用户名: 密码: 验证码:
玉米抗旱机制及鉴定指标筛选的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
通过田间试验与盆栽试验相结合,研究不同生育时期水分胁迫对玉米生长发育及生理生化特性的影响,比较品种间抗旱性的差异,探讨生理生化指标与玉米抗旱性的关系,进而明确玉米抗旱的机制,筛选出玉米抗旱性鉴定的生理指标,为玉米抗旱育种、高效生产提供理论依据和技术指导。得到的主要结论如下:
     1.供试品种的实际抗旱性(以耐旱指数表示)由强到弱依次是:京单28>中单808>郑单958>京科308>辽单565>京科25>吉单261>农大108>四单19>丹玉39>沈玉21>京单508>DH3719。根据系统聚类和隶属函数分析结果将上述品种划分为不抗品种—DH3719、京单508和沈玉21;低抗品种—丹玉39、四单19和吉单261;中抗品种—农大108、京科308、京科25和辽单565;高抗品种—京单28、郑单958和中单808。
     2.水分胁迫致使玉米减产程度及原因,因胁迫时期而异。不同生育时期水分胁迫的研究结果表明,任何生育时期水分胁迫均会导致玉米减产,其中抽雄吐丝期水分胁迫减产最重,其次是拔节期,苗期相对较轻。抽雄吐丝期是玉米的水分临界期,干旱可导致散粉至吐丝期间隔(ASI)加大,致使花期不遇,穗粒数大幅度下降,从而严重影响玉米的产量。拔节期水分胁迫抑制玉米叶片、株高的生长以及干物质的积累,对其营养生长影响较大。
     3.将各生理指标与耐旱指数进行灰色关联度分析,关联度大小依次为:PSⅡ光化学效率(F_V/Fm)>SOD>叶绿素a/b>可变荧光(Fv)>POD活性>净光合速率(Pn)>相对含水量>最大荧光(Fm)>可溶性蛋白含量>脯氨酸含量>可溶性糖含量>相对电导率>丙二醛含量>固定荧光(F_O)。并且上述生理生化指标与品种抗旱性间均表现显著的相关关系,均可作为玉米抗旱性鉴定指标的良好参数、可用于玉米品种抗旱性的评定。
     4.在水分胁迫过程中,可溶性糖含量变化表现为先增后降的趋势,可溶性糖含量占对照百分率与品种抗旱性呈极显著负相关(r=-0.6952~(**));脯氨酸含量和可溶性蛋白含量持续增加,与品种抗旱性呈极显著正相关(r=0.7382~(**);r=0.6354~(**))。抗旱性强的玉米品种渗透调节能力强于抗旱性弱的品种。
     5.随着水分胁迫时间的延长,SOD和POD活性呈增加趋势,与抗旱性呈极显著正相关(r=0.9365~(**);r=0.8803~(**))。同时,MDA含量随着水分胁迫时间的延长而逐渐增加,且MDA含量占对照百分率与品种抗旱性呈极显著负相关(r=-0.6909~(**)),与抗旱性弱的玉米相比,抗旱性强的玉米叶片MDA含量积累少,SOD和POD活性高,表明抗旱性强的玉米品种酶促保护系统清除自由基能力强,细胞膜受到的破坏较轻。
     6.水分胁迫下,叶绿素含量及叶绿素a/b比值随胁迫时间的延长逐渐降低,与品种的抗旱性则呈极显著的正相关(r=0.8869~(**)),水分胁迫不仅使叶绿素的生物合成能力减弱,同时由于植物体内活性氧大量积累,也导致叶绿素分解加快。水分胁迫下,叶片可通过降低叶绿素含量避免吸收过多光能对光合机构造成破坏。
     7.在水分胁迫过程中,硝酸还原酶活性的变化表现为先增后降的趋势。前期水分胁迫能诱导硝酸还原酶活性的提高,增强其氮代谢的能力;胁迫中后期,硝酸还原酶活性持续下降,其氮代谢能力受到抑制。水分胁迫下净光合速率较对照均有不同程度的下降,净光合速率占对照百分率与品种的抗旱性呈极显著正相关(r=0.7197~(**))。水分胁迫使玉米的碳、氮代谢减弱,抑制其生长发育,抗旱性强的品种其代谢能力高于抗旱性弱的品种。
     8.水分状况与玉米叶片光合作用关系密切,水分胁迫下玉米叶片的最大净光合速率(Pmax)、光补偿点(LCP)、光饱和点(LSP)、表观量子效率(AQY)、CO_2补偿点(CCP)、CO_2饱和点(CSP)、CO_2表羧化效率(β)和暗呼吸速率(R_d)这些参数均降低,玉米光合能力下降。正常供水处理下玉米叶片的净光合速率日变化为双峰曲线,有明显的“午睡”现象。水分胁迫下,光合速率较低,“双峰”现象消失,光合作用基本停止,水分胁迫造成光合作用受阻。
     9.水分胁迫下,基础荧光(Fo)显著增加,且Fo占对照百分率与品种抗旱性则呈极显著的负相关(r=-0.8843~(**));最大荧光(Fm)、可变荧光(Fv)和PSⅡ光化学效率(Fv/Fm)降低,且与品种抗旱性则呈极显著正相关(r=0.7944~(**);r=0.8987~(**);r=0.8987~(**))。Fo增加和Fv/Fm下降,表明PSⅡ反应中心受到不易逆转的破坏,PSⅡ原初光化学活性受到抑制,PSⅡ活性中心受到损伤,抗旱性较强的品种光化学活性仍较强,损伤程度较小。
     10.水分胁迫下,光化学淬灭(qP)、实际光化学效率(ΦPSⅡ)和表观电子传递速率(ETR)下降,非光化学淬灭(qN)增大。qP下降表明PSⅡ反应中心开放部分的比例减少,PSⅡ潜在活性受到抑制,qN增大表明PSⅡ的潜在热耗散能力增强,过多的光能多是以非光化学淬灭等其它形式耗散掉,有效地避免或减轻因PSⅡ吸收过多光能对光合机构的破坏。水分胁迫下ETR和ΦPSⅡ低于对照,可以认为水分胁迫致使PSⅡ光化学量子产量下降,用于光化学反应的比例减少,光合电子传递速率降低。
Study the impact of different periods of drought on maize growth and development, physiological and biochemical characteristics by the combination of field experiments and pot environment;Study the relationship between various physiological indicators;Compares the resistant differences exist amoung varieties;Explore the relationship between physiological and biochemical indicators and drought resistance of maize,and make mechanisms for drought resistance clear;Determine the indicators of resistance evaluation of crop drought; Set up a optimize index system with scientific and accurate evaluation of maize drought resistance to provide theoretical basis and technical guidance for the efficient production in maize drought Breeding.The main conclusions are as follows:
     1.The actual drought resistance of varieties(express to drought index)followed from strong to weak are:Jingdan 28>Zhongdan 808>Zhengdan 958>Jingke 308>Liaodan 565>Jingke25>Jidan 261>Nongda 108>Sidan 19>Danyu 39>Shen 21>Jingdan 508>DH3719.Uses the method of ciuster analysis and membership function to identify and evaluate frought resistance of varieties.By drought level from weak to strong they are divided into non-resistant varieties—DH3719、Jingdan 508 and Shenyu 21;Resistance varieties—Danyu39、Sidan 19 and Jidan 261;Medium resistant varieties Nongdal08、Jingke308、Jingke25、and Liaodan565:Highly resistant varieties—Jingdan28、Zhengdan958 and Zhongdan808.
     2.The degree and reasons of maize yields decreasing resulted from water stress vary in different stages.The results we study under water stress at different stages show that any growth stages under water stress may cause maize yields decreasing,and the yields decrease severely at tasselling silking stage,followed by the jointing stage,seedling stage seems relatively lighter.Tasselling silking is the critical period for maize moisture,drought can cause the interval which is from loose powder to silking(ASI)prolonging,result in infertility flowering,kernel number decreasing significantly,thereby seriously affect maize production. Water stress inhibits maize leaves,plant height,root growth and dry matter accumulation,and water stress at jointing stage is the greatest impact to them.
     3.Use the method of gray relational grade to analysis physiological indicators and drought index.The correlation sizeorder is PSⅡphotochemical efficiency(Fv/Fm)>the SOD activity>ch1a/b>variable fluorescence(Fv)>POD activity>net photosynthetic rate(Pn)>relative water content>maximal fluorescence(Fm)>Soluble protein content>Proline content>Soluble sugar content>Relative conductivity>Malondialdehyde content>fixed fluorescence(F_O).The physiological and biochemical indexes and drought resistance of varieties we mentioned above shows a significant correlation,they can be used as good parameters for maize drought resistance identifying indicators,it also can be used for evaluating the drought resistance of corn varieties.
     4.The accumulation of osmotic adjustment defense drought is one of the physiological mechanisms for maize drought.In the course of water stress,the changes of soluble protein content performance by the trend of firstly increasing and then decreasing and increasing finally,the comparison percentage of soluble sugar content and drought resistance are highly significant negative correlation(r=0.6952~(**)).Proline content and soluble protein content are increasing,they are in highly significant positive correlation(r=0.7382~(**);r=0.6354~(**)) to the varieties' drought resistance.Maize varieties of strong drought resistance have stronger osmotic adjustment ability than those of weak drought resistance.
     5.With the time of water stress prolonging,SOD activity and POD activity have increasing trend,they are in highly significantly positive correlation(r=0.9365~(**);r=0.8803 ~(**))to the drought resistance of varieties.At the same time,MDA content is gradually increasing with the time prolonging of water stress and the comparison percentage of MDA content and drought resistance are negatively correlated(r=0.6909~(**)),comparing to weak drought-resistance maize,the leaves of strong drought-resistance maize accumulate less MDA,have higher SOD activity and POD activity,it shows that the strong drought-resistance varieties of maize have enzymatic scavenging system which has a strong ability of scavenging radical,and less cell membrane damage.
     6.Under water stress,chlorophyll content and chlorophyll a/b ratio decrease gradually with the stress time prolonging,water stress not only makes the process of chlorophyll biosynthesis weakened,but also speeds up the chlorophyll decomposition because of the reactive oxygen in plants greatly accumulates.In the process of chlorophyll decomposition, chlorophyll a is probably less stable than chlorophyll b,which results in chlorophyll a/b ratio decreasing,under water stress,chlorophyll a/b ratio and varieties' drought resistance performance highly significant positive correlation(r=0.8869~(**)).Under water stress, chlorophyll attenuaties so as to avoid the photosynthetic apparatus damage because of excessive absorption of solar energy.
     7.With the time of water stress,the nitrate reductase activity changes of corn varieties performance a trend of firstly increasing,then dropping,it shows that in the whole stress process,especislly in the early stage of water stress,it can rapidly induct nitrate reductase activity improving,enhance its nitrogen metabolic capacity,in the mid and late stress,nitrate reductase activity continues to decline,and its ability of nitrogen metabolism is inhibited. Water stress makes the leaf net photosynthetic rate of various maize varieties have varying degrees of decline than those for check.The comparison percentage of net photosynthetic rate and the drought resistance of varieties are highly significant positive correlation(r=0.7197 ~(**)).Water stress makes the carbon and nitrogen metabolism of corn weakening,and inhibits maize growth and development,varieties of strong drought resistance have higher metabolic capacity than the weak ones.
     8.Water status and photosynthesis in leaves of maize are closely related,with the light response curve of net photosynthetic rate and the CO_2 response fitting we can calculate: Under water stress,the maximum net photosynthetic rate(Pmax),light compensation point (LCP),light saturation point(LSP),the apparent quantum yield(AQY),CO_2 compensation point(CCP),CO_2 saturation point(CSP),apparent CO_2 carboxylation efficiency(β)and dark respiration rate(R_d)of maize leaves are significantly decreas.Maize photosynthetic capacity decreases under water stress.
     9.Under water stress,basic fluorescence(F_O)increas significantly,the comparison percentage of F_O and drought resistance of varieties shows significantly negative correlation(r =-0.8843~(**));Maximal fluorescence(Fm),variable fluorescence(Fv)and PSⅡphotochemical efficiency(Fv/Fm)decrease,and they are significantly positive correlation(r =0.7944~(**);r=0.8987~(**))to drought resistance.F_O increases and Fv/Fm declines,it indicates the damage which is not easy to reverse produces a phenomenon of photoinhibition in PSⅡreaction center,the primary photochemical activity of PSⅡis inhibited,the active center of PSⅡis injuried.Varieties of strong drought resistance still have strong photochemical activity,but the degree of their injury is lower.
     10.Under water stress,photochemical quenching(qP),the actual photochemical efficiency((?)PSⅡ)and apparent electron transport rate(ETR)decrease,Non-photochemical quenching(qN)increases.qP decline indicates that the proportion of the open parts in PSⅡreaction center reduces.Potential activity of PSⅡis inhibited.qN increase shows the potential ability of heat dissipation in PSⅡ,excessive light energy quenches by non-photochemical and many other forms of dissipation,it effectively avoids or reduces the damage to the photosynthetic apparatus which is caused by excessive light absorption of PSⅡ.Under water stress,ETR and(?)PSⅡare lower than the check,you can consider water stress results in the yield of PSⅡphotochemical quantum declining.The proportion used for photochemical reaction declines,and the photosynthetic electron transport rate decreases.
引文
1.白莉萍,隋方功,孙朝晖等.2004.土壤水分胁迫对玉米形态发育及产量的影响.生态学报,(7):1557-1559.
    2.鲍思伟,谈锋,廖志华.2001.蚕豆(Vicia faba L.)对不同水分胁迫的光合适应性研究.西南师范大学学报(自然科学版),26(4):448-452.
    3.鲍思伟.2001.水分胁迫对蚕豆(Viciafaba L)光合作用及产量的影响.西南师范大学学报(自然科学版),27(4):446-449.
    4.毕建杰,刘建栋,叶宝兴等.2008.干旱胁迫对夏玉米叶片光合及叶绿素荧光的影响.气象与环境科学,31(1)
    5.蔡昆争,吴学祝,骆世明.2008.不同生育期水分胁迫对水稻根叶渗透调节物质变化的影响.植物生态学报,32(2):491-500.
    6.曹慧,兰彦平,王孝威,等.2001.果树水分胁迫研究进展.果树学报,18(2):110-114.
    7.曹慧,王孝威,曹琴,等.2001.水分胁迫下新红星苹果超氧化物自由基积累和膜脂过氧化作用.果树学报,18(4):196-199.
    8.曹慧,许雪峰,韩振海,等.2004.水分胁迫下抗旱性不同的两种苹果属植物光合特性的变化.园艺学报,31(3):285-290.
    9.陈建明,俞晓平,程家安.2006.叶绿素荧光动力学及其在植物抗逆生理研究中的应用.浙江农业学报,18(1):51-55.
    10.陈军,戴俊英.1996.干旱对不同耐旱性玉米品种光合作用及产量的影响.作物学报,(6):757-762.
    11.陈荣敏,杨学举,梁风山,等.2002.利用隶属函数法综合评价冬小麦的抗旱性.河北农业大学学报,25(2):7-10.
    12.陈少裕.1989.膜脂过氧化与植物逆境的伤害.植物学通报,6(4):211-217.
    13.程智慧,孟焕文,Stephen A Rolfe,等.2002.水分胁迫对番茄叶片气孔传导及光合色素的影响.西北农林科技大学学报(自然科学版),30(6):93-96.
    14.冯志立,冯玉龙,曹坤芳.2002.光强对砂仁叶片光合作用光抑制及热耗散的影响.植物生态学报,26(1):77-82.
    15.高亚军,李生秀,田霄鸿等.2006.不同供肥条件下水分分配对旱地玉米产量的影响.作物学报,(3):415-422.
    16.葛体达,隋方功,白莉萍等.2005.不同土壤水分对玉米光合特性和产量的影响膜脂过氧化作用的影响.上海交通大学学报,23(2):143-148.
    17.葛体达,隋方功,白莉萍.2005.水分胁迫下夏玉米根叶保护酶活性变化及其对膜脂过氧化作用的影响.中国农业科学,38(5):922-928.
    18.葛体达,隋方功,白莉萍等.2005.不同土壤水分对玉米光合特性和产量的影响.上海交通大学学报(农业科学版),(2):143-147.
    19.关义新,戴俊英,等.1996.土壤干旱下玉米叶片游离脯胺酸积累及其与抗旱性的关系.玉米科学,4(1):43-45.
    20.关义新,戴俊英,林艳,等.1995.水分胁迫下植物叶片光合的气孔和非气孔限制.植物生理学通讯,31(4):293-297.
    21.关义新,戴俊英等.1997.玉米花期干旱及复水对植株补偿生长及产量的影响.作物学报,(6):741-747.
    22.郭春芳,孙云.2007.叶绿素荧光动力学在植物抗性生理研究中的应用.福建教育学院学报,(7):119-123.
    23.郭连旺,沈允钢.1996.高等植物光合机构避免强光破坏的保护机制.植物生理学通讯,32(1):1-8.
    24.韩瑞宏,卢欣石,高桂娟,等.2006.紫花苜蓿抗旱性主成分及隶属函数分析.草地学报,(14)2:142-144.
    25.韩瑞宏,田华,高桂娟,卢欣石.2008.干旱胁迫下紫花苜蓿叶片水分代谢与两种渗透调节物质的变化.华北农学报,23(4):140-144.
    26.何雪银,文仁来,吴翠荣,周锦国.2008.模糊隶属函数法对玉米苗期抗旱性的分析.西南农业学报,21(1):52-57.
    27.黄颜梅,张健,罗承德.1997.树木抗旱性研究(综述).四川农业大学学报,15(1):49-54.
    28.黄莺,赵致.2001.杂交玉米品种抗旱性生理指标及综合评价初探.种子,(1):12-14.
    29.霍仕平,曼庆九,宋光英等.1995.玉米抗旱鉴定的形态和生理生化指标研究进展.干旱区农业研究,13(3):67-73.
    30.冀宪领,盖英萍,牟志美,等.2004.干旱胁迫对桑树生理生化特性的影响.蚕业科学,30(2):117-122.
    31.贾虎森,蔡世英,李德全,等.2000.土壤干旱胁迫下钙处理对芒果幼苗光合作用的影响.果树科学,17(1):52-56.
    32.蒋明义等.1994.渗透胁迫诱导水稻幼苗的氧化伤害.作物学报,20(6):733-738.
    33.柯世省,金则新.2008.水分胁迫和温度对夏蜡梅叶片气体交换和叶绿素荧光特性的影响.应用生态学报,19(1):43-49.
    34.兰巨生,胡福顺、张景瑞.1990.作物抗旱指数的概念和统计方法.华北农学报,5(2):20-25.
    35.黎裕.1994.植物的渗透调节与其它生理过程的关系及其在作物改良中的应用.植物生理学通讯,30(5):377-385.
    36.黎裕,王天宇,等.2004.玉米抗旱品种的筛选指标研究.植物遗传资源报,5(3):210-215.
    37.李德全,邹琦,等.1992.土壤干旱下不同抗旱性小麦品种的渗透调节和渗透调节物质.植物生理学报,8(1):37-44.
    38.李建武,王蒂.2008.灰色关联度分析在马铃薯抗旱生理鉴定中的应用.种子,(27)2:21-24.
    39.李鹏民,高辉远,Reto J.Strasser.2005.快速叶绿素荧光诱导动力学分析在光合作用研究中的应用.植物生理与分子生物学学报,31(6):559-566.
    40.李伟,曹坤芳.2006.干旱胁迫对不同光环境下的三叶漆幼苗光合特性和叶绿素荧光参数的影响.西北植物学,26(2):266-275.
    41.李晓,冯伟,曾晓春.2006.叶绿素荧光分析技术及应用进展.西北植报,26(10):2186-2196.
    42.李岩,潘海春,李德全.2000.土壤干旱条件下玉米叶片内源激素含量及光合作用的变化.植物生理学报,26(4):301-305.
    43.梁建生,张建华.1998.根系逆境信号ABA的产生和运输及其生理作用.植物生理学通讯,34(5):329-338.
    44.林世青,许春辉,张其德,等.1992.叶绿素荧光动力学在植物抗性生理学生态学和农业现代化中的作用.植物学通报,9(1):1-16.
    45.刘飞虎,张寿文,梁雪妮.1998.干旱对兰麻部分生理生化指标的影响简报.中国麻作,20(3):16-18.
    46.刘根红,谢应忠,兰剑,杨锐,赵功强.2008.NaCl、水分复合胁迫下宁夏苜蓿幼苗对叶绿素含量的影响.北方园艺,(10):98-102.
    47.刘建新,王鑫,等.2005.水分胁迫对苜蓿幼苗渗透调节物质积累和保护酶活性的影响.草业科学,22(3):18-21.
    48.刘雅楠,曾孟潜.1995.十个玉米推广种抗旱力的分析.华北农学报,10(1):45-50.
    49.刘艳,王有年,王丽雪.2004.水分胁迫下苹果幼苗叶绿体活性氧代谢对光合作用的影响.北京农学院学报,19(1):19-23.
    50.刘友接,蔡世英,张泽煌,等.1999.水分胁迫对油梨幼苗光合作用的抑制效应.福建农业学报(增刊),14:110-114.
    51.刘志嫒,党选民,曹振木,等.2003.土壤水分对黄秋葵苗期生长及光合作用的影响.热带作物学报,24(1):70-73.
    52.卢从明,张其德,匡廷云,等.1994.水分胁迫抑制水稻光合作用机理.作物学报,20(5):601-606.
    53.罗俊,张木清,吕建林,等.2000.水分胁迫对不同甘蔗品种叶绿素a荧光动力学的影响.福建农业大学学报,29(1):18-22.
    54.罗华建,刘星辉.1999.水分胁迫对枇杷光合特性的影响.果树科学,16(2):126-130.
    55.马秀杰,张耀安,黄丽萍.1996.二氧化碳浓度对光合作用的影响.农业与技术,91(2):26-27.
    56.牟筱玲,鲍啸.2003.土壤水分胁迫对棉花叶片水分状况及光合作用的影响.中国棉花,30(9):9-10.
    57.牛洪斌,白润娥,张宪.2000.水分胁迫对欧李光合速率日变化的影响.湖北民族学院学报(自然科学版),18(2):15-17.
    58.裴英杰,郑家玲,等.1992.用于玉米品种抗旱性鉴定的生理生化指标.华北农学报,7(1):31-35.
    59.彭海欢,翁晓燕,徐红霞,等.2006.缺钾胁迫对水稻光合特性及光合防御机制的影响.中国水稻科学,(6):621-625.
    60.曲东,王保莉,山仑,等.1996.水分胁迫下磷对玉米叶片光合色素的影响.西北农业大学学报,24(4):94-97.
    61.任东涛,赵松岭.1997.水分胁迫对半干旱区春小麦旗叶蛋白质代谢的影响.作物学报,23(4):468-454.
    62.申加祥,宁堂原,等.2004.不同熟期玉米套作夏玉米可溶性糖含量与产量形成.玉米科学,12(2):65-68.
    63.沈秀瑛,徐世昌,戴俊英.1995.干旱对玉米SOD、CAT及酸性磷酸酯酶活性的影响.植物生理学通讯,31(3):183-186.
    64.师公贤,张仁和,薛吉全,等.2004.玉米几个与抗旱性有关的产量性状遗传研究.干旱地区农业研究,22(4):114-117.
    65.石峰,谢惠民,张晓科.2005.冬小麦不同抗旱品种抽穗期干旱诱导蛋白差异与抗旱性的研究.麦类作物学报,25(3):32-36.
    66.史吉平,董永华.1995.水分胁迫对小麦光合作用的影响.麦类作物学报,(5):49-51.
    67.史胜青,袁玉欣,张金香,等.2003.不同水分胁迫方式对核桃苗叶绿素荧光动力学特性的影响.河北农业大学学报,26(2):20-24.
    68.史玉炜,王燕凌,李文兵,等.2007.水分胁迫对刚毛柳可溶性蛋白、可溶性糖和脯氨酸含量变化的影响.新疆农业大学学报,30(2):5-8.
    69.史正军,樊小林.2003.干旱胁迫对不同基因型水稻光合特性的影响.干旱地区农业研究,21(3):123-126
    70.苏培玺,杜明武,张立新,等.2002.日光温室草莓光合特性及对CO_2浓度升高的响应.园艺学 报,29(5):423-426.
    71.孙彩霞,沈秀瑛,郝宪彬,沈峰.2000.根系和地上部生长指标与玉米基因型抗旱性的灰色关联度分析.玉米科学,8(1):31-33.
    72.孙彩霞,武志杰,张振平等.2004.玉米抗旱性评价指标的系统分析.农业系统科学与综合研究,20(1):43-47.
    73.孙谷畴,赵平,彭少麟,等.2001.在高CO_2浓度下四种亚热带幼树光合作用对水分胁迫的响应.生态学报,21(5):738-746.
    74.孙梅霞,祖朝龙,徐经年.2004.干旱对植物影响的研究进展.安徽农业科学,2004,32(2):365-367.
    75.唐甜甜,赵林森,董燕.2007.水分胁迫对滇润楠和香樟幼苗叶绿素荧光和叶水势的影响.西北林学院学报,22(4):16-20.
    76.田志刚,刘志增,田俊芹,等.2007.氮肥追施量和比例对夏玉米产量的影响.玉米科学,15(3):122-126.
    77.王玮,李德全,邹琦.2000.水分胁迫下外源ABA对玉米幼苗根叶渗透调节的影响.植物生理学通讯,(6):523-526.
    78.王宝山.1988.生物自由基与植物膜伤害.植物生理学通讯,(6):12-16.
    79.王畅,林秋萍,等.1990.夏玉米的干旱适应性及其生理机制的研究.华北农报,5(4):54-60.
    80.王晨阳.1992.土壤水分胁迫对小麦形态及生理影响的研究.华北农学报,7(4):1-8.
    81.王焘,郑国生,邹琦.1996.小麦光合作用午休过程RuBPCasc活性的变化.植物生理学通讯,32(4):257-260.
    82.王付欣,谢德意,王惠萍,等.2001.干旱胁迫对短季棉生理生化特性的影响.中国棉花,28(11):16-17.
    83.王贺,刘国成,吕德国,等.2008.低温对寒富苹果及其亲本叶绿素荧光特性的影响.华北农学报,23(2):38-40.
    84.王华田,孙明高,崔明刚,等.2000.土壤水分状况对苗期银杏生长及生理特性影响的研究.山东农业大学学报(自然科学版),31(1):74-78.
    85.王娟,李德全,谷令坤.2002.不同抗旱性玉米幼苗根系抗氧化系统对水分胁迫的反应.西北植物学报,22(22):285-290.
    86.王可盼,许春晖,赵福洪,等.1997.水分胁迫对小麦旗叶某些体内叶绿素a荧光参数的影响.生物物理学报,13(2):273-278.
    87.王茅雁,邵世勤,张建华,耿庆汉.1995.水分胁迫对玉米保护酶系活力及膜系统结构的影响.华北农学报,10(2):43-49.
    88.王鹏文,戴俊英,魏云鹏.1999.干旱胁迫对玉米产量和品质的影响研究.玉米科学,(7):102-106.
    89.王士强,胡银岗,佘奎军,等.2007.小麦抗旱相关农艺性状和生理生化性状的灰色关联度分析.中国农业科学,40(11):2452-2459.
    90.王万里.1981.植物对水分胁迫的响应.植物生理学通讯,(5):55-64.
    91.王孝威,段艳红,曹慧,等.2003.水分胁迫对短枝型果树光合作用的非气孔限制.西北植物学报,23(9):1609-1613.
    92.王英,金秀兰.2004.水分胁迫与果树的生理生化变化.黄冈职业技术学院学报,6(1):67-70.
    93.王振华,孙宏勇,张喜英,等.2007.不同冬小麦品种光合作用对环境因子响应的初步研究.华北农学报,22(1):9-12.
    94.王忠.2000.植物生理学.北京:中国农业出版社,126-127.
    95.韦振泉,林宏辉,何军贤等.2000.水分胁迫对小麦捕光色素蛋白复合物的影响.西北植物学报,20(4):555-560.
    96.魏秀俭.2005.玉米自交系耐旱性的模糊隶属函数法分析.山东农业科学,(2):25-28.
    97.翁晓燕,蒋德安.1999.影响水稻光合日变化的酶和相关因素的分析.生物数学学,14(4):495-500.
    98.吴宝轩.1989.小麦和花生叶细胞内超氧化物歧化酶(SOD)同工酶的特性和分析.植物学报,31(11):854-859.
    99.吴长艾,孟庆伟,邹琦.2001.叶黄素循环及其调控.植物生理学通讯,(1):1-5.
    100.吴林,李亚东,郝瑞,等.水分胁迫对沙棘叶片脯氨酸含量、过氧化物酶、过氧化氢酶等的影响.沙棘,9(3):18-22.
    101.吴锡冬,李子芳,张乃华,等.2006.外源脱落酸对盐胁迫玉米激发能分配和渗透调节的影响.农业环境科学学报,25(2):312-316.
    102.武宝开等.1988.叶绿素a的瞬变荧光测定分析水分胁迫在光合电子传递中的作用部位.植物生理学报,(14)2:117-122.
    103.武玉叶,李德全.2001.土壤水分胁迫对冬小麦叶片渗透调节及叶绿体超微结构的影响.华北农学报,16(2):87-93.
    104.徐民俊,刘桂茹,等.2002.水分胁迫对抗旱性不同冬小麦品种可溶性蛋白质的影响.干旱地区农业研究,20(3):85-88.
    105.徐世昌.1993.玉米旱害机制及抗旱应变措施的研究.沈阳农业大学博士生论文.
    106.薛延丰,刘兆普.2008.不同浓度NaCl和Na_2CO_3处理对菊芋幼苗光合及叶绿素荧光的影响.植物生态学,32(1):161-167.
    107.晏斌等.1993.涝渍逆境下玉米叶片中谷胱甘肽的含量变化及其作用.植物生理学通讯,29 (6):416-419
    108.杨风云.2004.土壤水分胁迫对梨树生理特性的影响.安徽农业,(6):11-12.
    109.杨俊霞,郭宝林,鲁韧强,等.2003.土壤含水量对美国黑莓光合特性的影响.果树学报,20(2):116-119.
    110.杨胜铭,高辉远,邹琦.2001.状态转换对光合作用中激发能分配的调节及其与光破坏防御的关系.植物生理学通讯,37(2):88-94.
    111.杨文平,郭天财,刘胜波,等.2008.两种穗型冬小麦品种旗叶光合特性和水分利用对光强的响应.华北农学报,23(2):9-11.
    112.杨晓青,张岁岐,梁宗锁,等.2004.水分胁迫对不同抗旱类型冬小麦幼苗叶绿素荧光参数的影响.西北植物学报,24(5):812-816.
    113.姚庆群,谢贵水.2005.干旱胁迫下光合作用的气孔与非气孔限制.热带农业科学,25(4):80-86.
    114.于同全,柴丽娜,刘宗萍.1995.水分胁迫下小麦幼苗可溶性蛋白质的表现与小麦抗旱蛋白之初探.北京农学院学报,10(6):26-33.
    115.余光辉,刘正辉,曾富华,等.2002.脯氨酸累积与其合成关键酶活性的关系.湛江师范学院学报,23(6):57-61.
    116.袁佐清,张建勇,等.2004.不同玉米自交系抗旱生理指标的研究.山东理工大学学报(自然科学版),18(6):71-75.
    117.岳爱琴,杜维俊,赵晋忠,等.2005.不同大豆品种抗旱性的研究.山西农业大学学报,25(2):24-27.
    118.张宝石,徐世昌,等.1996.玉米抗旱基因型鉴定方法和指标的探讨.玉米科学,4(3):19-22.
    119.张凤路,D.Kirubi.2002.玉米雌雄穗开花间隔与产量关系研究.作物学报,(1):76-78.
    120.张凤路,杨志良,D.Kirubi.2003.耐旱性玉米筛选的形态指标研究.河北农业大学学报,26(3):22-26。
    121.张海明,王茅雁,等.1993.干旱对玉米过氧化氢酶、MDA含量及SOD、CAT活性的影响.内蒙古农牧学院学报,14(4):92-95.
    122.张海燕,李贵全.2005.大豆抗旱性与生理生态指标关系的研究.中国农学报,21(8):140-142.
    123.张巨松,杜涌梦.2002.棉花叶片叶绿素含量消长动态的分析.新疆农业大学学报,2002,25(3):7-9.
    124.张明生,谢波,等.2003.甘薯可溶性蛋白、叶绿素及ATP含量变化与品种抗旱性关系的研究.中国农业科学,36(1):13-16.
    125.张木清,陈如凯,吕建林,等.1999.甘蔗叶绿体荧光参数、MDA含量及膜透性与耐旱性的影响.福 建农业大学学报,28(1):1-7.
    126.张秋英,李发东,刘孟雨,等.2003.不同水分条件下小麦旗叶叶绿素a荧光参数与子粒灌浆速率.华北农学报,18(1):26-28.
    127.张守仁.1999.叶绿素荧光动力学参数的意义及讨论.植物学通报,16(4):444-448.
    128.张维强,沈秀瑛,载俊英.干旱对玉米花粉、花丝活力和籽粒形成的影响.玉米科学,(7):45-50.
    129.张卫星,赵致,柏光晓,付芳婧.2007.等不同玉米杂交种对水分和氮胁迫的响应及其抗逆性.中国农业科学,40(7):1361-1370.
    130.张文英,柳斌辉,杨国航,等.2008.玉米不同时期抗旱性鉴定指标的灰色关联度与聚类分析.华北农学报(增刊).(23):96-98.
    131.张宪政.1992.作物生理研究法.北京:农业出版社.
    132.张亚黎,罗宏海,张旺锋,等.2008.土壤水分亏缺对陆地棉花铃期叶片光化学活性和激发能耗散的影响.植物生态学报,32(3):681-689.
    133.张正斌,山仑.1997.作物生理抗逆性的若干共同机理研究进展.作物杂志,(4):10-12.
    134.赵福庚,刘友良.1999.胁迫条件下高等植物体内脯氨酸代谢及调节的研究进展.植物学通讯,16(5):540-546.
    135.赵鸿彬,张正斌,徐萍,曹红星.2007.HgCl_2胁迫对小麦幼苗水分利用效率和叶绿素含量的影响.西北植物学报,27(12):2478-2483.
    136.赵九洲,刘绍洪.2005.渗透调节机制与植物的抗旱性研究.江西林业科技,(4):27-29.
    137.赵丽英,邓西平,山仑.2007.不同水分处理下冬小麦旗叶叶绿素荧光参数的变化研究.中国生态农业学报,15(1):63-65.
    138.赵天宏,沈秀瑛,杨德光.2002.抽雄期水分胁迫对玉米籽粒产量及其果穗性状的影响.辽宁农业科学,(6):5-7.
    139.郑风荣,谷令坤,李德全.2004.水分胁迫下脱落酸及磷脂酶在玉米幼苗根系渗透调节物质积累中的信号作用.中国生态农业学报,12(4):78-81.
    140.郑桂萍,李金峰,钱永德,吕艳东,等.2005.农作物综合抗旱性指标的评价分析.中国农学通报,21(10):109-121.
    141.郑丕尧,李雁鸣.1992.不同播期生态条件下燕麦叶片细胞形态观察.吉林农业科学,18(2):183-190.
    142.周锋利,宋西德.2005.臭柏抗旱生理特性研究.西南林学院学报,25(3):1-4.
    143.周秀杰,赵红波,马成仓.2007.硅对严重干旱胁迫下黄瓜幼苗叶绿素荧光参数的影响.华北农学报,22(5):79-81.
    144.朱维琴,吴良欢,陶勤南.2002.作物根系对干旱胁迫逆境的适应性研究进展.土壤与环境,11(4):430-433.
    145.朱新广,张其德,匡廷云.1999.NaCl胁迫对PSⅡ光能利用和耗散的影响.生物物理学报,15(4):787-790.
    146.Adman Sabetha et al.1998.Expression of small heat-shock proteins at low temperatures.Plant Physiol,117:651-658.
    147.Alejandro JP,Susana E Souki.2005.Effects of drought during grain filling on PSⅡ activity in rice.Journal of plant physiology,In press,Corrected proof,Available online 8 March.
    148.Alvaro S,Isabel A,Carmen C.1999.Heterogonous expression of a plant small heat-shock protein enhances Escherichia coli viability under heat and cold stress.Plant physiology,120:521-528
    149.AttipalliRR,KolluruVC,Munusamy V.2004.Drought-induced responses of photosynthesis and antioxidant metabolism in higher paints.Journal of plant physiology,161(11):1189-1202.
    150.Bader M R,Ruuska S,Nakano H.2000.Electron flow to oxygen in higher plants and algae rates and control of direct photo reduction(Mahler reaction)and rubiscooxygenase.Biological Sciences,1402:1433-1445
    151.BASSMANJ,ZWIERJC.1991.Gas exchange characteristics of Populous trichocarpa,Populous deltoids and Populous trichocarpa X P.deltoids clone[J].Tree Physiology,8:145-149.
    152.Basu PS,Ashoo S,Garg ID,et al.1999.Tuber sink modifies photosynthetic response in potato under water stress.Environmental and Experimental Botany,42(1):25-39.
    153.Casper C,Eickmeier W G,Osmond C B.1993.Changes of fluorescence and xanthophylls pigments during dehydration in the resurrection plant Slanginess lepidophyllain low and medium light intensities.Oecolgia,94:528-533.
    154.Chakir S,Jensen M.1993.How does Lob aria pulmonary regulate photo system Ⅱ during progressive desiccation and somatic water stress.A chlorophyll fluorescence desiccation stress,and evidence for zeaxanthin2associated photo protection.Plantar,189:30-38.
    155.Eickmeier W G,Casper C,Osmond C B.1982.Chlorophyll fluorescence in the resurrection plants Sleaziness le pedophilia(Hook & Grew)spring during high21ight and Fuqua Graham D,Sharkey Thomas D.Stomata conductance and photosynthesis.An null Review of Plant Physiology,33(3):317-345.
    156.Flagella Z,Pasture D,Campanile RG,Range G,et al.1996.The maintenance of photosynthetic electron transport in relation to osmotic adjustment in durum wheat cultivars differing in drought resistance. Plant Science, 118(2): 127-133.
    157. Garcia P J I, Faria T, Abadia J .1997.Seasonal changes in xanthophylls composition and photosynthesis of cork oak (Quarks super L. ) leaves under Mediterranean cli2mate. J of Exp Boot, 1997 , 48(308) :687-691.
    158. Guan Y X, Dai J Y, Xu S C, et al.1997. Effects of soil D rough during flowering and raw altering on plant compensative grow th and yield of maize A cat A groans ice S indicia, 23 (6) : 740-745.
    159. Hall AE. 1990. Physiological ecology of crops in relation to light, water, and temperature. In: Carroll CR, Wanderer JH, Rosette P (ads), Agro ecology. New York: Mc Grew Hill publishing company, 191-233.
    160. Haven XM, Tardy F. 1996.Temperature2dependent adjustment of the thermal stability of photo system Ⅱ in vivo possible involvement of xanthophyll2cycle pigments. Plantar, 198:324-333.
    161. Horton P, Ruben A, Walters R G..1994. Regulation of light harvesting in green plants indication by no photochemical quenching of chlorophyll fluorescence. Plant phys2iol, 106 :415 - 419.
    162. John M. Clarke et al. 1992.Evaluation of methods for quantification of drought tolerance in wheat. Crop Sic, 32: 723-728.
    163. Johnson GN, Young A J, Stoles J D. 1993.The dissipation of excess excitation energy in British plant species. Plant Cell and Environment, 16: 673 -679.
    164. K.A. Shackel et al.1982. Genotypic differences in leaf osmotic potential among grain sorghum cultivars grown under irrigation and drought. Crop Sic, 22: 1121-1125.
    165.Kate M, Johnson GN.2000.Chlorophyll fluorescence a practical guide. J Exp of Boot, 51 (345) : 659 - 668.
    166.Kramer. P J1983.Water Relations of Plants[M ].Academic Press.404-492.
    167. L iang Z S, Kang S Z, ShaoM A , et al. 2000.Grow th rate and water consume ton of maize p lent in so il alternate drying2wetting. T transactions of the SA E , 16 (5): 38-40.
    168. Levitt J. 1980.Response of pi(?)ata to environmental stresses. Water, radiation, salt and other stresses. New York: Academic press, 325~358.
    169. Lowlor D W, Cornic G..2002.Photosynthetic carbon as-simulation and associated metabolism in relation to water deficits in higher plants. Plant, Ceil and Environment, 25(2):275-294.
    170. Lu C M, Zhang J H. 1999.Effects of water stress on photo system Ⅱ photochemistry and its thermo stability in wheat plants. J Exp of But ,50 (336) : 1199 - 1206.
    171. Majken P, Claudi B. 2005. Tolerance and physiological responses of pragmatist austral is to water deficit. Aquatic Botany , Corrected proof, Available online 9 March.
    172. Motoai S, Ayako K, Kazuu YS, et al.2003. Molecular responses to drought, salinity and frost: common and different paths for plant protection. Current Opinion in Biotechnology. 14(2): 194-199.
    173. P. Ranalli .1997. Drought tolerance screening for potato improvement. Plant Breeding 116: 290- 292. Parry MA, Andralojic mJ, Rhan S, et al. 2002. Rubicon activity effects of drought stress. An nails of Botany, 89(S)833-901.
    174. Patakas A, Noitsakis B.1997. Cell wall elasticity as a mechanism to maintain avertable water relations during leaf ontogeny in grapevines. American Journal of Enology Viticulture,48 (3): 352 - 356.
    175. Robert C.1983. Ackerson Comparative physiology and water relation of two corn hybrids during water stress. Crop Sic,23:278-283.
    176. Robert G. Guei and C.E. 1993.Wassom Genetics of osmotic adjustment in breeding maize for drought tolerance. Heredity ,71:436-441.
    177. S.R. Winter et al. 1988.Evaluation of screening techniques for breeding drought resistance winter wheat. Crop Sic,28:512-516.
    178. Skriver K, Mundy J.1990.Gene expression in response to abscise caked and osmotic stress[J].Plant Cell, 2:503-512.
    179. Subbaroao GV, Chauhan YS, Johansen C, et al.2000. patterns of osmotic adjustment in pigs on pea its importance as a mechanism of drought resistance. European Journal of Agronomy, 12(34): 239-249.
    180. Turnen NC.1979. Drought resistance and adaptation to water deficits in crop paints. In: Harry Muss all (ed.).stress physiology in crop plants. New York, John Wiley and Sons, 343-372.
    181. Weis E, Berry J A.1988. Plants and high temperature stress . Sump Soc Exp Boil, 42 : 329-346.
    182. Werner C, Beyschlag W, Correia O.1999. Two different strategies of Mediterranean macchiato plants to avoid photo inhibitory damage by excessive radiation levels during summer drought. Alta Oecologica2International Journal of Ecology ,20(1):15-23.
    183. Wilton J H. 1978. Effect of Plant Population on Growth In Maize[J].Ann. Applied Bio,90(l): 127-132.
    184. Yordanov I, Tsonev T, Goltsev et al.l997.Interactive effect of water deficit and high temperature on photosynthesis in sunflower and maize plant Changes in the parameters of chlorophyll fluorescence induction kinetics and fluorescence quenching. Photosynthetic a, 33:391-397.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700