci U S A. 2008. 105(19): 6840-5.
    [32] Kramer J, Hegert C, Guan K, Wobus AM, Muller PK, Rohwedel J. Embryonic stem cell-derived chondrogenic differentiation in vitro: activation by BMP-2 and BMP-4. Mech Dev. 2000. 92(2): 193-205.
    [33] Ferreira LS, Gerecht S, Shieh HF, et al. Vascular progenitor cells isolated from human embryonic stem cells give rise to endothelial and smooth muscle like cells and form vascular networks in vivo. Circ Res. 2007. 101(3): 286-94.
    [34] Shen G, Tsung HC, Wu CF, et al. Tissue engineering of blood vessels with endothelial cells differentiated from mouse embryonic stem cells. Cell Res. 2003. 13(5): 335-41.
    [35] Homma R, Yoshikawa H, Takeno M, et al. Induction of epithelial progenitors in vitro from mouse embryonic stem cells and application for reconstruction of damaged cornea in mice. Invest Ophthalmol Vis Sci. 2004. 45(12): 4320-6.
    [36] Ahmad S, Stewart R, Yung S, et al. Differentiation of human embryonic stem cells into corneal epithelial-like cells by in vitro replication of the corneal epithelial stem cell niche. Stem Cells. 2007. 25(5): 1145-55.
    [37] Alperin C, Zandstra PW, Woodhouse KA. Polyurethane films seeded with embryonicstem cell-derived cardiomyocytes for use in cardiac tissue engineering applications. Biomaterials. 2005. 26(35): 7377-86.
    [38] Inanc B, Elcin AE, Elcin YM. Human embryonic stem cell differentiation on tissue engineering scaffolds: effects of NGF and retinoic acid induction. Tissue Eng Part A. 2008. 14(6): 955-64.
    [39] Lott JP, Savulescu J. Towards a global human embryonic stem cell bank. Am J Bioeth. 2007. 7(8): 37-44.
    [40] Kiatpongsan S, Wacharaprechanont T, Tannirandorn Y. Embryonic stem cell bank. J Med Assoc Thai. 2006. 89(7): 1055-63.
    [41] Pincock S. UK opens embryonic stem cell bank. Lancet. 2004. 363(9423): 1778.
    [42] McLennan A. Which bank? A guardian model for regulation of embryonic stem cell research in Australia. J Law Med. 2007. 15(1): 45-76.
    [43] Sylvester KG, Longaker MT. Stem cells: review and update. Arch Surg. 2004. 139(1): 93-9.
    [44] Mendiola MM, Peters T, Young EW, Zoloth-Dorfman L. Research with human embryonic stem cells: ethical considerations. By Geron Ethics Advisory Board. Hastings Cent Rep. 1999. 29(2): 31-6.
    [45] Solter D. Cloning and embryonic stem cells: a new era in human biology and medicine. Croat Med J. 1999. 40(3): 309-18.
    [46] Outomuro D. Moral dilemmas around a global human embryonic stem cell bank. Am J Bioeth. 2007. 7(8): 47-8; discussion W4-6.
    [47] Gucciardo L, Lories R, Ochsenbein-Kolble N, Done' E, Zwijsen A, Deprest J. Fetal mesenchymal stem cells: isolation, properties and potential use in perinatology and regenerative medicine. BJOG. 2009. 116(2): 166-72.
    [48] Guillot PV, O'Donoghue K, Kurata H, Fisk NM. Fetal stem cells: betwixt and between. Semin Reprod Med. 2006. 24(5): 340-7.
    [49] Hemberger M, Yang W, Natale D, et al. Stem cells from fetal membranes - a workshop report. Placenta. 2008. 29 Suppl A: S17-9.
    [50] Ilancheran S, Moodley Y, Manuelpillai U. Human fetal membranes: a source of stem cells for tissue regeneration and repair. Placenta. 2009. 30(1): 2-10.
    [51] Marcus AJ, Woodbury D. Fetal stem cells from extra-embryonic tissues: do not discard. J Cell Mol Med. 2008. 12(3): 730-42.
    [52] Pojda Z, Machaj EK, Oldak T, Gajkowska A, Jastrzewska M. Nonhematopoietic stem cells of fetal origin--how much of today's enthusiasm will pass the time test. FoliaHistochem Cytobiol. 2005. 43(4): 209-12.
    [53] Emanueli C, Lako M, Stojkovic M, Madeddu P. In search of the best candidate for regeneration of ischemic tissues: are embryonic/fetal stem cells more advantageous than adult counterparts. Thromb Haemost. 2005. 94(4): 738-49.
    [54] O'Donoghue K, Chan J. Human fetal mesenchymal stem cells. Curr Stem Cell Res Ther. 2006. 1(3): 371-86.
    [55] Wang L, Tran I, Seshareddy K, Weiss ML, Detamore MS. A Comparison of Human Bone Marrow-Derived Mesenchymal Stem Cells and Human Umbilical Cord-Derived Mesenchymal Stromal Cells for Cartilage Tissue Engineering. Tissue Eng Part A. 2009 .
    [56] Zhang ZY, Teoh SH, Chong MS, et al. Superior Osteogenic Capacity for Bone Tissue Engineering of Fetal Compared To Perinatal and Adult Mesenchymal Stem Cells. Stem Cells. 2008 .
    [57] Zhang ZY, Teoh SH, Chong WS, et al. A biaxial rotating bioreactor for the culture of fetal mesenchymal stem cells for bone tissue engineering. Biomaterials. 2009. 30(14): 2694-704.
    [58] Schmidt D, Achermann J, Odermatt B, Genoni M, Zund G, Hoerstrup SP. Cryopreserved amniotic fluid-derived cells: a lifelong autologous fetal stem cell source for heart valve tissue engineering. J Heart Valve Dis. 2008. 17(4): 446-55; discussion 455.
    [59] Fiegel HC, Lange C, Kneser U, et al. Fetal and adult liver stem cells for liver regeneration and tissue engineering. J Cell Mol Med. 2006. 10(3): 577-87.
    [60] Kang XQ, Zang WJ, Bao LJ, Li DL, Xu XL, Yu XJ. Differentiating characterization of human umbilical cord blood-derived mesenchymal stem cells in vitro. Cell Biol Int. 2006. 30(7): 569-75.
    [61] Sangiorgi E, Capecchi MR. Bmi1 is expressed in vivo in intestinal stem cells. Nat Genet. 2008. 40(7): 915-20.
    [62] Barry FP, Murphy JM. Mesenchymal stem cells: clinical applications and biological characterization. Int J Biochem Cell Biol. 2004. 36(4): 568-84.
    [63] Liu G, Shu C, Cui L, Liu W, Cao Y. Tissue-engineered bone formation with cryopreserved human bone marrow mesenchymal stem cells. Cryobiology. 2008. 56(3): 209-15.
    [64] Loken S, Jakobsen RB, Aroen A, et al. Bone marrow mesenchymal stem cells in a hyaluronan scaffold for treatment of an osteochondral defect in a rabbit model. KneeSurg Sports Traumatol Arthrosc. 2008. 16(10): 896-903.
    [65] Hannouche D, Terai H, Fuchs JR, et al. Engineering of implantable cartilaginous structures from bone marrow-derived mesenchymal stem cells. Tissue Eng. 2007. 13(1): 87-99.
    [66] Mauney JR, Nguyen T, Gillen K, Kirker-Head C, Gimble JM, Kaplan DL. Engineering adipose-like tissue in vitro and in vivo utilizing human bone marrow and adipose-derived mesenchymal stem cells with silk fibroin 3D scaffolds. Biomaterials. 2007. 28(35): 5280-90.
    [67] Chong AK, Ang AD, Goh JC, et al. Bone marrow-derived mesenchymal stem cells influence early tendon-healing in a rabbit achilles tendon model. J Bone Joint Surg Am. 2007. 89(1): 74-81.
    [68] Ke Z, Zhou F, Wang L, et al. Down-regulation of Wnt signaling could promote bone marrow-derived mesenchymal stem cells to differentiate into hepatocytes. Biochem Biophys Res Commun. 2008. 367(2): 342-8.
    [69] Kazemnejad S, Allameh A, Seoleimani M, et al. Functional hepatocyte-like cells derived from human bone marrow mesenchymal stem cells on a novel 3-dimensional biocompatible nanofibrous scaffold. Int J Artif Organs. 2008. 31(6): 500-7.
    [70] Gong Z, Niklason LE. Small-diameter human vessel wall engineered from bone marrow-derived mesenchymal stem cells (hMSCs). FASEB J. 2008. 22(6): 1635-48.
    [71] Au P, Tam J, Fukumura D, Jain RK. Bone marrow-derived mesenchymal stem cells facilitate engineering of long-lasting functional vasculature. Blood. 2008. 111(9): 4551-8.
    [72] Narita Y, Yamawaki A, Kagami H, Ueda M, Ueda Y. Effects of transforming growth factor-beta 1 and ascorbic acid on differentiation of human bone-marrow-derived mesenchymal stem cells into smooth muscle cell lineage. Cell Tissue Res. 2008. 333(3): 449-59.
    [73] He L, Nan X, Wang Y, et al. Full-thickness tissue engineered skin constructed with autogenic bone marrow mesenchymal stem cells. Sci China C Life Sci. 2007. 50(4): 429-37.
    [74] Woodbury D, Reynolds K, Black IB. Adult bone marrow stromal stem cells express germline, ectodermal, endodermal, and mesodermal genes prior to neurogenesis. J Neurosci Res. 2002. 69(6): 908-17.
    [75] Greco SJ, Zhou C, Ye JH, Rameshwar P. An interdisciplinary approach and characterization of neuronal cells transdifferentiated from human mesenchymal stemcells. Stem Cells Dev. 2007. 16(5): 811-26.
    [76] Popov BV, Serikov VB, Petrov NS, Izusova TV, Gupta N, Matthay MA. Lung epithelial cells induce endodermal differentiation in mouse mesenchymal bone marrow stem cells by paracrine mechanism. Tissue Eng. 2007. 13(10): 2441-50.
    [77] Meirelles LS, Nardi NB. Methodology, biology and clinical applications of mesenchymal stem cells. Front Biosci. 2009. 14: 4281-98.
    [78] De Ugarte DA, Morizono K, Elbarbary A, et al. Comparison of multi-lineage cells from human adipose tissue and bone marrow. Cells Tissues Organs. 2003. 174(3): 101-9.
    [79] Cui L, Liu B, Liu G, et al. Repair of cranial bone defects with adipose derived stem cells and coral scaffold in a canine model. Biomaterials. 2007. 28(36): 5477-86.
    [80] Liu W, Chen B, Deng D, Xu F, Cui L, Cao Y. Repair of tendon defect with dermal fibroblast engineered tendon in a porcine model. Tissue Eng. 2006. 12(4): 775-88.
    [81] Fu Q, Deng CL, Liu W, Cao YL. Urethral replacement using epidermal cell-seeded tubular acellular bladder collagen matrix. BJU Int. 2007. 99(5): 1162-5.
    [82] Zhang YQ, Zhang WJ, Liu W, et al. Tissue engineering of corneal stromal layer with dermal fibroblasts: phenotypic and functional switch of differentiated cells in cornea. Tissue Eng Part A. 2008. 14(2): 295-303.
    [83] Khor E, Lim LY. Implantable applications of chitin and chitosan. Biomaterials. 2003. 24(13): 2339-49.
    [84] Dornish M, Kaplan D, Skaugrud O. Standards and guidelines for biopolymers in tissue-engineered medical products: ASTM alginate and chitosan standard guides. American Society for Testing and Materials. Ann N Y Acad Sci. 2001. 944: 388-97.
    [85] Chow KS, Khor E. Novel fabrication of open-pore chitin matrixes. Biomacromolecules. 2000. 1(1): 61-7.
    [86] Wan Y, Fang Y, Wu H, Cao X. Porous polylactide/chitosan scaffolds for tissue engineering. J Biomed Mater Res A. 2007. 80(4): 776-89.
    [87] Nishikawa H, Ueno A, Nishikawa S, et al. Sulfated glycosaminoglycan synthesis and its regulation by transforming growth factor-beta in rat clonal dental pulp cells. J Endod. 2000. 26(3): 169-71.
    [88] Madihally SV, Matthew HW. Porous chitosan scaffolds for tissue engineering. Biomaterials. 1999. 20(12): 1133-42.
    [89] Cao W, Cheng M, Ao Q, Gong Y, Zhao N, Zhang X. Physical, mechanical and degradation properties, and schwann cell affinity of cross-linked chitosan films. JBiomater Sci Polym Ed. 2005. 16(6): 791-807.
    [90] Hirano S, Tsuchida H, Nagao N. N-acetylation in chitosan and the rate of its enzymic hydrolysis. Biomaterials. 1989. 10(8): 574-6.
    [91] Paradossi G, Chiessi E, Venanzi M, Pispisa B, Palleschi A. Branched-chain analogues of linear polysaccharides: a spectroscopic and conformational investigation of chitosan derivatives. Int J Biol Macromol. 1992. 14(2): 73-80.
    [92] Lee KY, Ha WS, Park WH. Blood compatibility and biodegradability of partially N-acylated chitosan derivatives. Biomaterials. 1995. 16(16): 1211-6.
    [93] Kamiyama K, Onishi H, Machida Y. Biodisposition characteristics of N-succinyl-chitosan and glycol-chitosan in normal and tumor-bearing mice. Biol Pharm Bull. 1999. 22(2): 179-86.
    [94] Hu SG, Jou CH, Yang MC. Protein adsorption, fibroblast activity and antibacterial properties of poly(3-hydroxybutyric acid-co-3-hydroxyvaleric acid) grafted with chitosan and chitooligosaccharide after immobilized with hyaluronic acid. Biomaterials. 2003. 24(16): 2685-93.
    [95] Suh JK, Matthew HW. Application of chitosan-based polysaccharide biomaterials in cartilage tissue engineering: a review. Biomaterials. 2000. 21(24): 2589-98.
    [96] Kosaka T, Kaneko Y, Nakada Y, Matsuura M, Tanaka S. Effect of chitosan implantation on activation of canine macrophages and polymorphonuclear cells after surgical stress. J Vet Med Sci. 1996. 58(10): 963-7.
    [97] Okamoto Y, Shibazaki K, Minami S, Matsuhashi A, Tanioka S, Shigemasa Y. Evaluation of chitin and chitosan on open would healing in dogs. J Vet Med Sci. 1995. 57(5): 851-4.
    [98] Park IK, Yang J, Jeong HJ, et al. Galactosylated chitosan as a synthetic extracellular matrix for hepatocytes attachment. Biomaterials. 2003. 24(13): 2331-7.
    [99] Kim TH, Nah JW, Cho MH, Park TG, Cho CS. Receptor-mediated gene delivery into antigen presenting cells using mannosylated chitosan/DNA nanoparticles. J Nanosci Nanotechnol. 2006. 6(9-10): 2796-803.
    [100] Gamian A, Chomik M, Laferriere CA, Roy R. Inhibition of influenza A virus hemagglutinin and induction of interferon by synthetic sialylated glycoconjugates. Can J Microbiol. 1991. 37(3): 233-7.
    [101] Ding Z, Chen J, Gao S, Chang J, Zhang J, Kang ET. Immobilization of chitosan onto poly-L-lactic acid film surface by plasma graft polymerization to control the morphology of fibroblast and liver cells. Biomaterials. 2004. 25(6): 1059-67.
    [103] Ikada Y. Challenges in tissue engineering. J R Soc Interface. 2006. 3(10): 589-601.
    [104] Adekogbe I, Ghanem A. Fabrication and characterization of DTBP-crosslinked chitosan scaffolds for skin tissue engineering. Biomaterials. 2005. 26(35): 7241-50.
    [105] Sarasam A, Madihally SV. Characterization of chitosan-polycaprolactone blends for tissue engineering applications. Biomaterials. 2005. 26(27): 5500-8.
    [106] Chung TW, Yang J, Akaike T, et al. Preparation of alginate/galactosylated chitosan scaffold for hepatocyte attachment. Biomaterials. 2002. 23(14): 2827-34.
    [107] Zhu H, Ji J, Lin R, Gao C, Feng L, Shen J. Surface engineering of poly(D,L-lactic acid) by entrapment of chitosan-based derivatives for the promotion of chondrogenesis. J Biomed Mater Res. 2002. 62(4): 532-9.
    [108] Li L, Hsieh YL. Chitosan bicomponent nanofibers and nanoporous fibers. Carbohydr Res. 2006. 341(3): 374-81.
    [109] Min BM LSW, Lim JN YY, Lee TS KPH, et a. Chitin and chitosan nanofibers: electrospinning of chitin and deacetylation of chitin nanofibers. Polymer. 2004. 45: 7137–42.
    [110] Gutowska A, Jeong B, Jasionowski M. Injectable gels for tissue engineering. Anat Rec. 2001. 263(4): 342-9.
    [111] Di MA, Sittinger M, Risbud MV. Chitosan: a versatile biopolymer for orthopaedic tissue-engineering. Biomaterials. 2005. 26(30): 5983-90.
    [112] Kim IY, Seo SJ, Moon HS, et al. Chitosan and its derivatives for tissue engineering applications. Biotechnol Adv. 2008. 26(1): 1-21.
    [113] Jiang T, Kumbar SG, Nair LS, Laurencin CT. Biologically active chitosan systems for tissue engineering and regenerative medicine. Curr Top Med Chem. 2008. 8(4): 354-64.
    [114] Veit G, Kobbe B, Keene DR, Paulsson M, Koch M, Wagener R. Collagen XXVIII, a novel von Willebrand factor A domain-containing protein with many imperfections in the collagenous domain. J Biol Chem. 2006. 281(6): 3494-504.
    [115] Canty EG, Kadler KE. Procollagen trafficking, processing and fibrillogenesis. J Cell Sci. 2005. 118(Pt 7): 1341-53.
    [116] Smith K, Rennie MJ. New approaches and recent results concerning human-tissue collagen synthesis. Curr Opin Clin Nutr Metab Care. 2007. 10(5): 582-90.
    [117] Ruberti JW, Zieske JD. Prelude to corneal tissue engineering - gaining control of collagen organization. Prog Retin Eye Res. 2008. 27(5): 549-77.
    [119] Naumann A, Dennis JE, Awadallah A, et al. Immunochemical and mechanicalcharacterization of cartilage subtypes in rabbit. J Histochem Cytochem. 2002. 50(8): 1049-58.
    [120] Meek KM, Leonard DW, Connon CJ, Dennis S, Khan S. Transparency, swelling and scarring in the corneal stroma. Eye. 2003. 17(8): 927-36.
    [121] Mizuno S, Glowacki J. Three-dimensional composite of demineralized bone powder and collagen for in vitro analysis of chondroinduction of human dermal fibroblasts. Biomaterials. 1996. 17(18): 1819-25.
    [122] Yannas IV, Burke JF, Gordon PL, Huang C, Rubenstein RH. Design of an artificial skin. II. Control of chemical composition. J Biomed Mater Res. 1980. 14(2): 107-32.
    [123] van WPB, van LMJ, Olde DLH, Dijkstra PJ, Feijen J, Nieuwenhuis P. Biocompatibility and tissue regenerating capacity of crosslinked dermal sheep collagen. J Biomed Mater Res. 1994. 28(3): 353-63.
    [124] Allemann F, Mizuno S, Eid K, Yates KE, Zaleske D, Glowacki J. Effects of hyaluronan on engineered articular cartilage extracellular matrix gene expression in 3-dimensional collagen scaffolds. J Biomed Mater Res. 2001. 55(1): 13-9.
    [125] Yates KE, Allemann F, Glowacki J. Phenotypic analysis of bovine chondrocytes cultured in 3D collagen sponges: effect of serum substitutes. Cell Tissue Bank. 2005. 6(1): 45-54.
    [126] Zou C, Weng W, Cheng K, et al. Porous beta-tricalcium phosphate/collagen composites prepared in an alkaline condition. J Biomed Mater Res A. 2008. 87(1): 38-44.
    [127] Liao SS, Cui FZ, Zhang W, Feng QL. Hierarchically biomimetic bone scaffold materials: nano-HA/collagen/PLA composite. J Biomed Mater Res B Appl Biomater. 2004. 69(2): 158-65.
    [128] Cen L, Liu W, Cui L, Zhang W, Cao Y. Collagen tissue engineering: development of novel biomaterials and applications. Pediatr Res. 2008. 63(5): 492-6.
    [129] Underhill CB. Interaction of hyaluronate with the surface of simian virus 40-transformed 3T3 cells: aggregation and binding studies. J Cell Sci. 1982. 56: 177-89.
    [130] Rose FR, Oreffo RO. Bone tissue engineering: hope vs hype. Biochem Biophys Res Commun. 2002. 292(1): 1-7.
    [131] Grigolo B, Lisignoli G, Piacentini A, et al. Evidence for redifferentiation of human chondrocytes grown on a hyaluronan-based biomaterial (HYAff 11): molecular, immunohistochemical and ultrastructural analysis. Biomaterials. 2002. 23(4):1187-95.
    [132] Karoll MP, Mintzer RA, Lin PJ, et al. Air gap technique for digital subtraction angiography of the extracranial carotid arteries. Invest Radiol. 1985. 20(7): 742-5.
    [133] Yoo HS, Lee EA, Yoon JJ, Park TG. Hyaluronic acid modified biodegradable scaffolds for cartilage tissue engineering. Biomaterials. 2005. 26(14): 1925-33.
    [134] Glass JR, Dickerson KT, Stecker K, Polarek JW. Characterization of a hyaluronic acid-Arg-Gly-Asp peptide cell attachment matrix. Biomaterials. 1996. 17(11): 1101-8.
    [135] Paige KT, Cima LG, Yaremchuk MJ, Schloo BL, Vacanti JP, Vacanti CA. De novo cartilage generation using calcium alginate-chondrocyte constructs. Plast Reconstr Surg. 1996. 97(1): 168-78; discussion 179-80.
    [136] Fragonas E, Valente M, Pozzi-Mucelli M, et al. Articular cartilage repair in rabbits by using suspensions of allogenic chondrocytes in alginate. Biomaterials. 2000. 21(8): 795-801.
    [137] Day RM. Bioactive glass stimulates the secretion of angiogenic growth factors and angiogenesis in vitro. Tissue Eng. 2005. 11(5-6): 768-77.
    [138] Stock UA, Vacanti JP. Tissue engineering: current state and prospects. Annu Rev Med. 2001. 52: 443-51.
    [139] Srivastava A, Jennings LJ, Hanumadass M, et al. Xenogeneic acellular dermal matrix as a dermal substitute in rats. J Burn Care Rehabil. 1999. 20(5): 382-90.
    [140] Wainwright DJ. Use of an acellular allograft dermal matrix (AlloDerm) in the management of full-thickness burns. Burns. 1995. 21(4): 243-8.
    [141] Lehner G, Fischlein T, Baretton G, Murphy JG, Reichart B. Endothelialized biological heart valve prostheses in the non-human primate model. Eur J Cardiothorac Surg. 1997. 11(3): 498-504.
    [142] Parnigotto PP, Gamba PG, Conconi MT, Midrio P. Experimental defect in rabbit urethra repaired with acellular aortic matrix. Urol Res. 2000. 28(1): 46-51.
    [143] Sievert KD, Bakircioglu ME, Nunes L, Tu R, Dahiya R, Tanagho EA. Homologous acellular matrix graft for urethral reconstruction in the rabbit: histological and functional evaluation. J Urol. 2000. 163(6): 1958-65.
    [144] van SD, Callens A, Geers L, Jacobs R. The clinical use of deproteinized bovine bone mineral on bone regeneration in conjunction with immediate implant installation. Clin Oral Implants Res. 2000. 11(3): 210-6.
    [145] Madden VJ, Henson MM. Rapid decalcification of temporal bones with preservationof ultrastructure. Hear Res. 1997. 111(1-2): 76-84.
    [146] Pan HT, Zheng QX, Guo XD. [Synthetic RGD-containing peptide K16GRGDSPC affected the adhesion, proliferation and osteogenic differentiation of rabbit bone marrow stromal cells on PLGA-[ASP-PEG] scaffold materials]. Zhonghua Yi Xue Za Zhi. 2006. 86(39): 2766-70.
    [147] Eid K, Chen E, Griffith L, Glowacki J. Effect of RGD coating on osteocompatibility of PLGA-polymer disks in a rat tibial wound. J Biomed Mater Res. 2001. 57(2): 224-31.
    [148] Yun YH, Goetz DJ, Yellen P, Chen W. Hyaluronan microspheres for sustained gene delivery and site-specific targeting. Biomaterials. 2004. 25(1): 147-57.
    [149] Bosetti M, Cannas M. The effect of bioactive glasses on bone marrow stromal cells differentiation. Biomaterials. 2005. 26(18): 3873-9.
    [150] Ren T, Ren J, Jia X, Pan K. The bone formation in vitro and mandibular defect repair using PLGA porous scaffolds. J Biomed Mater Res A. 2005. 74(4): 562-9.
    [151] Hench LL, Polak JM. Third-generation biomedical materials. Science. 2002. 295(5557): 1014-7.
    [152] Geng X, Kwon OH, Jang J. Electrospinning of chitosan dissolved in concentrated acetic acid solution. Biomaterials. 2005. 26(27): 5427-32.
    [153] Khademhosseini A, Langer R, Borenstein J, Vacanti JP. Microscale technologies for tissue engineering and biology. Proc Natl Acad Sci U S A. 2006. 103(8): 2480-7.
    [154]肖雨亭,陆天虹.温敏性微胶研究进展.化工科技市场. 2005. 1: 30-36.
    [155]卢君.棉纤维预辐射接枝NIPAAM的溶剂效应.辐射研究与辐射工艺学报. 2000. 18((2).): 124-128.
    [156]端康德,彭谛,高伟.智能性水凝胶.高分子通报. 1994. (2): 103-111.
    [157]翟茂林,刘建琴. NIPAAM在棉纤维织物上预辐射接枝共聚机理研究.辐射研究与辐射工艺学报. 1999. 17(3): 140-144.
    [158]刘宁,李军. PVA-g-NIPAAM凝胶的辐射制备与缓释研究.北京大学学报. 2000. 36(2): 172-177.
    [159] Chauhan G S LH, Mahajan S.Synthesis casropahcesbh. J Appl Polym Sci. 91,2004. 479-488.
    [160] Liu H Q HYL. Surface methacrylation and graft copolymerization of ultrafine cellulose fibers. 2003. 41: 953-964.
    [161] Xie J B HYL. Thermosensitive poly(N-isopropylacrylamide ) hydrogels bonded on cellulose supports. J Appl Polym Sci. 2003. 89(999-1006).
    [162]杨彪.表面光接枝制备新型功能性分离膜的研究. 2002.北京.北京化工大学.
    [163] Chen K S TJC, Chou C W ea. Effects of additives on the photo-induced grafting polymerization of N-isopropylacrylamide gel onto PET and PP nonwoven fabric surface. Mater Sci Eng. 2002. 20: 203-208.
    [164] Chen K S KYA, Lee C H ea. Immobilization of chitosan gel with cross-linking reagent on PNIPAAM gel/PP nonwoven composites surface. Mater Sci Eng. 2005. 25: 472-478.
    [165] Kubota H KT, Ichikawa T ea. Synthesis and characteristics of cellulose peroxides of the peracid type having a temperature-responsive function. Polym Degrad Stab. 1998. 60: 425-430.
    [166]齐旺顺,黄健. N-异丙基丙烯酰胺接枝聚乙烯微孔膜的接枝形态和动电现象.膜科学与技术. 2003. 23(1): 1-6.
    [167]黄健,陈秀珍.高分子微滤膜等离子体处理接枝N-异丙基丙烯酰胺.高分子材料科学与工程. 2003. 19(4): 48-51.
    [168]李雄伟,严昌虹,廖奇.接枝聚合物PAA-g-PINPAm微球的制备及其温控释药.高分子学报. 1994. (2): 156-161.
    [169]周平,邓延倬.以溶解性可调节高分子为载体的酶免疫分析.生物化学与生物物理进展. 1998. 25: 79-81.
    [170]朱庆枝,杨黄浩,李东辉,许金钩,张毅,张长弓.热敏相分离荧光免疫分析乙肝表面抗原的新方法.高等学校化学学报. 1999. (04): 51-55.
    [171]金曼蓉.吴长发.张桂英等.聚N一烷基丙烯酰胺类凝肢及其温敏特性.高分子学报. 1995. (3): 321-325.
    [172]王锦堂,忡慧.朱虹军.温敏性水凝腔对蛋白质和酶浓缩分离性能.南京化工大学学报. 1998. (2): 75-77.
    [173] Okano T, Yamada N, Sakai H, Sakurai Y. A novel recovery system for cultured cells using plasma-treated polystyrene dishes grafted with poly(N-isopropylacrylamide). J Biomed Mater Res. 1993. 27(10): 1243-51.
    [174] Okano T, Yamada N, Okuhara M, Sakai H, Sakurai Y. Mechanism of cell detachment from temperature-modulated, hydrophilic-hydrophobic polymer surfaces. Biomaterials. 1995. 16(4): 297-303.
    [175] von RHA, Kim SW, Kikuchi A, Okuhara M, Sakurai Y, Okano T. Novel thermally reversible hydrogel as detachable cell culture substrate. J Biomed Mater Res. 1998. 40(4): 631-9.
    [176] Yamato M, Konno C, Kushida A, et al. Release of adsorbed fibronectin fromtemperature-responsive culture surfaces requires cellular activity. Biomaterials. 2000. 21(10): 981-6.
    [177] Kushida A, Yamato M, Konno C, Kikuchi A, Sakurai Y, Okano T. Temperature-responsive culture dishes allow nonenzymatic harvest of differentiated Madin-Darby canine kidney (MDCK) cell sheets. J Biomed Mater Res. 2000. 51(2): 216-23.
    [178] Nandkumar MA, Yamato M, Kushida A, et al. Two-dimensional cell sheet manipulation of heterotypically co-cultured lung cells utilizing temperature-responsive culture dishes results in long-term maintenance of differentiated epithelial cell functions. Biomaterials. 2002. 23(4): 1121-30.
    [179] Yamato M, Utsumi M, Kushida A, Konno C, Kikuchi A, Okano T. Thermo-responsive culture dishes allow the intact harvest of multilayered keratinocyte sheets without dispase by reducing temperature. Tissue Eng. 2001. 7(4): 473-80.
    [180] Shimizu T, Yamato M, Kikuchi A, Okano T. Cell sheet engineering for myocardial tissue reconstruction. Biomaterials. 2003. 24(13): 2309-16.
    [181] Yang J, Yamato M, Kohno C, et al. Cell sheet engineering: recreating tissues without biodegradable scaffolds. Biomaterials. 2005. 26(33): 6415-22.
    [182] Yang J, Yamato M, Shimizu T, et al. Reconstruction of functional tissues with cell sheet engineering. Biomaterials. 2007. 28(34): 5033-43.
    [183] Harimoto M, Yamato M, Hirose M, et al. Novel approach for achieving double-layered cell sheets co-culture: overlaying endothelial cell sheets onto monolayer hepatocytes utilizing temperature-responsive culture dishes. J Biomed Mater Res. 2002. 62(3): 464-70.
    [184] Shimizu T, Sekine H, Yang J, et al. Polysurgery of cell sheet grafts overcomes diffusion limits to produce thick, vascularized myocardial tissues. FASEB J. 2006. 20(6): 708-10.
    [185] Zhang H, Iwama M, Akaike T, et al. Human amniotic cell sheet harvest using a novel temperature-responsive culture surface coated with protein-based polymer. Tissue Eng. 2006. 12(2): 391-401.
    [186] Shimizu T, Sekine H, Isoi Y, Yamato M, Kikuchi A, Okano T. Long-term survival and growth of pulsatile myocardial tissue grafts engineered by the layering of cardiomyocyte sheets. Tissue Eng. 2006. 12(3): 499-507.
    [187] Nishida K, Yamato M, Hayashida Y, et al. Functional bioengineered corneal epithelialsheet grafts from corneal stem cells expanded ex vivo on a temperature-responsive cell culture surface. Transplantation. 2004. 77(3): 379-85.
    [188] Mitani G, Sato M, Lee JI, et al. The properties of bioengineered chondrocyte sheets for cartilage regeneration. BMC Biotechnol. 2009. 9: 17.
    [189] Takezawa T, Mori Y, Yoshizato K. Cell culture on a thermo-responsive polymer surface. Biotechnology (N Y). 1990. 8(9): 854-6.
    [190] Canavan HE, Cheng X, Graham DJ, Ratner BD, Castner DG. Cell sheet detachment affects the extracellular matrix: a surface science study comparing thermal liftoff, enzymatic, and mechanical methods. J Biomed Mater Res A. 2005. 75(1): 1-13.
    [191] Wu KH, Mo XM, Liu YL. Cell sheet engineering for the injured heart. Med Hypotheses. 2008. 71(5): 700-2.
    [192]方开泰,马长兴.正交与均匀试验设计. 2001.第一版.北京.科学出版社. 35-77.
    [193] Yoshiyuki G T, Aoki T. Dynamic Contact Angle Measurement of Temperature-Responsive Surface Properties for Poly(N-isopropylacrylamide) Grafted Surfaces. Macromolecules. 1994. 27(21): 6163-6166.
    [194]郭静.高分子材料改性. 2008.北京.北京纺织出版社. 210-216.
    [195] Yoshiyuki G. Takei TA, Kohei Sanui NO, Yasuhisa Sakurai aTO. Dynamic Contact Angle Measurement of Temperature-Responsive Surface Properties for Poly(N-isopropylacrylamide) Grafted Surfaces. Macromolecules. 1994. 27(21): 6163-6166.
    [196] Akiyama Y, Kikuchi A, Yamato M, Okano T. Ultrathin poly(N-isopropylacrylamide) grafted layer on polystyrene surfaces for cell adhesion/detachment control. Langmuir. 2004. 20(13): 5506-11.
    [197]柯以侃,董慧茹.分析化学手册(第三分册)光谱分析. 1998. 1091.北京.化学工业出版社. 928-1091.
    [198]邓芹英,刘岚,邓慧敏.波谱分析教程.第一版.北京.科学出版社. 29-68.
    [199] Xiaoling Wang MGM. Grafting of Poly(N-isopropylacrylamide) Onto Nylon and Polystyrene Surfaces by Atmospheric Plasma Treatment Followed with Free Radical Graft Copolymerization. Journal of Applied Polymer Science. 2007. 104: 3614–3621.
    [200]曹立礼.材料表面科学. 2007.北京.清华大学出版社. 222-241.
    [201]李加深,盛京等. XPS研究低温等离子体聚苯乙烯表面改性.高分子学报. 2001(2): 182-185.
    [202]张亮,王建祺,张新生.射频等离子体放电的宏观参数与PET表面改性的关系.真空科学与技术学报. 1998. (5): 599-601.
    [203] Xiaoling Wang MGM. Grafting of Poly(N-isopropylacrylamide) Onto Nylon and Polystyrene Surfaces by Atmospheric Plasma Treatment Followed with Free Radical Graft Copolymerization. Journal of Applied Polymer Science. 2007. 101(6): 3614-3621.
    [204] Pan YV, Wesley RA, Luginbuhl R, Denton DD, Ratner BD. Plasma polymerized N-isopropylacrylamide: synthesis and characterization of a smart thermally responsive coating. Biomacromolecules. 2001. 2(1): 32-6.
    [205] Kwon OH, Kikuchi A, Yamato M, Sakurai Y, Okano T. Rapid cell sheet detachment from poly(N-isopropylacrylamide)-grafted porous cell culture membranes. J Biomed Mater Res. 2000. 50(1): 82-9.
    [206]医疗器械生物学评价标准实施指南. 2000.北京.中国标准出版社.
    [207] GB/T 16886.5 -2003/ISO 10993-5.1999医疗器械生物学评价.第5部分:体外细胞毒性试验,2003.
    [208] Gutowska A, Bae YH, Jacobs H, et al. Heparin release from thermosensitive polymer coatings: in vivo studies. J Biomed Mater Res. 1995. 29(7): 811-21.
    [209] Shimizu T, Yamato M, Akutsu T, et al. Electrically communicating three-dimensional cardiac tissue mimic fabricated by layered cultured cardiomyocyte sheets. J Biomed Mater Res. 2002. 60(1): 110-7.
    [210] Arany S, Nakata A, Kameda T, Koyota S, Ueno Y, Sugiyama T. Phenotype properties of a novel spontaneously immortalized odontoblast-lineage cell line. Biochem Biophys Res Commun. 2006. 342(3): 718-24.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700