用户名: 密码: 验证码:
光弹流润滑实验中智能速度伺服控制的研究与应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
弹性流体动力润滑(简称弹流润滑)为点、线接触机械零部件的主要润滑形式,其油膜厚度与形状是决定机械零部件润滑效率的主要因素。受各种因素的影响,机械零部件的弹流润滑油膜形状和厚度在工作期间通常是动态多变的。近年来,弹流润滑的实验研究,特别是动态条件下的油膜测量,已成为提高机械零部件润滑效率的研究热点。目前在非稳态条件和自旋条件下的弹流润滑实验中,尚存在测量装置的伺服控制手段简单和实际运动控制效果与实验设计存在较大差别等问题。为此,对现有变速变载等非稳态条件和自旋条件下的弹流润滑油膜测量装置的控制系统和控制算法进行改进,对于提高弹流油膜测量系统的测量精度,以及进一步探索苛刻条件下弹流润滑的基础实验研究和理论分析有较好的实际意义。
     现代数控技术的发展,为高精度弹流润滑油膜测量系统的研制提供了强有力的软硬件支持。在回顾弹流润滑研究现状的基础上,分析总结了目前国内外学者主要采用的弹流润滑实验研究方法。根据弹流润滑油膜测量系统对速度控制的特殊精度要求,结合现代数控技术提出了一种基于智能运动控制理论的弹流润滑实验伺服运动控制方法,对光干涉弹流油膜测量仪和光干涉自旋弹流油膜测量仪的运动控制系统进行改进,以探索非稳态和自旋条件下弹流润滑的真实工作状况,并在预定运动方式下开展弹流油膜厚度和形状随速度、载荷和旋滑比等因素变化的实验研究。
     在光干涉弹流油膜测量系统中,速度伺服系统的控制参数和结构参数是影响速度伺服系统性能的主要因素,且具有时变性和不确定性,采用单一的控制策略很难达到提高速度伺服系统的动态性能的目的。在综合自适应控制、模糊控制以及常规PID控制算法优点的基础上,按照模块化设计原则设计出自适应模糊PID(Self-adaptive Fuzzy PID, SAF-PID)智能双模伺服控制算法,对在不同工作状态下的模糊控制比例因子和规则因子利用Matlab仿真软件进行优化选择调整,使得整个控制器能够根据系统在不同的响应阶段和性能指标,自动调整控制参数、自动切换控制算法,以适应速度伺服系统在不同的工作状态下的动态性能要求。
     为验证本研究设计的SAF-PID智能双模速度伺服控制算法的有效性,首先利用Matlab仿真软件对速度伺服系统在实际工况下的性能进行模拟分析:通过仿真智能双模控制器的阶跃响应曲线和误差响应曲线验证整个控制算法的快速性、稳定性和准确性;通过人为在不同时间段加若干不同程度的干扰信号模拟控制结构参数和负载质量等主要参数的时变性和不确定性,以此验证整个控制器在不同响应阶段的控制参数自动调整、控制算法切换、系统的跟随精度和速度伺服系统的抗干扰能力。将此智能速度伺服控制算法用于控制纯滑动条件下的弹流润滑启动过程,以期与经典的实验结果和数值分析结果相比较,初步验证算法的有效性。
     将SAF-PID智能双模控制算法用于光干涉弹流油膜测量仪,在周期间歇卷吸条件下开展了弹流润滑的实验研究,发现了以下问题:周期性的间歇卷吸运动导致弹流接触区存在明显的封油现象;启动过程的速度干扰效应可产生局部增厚油膜,该局部油膜以卷吸速度通过赫兹接触区;在动态间歇卷吸条件下界面滑移仍可产生入口凹陷;入口凹陷的出现与速度和一个周期的高速段的持续时间有关;间歇卷吸运动中滑移产生的凹陷不随表面移动。
     在光干涉自旋弹流油膜测量仪上应用SAF-PID智能速度伺服控制算法,研究了自旋对油膜形成过程的影响并得出以下结论:通过实验验证了在传统滚动/滑动弹流润滑研究时钢球-玻璃盘接触条件下的自旋运动可以通过调节球盘接触中心与旋转中心间的偏心距的大小来进行抑制,并且旋滑比的大小亦由偏心距来控制;当旋滑比增大时,传统弹流润滑研究所观测到的经典马蹄型油膜形状发生了严重扭曲,并且旋滑比越大,油膜厚度越薄;油膜厚度对卷吸速度的依赖关系在很大程度上受旋滑比的影响,较低侧的油膜厚度具有较大的速度指数,并且随着旋滑比的减小,两侧的速度指数趋于相近,高速时,垂直于卷吸速度方向两侧的油膜厚度的差别也越大;实验结果表明,在弹流润滑接触条件下载荷的增加会加重旋滑的效果,导致两侧的油膜厚度差别加大,油膜厚度减小,马蹄型外观更加扭曲。
Elastohydrodynamic lubrication (EHL) is the main lubricant style for those parts having point or line contacts. In this case, film thickness and shape are the major factors affecting the lubricating efficiency of machinery components. Influenced by some factors, the film shape and thickness in EHL for many machinery components are dynamic changed. In recent years, researches on elastohydrodynamic lubricated contacts under dynamic conditions have been focused. For most optical EHL test rigs, the current used servo control methods are so simple that the error between the reference and the actual motion is large to some extent. Therefore, the motion control system, as well as the control algorithm, is improved for the subsistent test rigs used under unsteady or spinning conditions. As a result, the measuring accuracy of film thickness and shape could be improved, and the following research on EHL problems under more rigor conditions could be carried on in future.
     The advancement of modern numerical control technique, fully support the development of high-accuracy EHL test rig in both hardware and software. Based on the review of EHL researches, many currently used EHL experimental methods are analyzed. According to the special accuracy of speed control in EHL experiment, a numerical controlled speed servo method is proposed, which is based on the intelligent motion control theory. Both multi-beam optical interference EHL test rigs without or with spin are redesigned using this new scheme, in order to reveal the real nature of EHL phenomena under unsteady or spinning conditions, and to perform the correlative experimental research on the film thickness and shape by changing speed, load and spinning-sliding ratio.
     In the film thickness measurement system, parameters of control and structure of the speed servo system are the main factors that affect the performance of the system, and are of time variation and uncertainty. As a result, a simple control method can not improve the dynamic performance of speed servo system. Integrated the advantages of self-adaptive control, fuzzy control and PID control, an intelligent dual module NC servo controller, called self-adaptive fuzzy PID (SAF-PID) controller is designed according to the modular design principle. Both fuzzy proportion and rule gene can be adjusted automatically by Matlab software under different working state. So the SAF-PID controller can change parameters and switch control methods automatically for the sake of adapting the system dynamic performances in the different work status.
     To validate the promoted SAF-PID controller, Matlab is used to simulate the speed servo control firstly. The step response and error response of SAF-PID controller can indicate the performance of rapid, steady and accuracy. Some disturbances are imported randomly to simulate the time variation and uncertainty of main parameters, such as control and load. So the interference killing features of speed servo control can be validated, such as the auto adjustment of control parameters, auto switch of control arithmetic, and the tracking precision of servo system. Then the proposed SAF-PID controller is used to control the start up process of EHL in pure sliding condition, in order to compare with the traditional results of experiment and numerical analysis, and to test this smart controller preliminarily.
     Experimental observation of EHL films under cyclic intermittent entrainment is carried out to validate the promoted SAF-PID controller, and three kinds of local film dimples have been identified. It is discovered that intermittent stops of the bounding surfaces generate clear lubricant entrapment and then film dimple due to squeeze effect, and pure rolling produced larger entrapment than that by pure sliding. Another local film dimple produced in the start-up process has also been demonstrated, which is attributed to the velocity perturbation. The peak velocity in the velocity oscillation results in an instantaneous larger lubricant entrainment and therefore local film dimple. The resultant crescent-shaped fringe moves through the Hertzian contact region at the entrainment speed. When pure disc sliding is employed, a cyclic inlet dimple appears due to boundary slippage effect. The results showed that the generation of the inlet dimple has strong dependence on the speeds and the time interval between two stops. Unlike those two dimples, the inlet dimple by the boundary slippage does not move through the contact region with the moving surface. In addition, the experiments displayed that the velocity perturbation effect from a sudden start-up was largely depressed under conditions of pure disc sliding. The observed phenomena can be explained by the squeeze effect, the entrainment effect and the wall slippage.
     Applied the SAF-PID intelligent speed servo control technology, the film thickness of a sliding EHL contact with spin has been measured by optical interference, and the effects of the spin on the film building up are studied. The main results are summarized as follows. It is demonstrated that in a ball-on-disc configuration spin motion can be superimposed on the conventional rolling/sliding EHL just by an offset of the contact center with respect to the disc rotation center, and the spin level is controlled by the offset. The EHL film shape is obviously skewed when spin motion is increased, and the symmetry of the conventional side lobes gets lost. Obvious film thickness reduction can be observed when spin level is high. The film thickness dependences on entrainment speeds are significantly influenced by the spin ratio Ssp. The film thickness at the low side lobe has the largest speed index. With decreasing spin motion, the speed indices of the two side lobes gets close. At high speeds, the film thickness difference of the two side lobes is large. In the present experiments, increasing loads can induce more effective spin effect within the EHL contact, and the difference between the two side lobe film thicknesses gets large and the horse-shoe film shape is more distorted. The spin raised by load decreases the overall film thickness.
引文
[1] Reynolds, O. On the theory of lubrication and its application to Mr. Beauchamp Tower's experiments, including an experimental determination of the viscosity of olive oil[J]. Philosophical Transaction of the Royal Society, 1886, 177: 57~234.
    [2]周桂如.流体润滑理论[M].杭州:浙江大学出版社, 1990.
    [3]陈伯贤.流体润滑理论及其应用[M].北京:机械工业出版社, 1991.
    [4]全永昕.工程摩擦学[M].杭州:浙江大学出版社, 1994.
    [5] Jost, H.P. Lubrication (tribology) education and research-a report on the present position and industry's needs[R]. London: HM Stationary Office, 1966.
    [6]王学浩.摩擦学概论[M].北京:水利电力出版社, 1990.
    [7]郑林庆.摩擦学原理[M].北京:高等教育出版社, 1994.
    [8]杨沛然.流体润滑数值分析[M].北京:国防工业出版社, 1998.
    [9] Hamrock, B.J., Schmid, S.R., Jacobson, B.O. Fundamentals of Fluid Film Lubrication[M]. 2nd ed. CRC Press, 2004.
    [10] Stachowiak, G.W., Batchelor, A.W. Engineering Tribology[M]. 3rd ed. Butterworth Heinemann, 2005.
    [11]张鹏顺,陆思聪.弹性流体动力润滑及其应用[M].北京:高等教育出版社, 1995.
    [12]温诗铸,杨沛然.弹性流体动力润滑[M].北京:清华大学出版社, 1992.
    [13] Hori, Y. Hydrodynamic lubrication[M]. New York: Springer-Verlag, 2005.
    [14] Stachowiak, G., Batchelor, A.W. Experimental Methods in Tribology[M]. Elsevier, 2004.
    [15] Zhang, Y.B., Wen, S.Z. An analysis of elastohydrodynamic lubrication with limiting shear stress[J]. Tribology Transactions, 2002, 45(2): 135-144.
    [16] Huang, C.H., Wen, S.Z. Elastohydrodynamic lubrication of long elliptical contacts with rotational contacts under heavy load[J]. Chinese Journal of Mechanical Engineering, 1993, 6(2): 145-152.
    [17]王晓力,温诗铸,桂长林.动载轴承的非稳态热流体动力润滑[J].清华大学学报, 1999, 39(8): 30-33.
    [18]温诗铸,黄平.摩擦学原理[M]. 2nd ed.北京:清华大学出版社, 2002.
    [19]温诗铸,雒建斌.纳米薄膜润滑研究[J].清华大学学报, 2001, 41: 63-68.
    [20]温诗铸.纳米摩擦学[M].北京:清华大学出版社, 1998.
    [21]温诗铸.润滑理论研究的进展与思考[J].摩擦学学报, 2007, 27(6): 497-503.
    [22] Dowson, D., Higginson, G., Archard, J. Elastohydrodynamic lubrication[M]. SI ed. Oxford:Pergamon press, 1977.
    [23] Cameron, A., Gohar, R. Theoretical and experimental of studies of the oil film in the lubricated point contact[J]. Mathematical and Physical Sciences, 1966, 291: 520-536.
    [24] Foord, C.A., Wedeven, L.D., Westlake, F.J., et al. Optical elastohydrodynamics[C]. Proceedings of the Institution of Mechanical Engineers. 1969,184(1): 487-505.
    [25] Chiu, Y.P., Sibley, L.B. Contact shape and non-Newtonian effects in elastohydrodynamic point contacts[J]. ASLE Lubrication Engineering, 1972, 28: 48-60.
    [26] Kaneta, M., Nishikawa, H., Kameishi, K., et al. Effects of elastic moduli of contact surfaces in elastohydrodynamic lubrication[J]. Journal of Tribology, 1992, 114: 3-80.
    [27] Kaneta, M., Nishikawa, H., Kanada, T., et al. Abnormal phenomena appearing in EHL contacts[J]. Journal of Tribology, 1996, 118: 886-892.
    [28] Lord, J., Jolkin, A., Larsson, R., et al. A hybrid film thickness evaluation scheme based on multi-channel interferometry and contact mechanics[J]. Journal of Tribology, 2000, 122: 16-22.
    [29] Ehret, P., Bauget, F. Observation of Kaneta's dimples in elastohydrodynamic lubrication contacts[J]. Journal of Engineering Tribology, 2001, 215: 289-300.
    [30] Yang, P., Qu, S., Kaneta, M., et al. Formation of steady dimples in point TEHL contacts[J]. Journal of Tribology, 2001, 123(1): 42-49.
    [31] Yang, P., Qu, S., Chang, Q., et al. On the theory of thermal elastohydrodynamic lubrication at high slide-roll ratios-line contact solution[J]. Journal of Tribology, 2001, 123(1): 36-41.
    [32] Qu, S., Yang, P., Guo, F. Theoretical investigation on the dimple occurrence in the thermal EHL of simple sliding steel-glass circular contacts[J]. Tribology International, 2000, 33: 59-65.
    [33] Guo, F., Yang, P., Qu, S. On the theory of thermal elastohydrodynamic lubrication at high slide-roll ratios: Circular glass-steel contact solution at opposite sliding[J]. Journal of Tribology, 2001, 123: 816-821.
    [34] Lee, R.T., Hamrock, B.J. A circular non-Newtonian fluid model: Part I - used in elastohydrodynamic lubrication[J]. Journal of Tribology, 1990, 112: 486-496.
    [35] Shieh, J., Hamrock, B.J. Film collapse in EHL and micro-EHL[J]. Journal of Tribology, 1991, 113: 372-377.
    [36] Ehret, P., Dowson, D., Taylor, C.M. On lubricant transport conditions in elastohydrodynamic conjunctions[J]. Physical and Engineering Sciences-Series A-Mathematical, 1998, 454: 763-787.
    [37] Zhang, Y.B., Wen, S. An analysis of elastohydrodynamic lubrication with limiting shear stress: part I - theory and solutions[J]. Tribology Transactions, 2002, 45: 133-144.
    [38] Stahl, J., Jacobson, B.O. A lubricant model considering wall-slip in EHL line contacts[J]. Journal of Tribology, 2003, 125: 523-532.
    [39] Lubrecht, A.A., Dalmaz, G. Transient Processes in Tribology: Proceedings of the 30th Leeds-Lyon Symposium on Tribology Held at INSA de Lyon Villeurbanne[M]. Elsevier, 2004.
    [40] Alshaer, B.J. Dynamically loaded lubricated journal bearings in multibody mechanical systems[D]. Wichita State University, 2000.
    [41] Jackson, R.L. The wear and thermo-elastohydrodynamic behavior of thrust washer bearings under non-axisymmetric loads[D]. Georgia Institute of Technology, 2004.
    [42] Lee, S.C. Scuffing modelling and experiments for heavily loaded elastohydrodynamic lubrication contacts[D]. Northwestern University, 1989.
    [43] Lim, S.G. On the numerical solution of the dynamically loaded hydrodynamic lubrication of the point contact problem[D]. Case Western Reserve University, 1990.
    [44] Ciulli, E. Time and frequency domain analysis of experimental EHL transient conditions data[C]. 11th Nordic Symposium on Tribology. 2004: 575-584.
    [45] Lin, H.S. A mixed lubrication model for cold strip rolling[D]. Northwestern University, 1998.
    [46] Chiou, T.T. A Non-Newtonian Thermohydrodynamic Model for Journal Bearings[D].国立成功大学, 2003.
    [47] Zhang, Y. An experimental and analytical study of lubricant behavior under EHD conditions[D]. The Johns Hopkins University, 1997.
    [48] Ramtahal, R.R. An Experimental Study of the Applicability of Flooding Phenomena to the Dynamic Lubrication Method of Well Control[D]. Louisiana State University, 2003.
    [49] Siripuram, R.B. Analysis of hydrodynamic effects of microasperity shapes on thrust bearing surfaces[D]. University of Kentucky, 2003.
    [50] Wijnant, Y.H. Contact dynamics in the field of elastohydrodynamic lubrication[D]. University of Twente, 1998.
    [51] Swanson, E.E. Design and Evaluation of an Automated Experimental Test Rig for Determination of the Dynamic Characteristics of Fluid-Film Bearings[D]. Virginia Polytechnic Institute and State University, 1998.
    [52] Clark, A.C. Dynamic measurements of lubrication film thickness of UHMWPE contacts for total joint replacements[D]. Clemson University, 2007.
    [53] Popovici, G. Effects of lubricant starvation on performance of elasto-hydrodynamically lubricated contacts[D]. University of Twente, 2005.
    [54] Chui, B.K. Elastohydrodynamic modeling and measurement of cylinder-kit assemblytribological performance[D]. Michigan State University, 2005.
    [55] Liu, Q. Friction in Mixed and Elastohydrodynamic Lubricated Contacts including Thermal Effects[D]. University of Twente, 2002.
    [56] Mccarthy, D.M. Lubrication of sliding bearings for hydropower applications[D]. Lulea University of Technology, 2005.
    [57] Ng, S.H. Measurement and modeling of fluid pressures in chemical mechanical polishing[D]. Georgia Institute of Technology, 2005.
    [58] Tasan, Y.C. Measurement of Deformation in Rolling and Sliding Contacts[D]. University of Twente, 2005.
    [59] Almqvist, A. Rough surface elastohydrodynamic lubrication and contact mechanics[D]. Lulea University of Technology, 2004.
    [60] Rapetto, M.P. Rough surfaces in contact artificial intelligence and boundary lubrication[D]. Lulea University of Technology, 2008.
    [61] Jamari, J. Running-In of Rolling Contacts[D]. University of Twente, 2006.
    [62] Smith, F.W. Lubricant behavior in concentrated contact systems-the Castor oil-steel system[J]. Wear, 1959, 2(4): 260-263.
    [63] Guo, F., Wong, P.L. Experimental observation of a dimple-wedge elastohydrodynamic lubricating film[J]. Tribology International, 2004, 37: 119-127.
    [64] Guo, F., Wong, P.L. A multi-beam intensity-based approach for lubricant film measurements in non-conformal contacts[J]. Journal of Engineering Tribology, 2002, 216: 281-291.
    [65] Guo, F., Wong, P.L. Variations of an EHL film under boundary slippage[C]. Proceedings of the IUTAM symposium on Elastohydrodynamics and Micro-elastohydrodynamics. 2004: 283-296.
    [66] Yagi, K., Vergne, P. Unexpccted film thickness distributions in EHD sliding contacts[C]. Proc.the 3rd Asia Int.Conf.on Tribology. 2006,1: 193-196.
    [67] Guo, F., Wong, P.L. A wide range measuring system for thin lubricating film: from nano to micro thickness[J]. Tribology Letters, 2004, 17(3): 521-531.
    [68] Zhao, J.X. Start up and shut down conditions in elastohydrodynamic lubrication[D]. Purdue University, 2002.
    [69] Shu, C.F. Transient elastohydrodynamic lubrication analysis by finite element methods[D]. Cornell University, 1981.
    [70] Goodyer, C.E. Adaptive Numerical Methods for Elastohydrodynamic Lubrication[D]. University of Leeds, 2001.
    [71] Brajdic-mitidieri, P. Advanced Modelling of Elastohydrodynamic Lubrication[D]. Imperial College London, 2005.
    [72] Feng, J.P. An analytical and numerical study of profiled hydrostatic thrust bearings[D]. University of North Carolina, 2004.
    [73] Cioc, C.A. An elastohydrodynamic lubrication model for helicopter high-speed transmission components[D]. University of Toledo, 2004.
    [74] Hartinger, M. CFD Modelling of Elastohydrodynamic Lubrication[D]. University of London, 2007.
    [75] Sahlin, F. CFD-analysis of hydrodynamic lubrication of textured surfaces[D]. Lulea University of Technology, Sweden, 2003.
    [76] Chu, H.M. Inverse Approach for Evaluating Pressure and Viscosity in Elastohydrodynamic Lubrication Problem[D].国立中山大学, 2003.
    [77] Sloetjes, J.W. Micro-Elastohydrodynamic Lubrication in Concentrated Sliding Contacts[D]. University of Twente, 2006.
    [78] Wang, Y.S. Modeling and analyzing the journal-thrust bearing system in rock-drilling bits under mixed-elastohydrodynamic lubrication[D]. Northwestern University, 2003.
    [79] Andr, W. Modelling of Contact and Fricton in Deep Drawing Processes[D]. University of Twente, 2001.
    [80] Ai, X. Numerical analyses of elastohydrodynamically lubricated line and point contacts with rough surfaces by using semi-system and multigrid methods. (Volumes I and II)[D]. Northwestern University, 1993.
    [81] Fortier, A. Numerical Simulation of Hydrodynamic Bearings with Engineered Slip or No-Slip Surfaces[D]. Georgia Institute of Technology, 2004.
    [82] Bruckner, R.J. Simulation and Modeling of the Hydrodynamic, Thermal, and Structural Behavior of Foil Thrust Bearings[D]. Case Western Reserve University, 2004.
    [83] Balupari, R.S. Validation of finite element program for journal bearings-static and dynamic properties[D]. University of Kentucky, 2004.
    [84] Lubrecht, T. The Numerical Solution of the Elastohydrodynamically Lubricated Line and Point Contact Problem, Using Multigrid Techniques[D]. University of Twente, 1987.
    [85] Venner, K. Multilevel Solution of the EHL Line and Point Contact Problems[D]. University of Twente, Netherlands荷兰, 1991.
    [86] Briggs, W.L., van Henson, E., Mccormick, S.F. A Multigrid Tutorial[M]. SIAM, 2000.
    [87] Venner, C.H., Lubrecht, A.A. Multilevel methods in lubrication[M]. Elsevier, 2000.
    [88] Brandt, A., Lubrecht, A.A. Multilevel matrix multiplication and fast solution of integral equations[J]. Journal of Computational Physics, 1990, 90(2): 348-370.
    [89] Brandt, A. Multi-level adaptive solutions to boundary value problems[J]. Mathematics of Computation, 1977, 31: 333-390.
    [90] Vichard, J.P. Transient effects in the lubrication of Hertzian contacts[J]. J. Mech. Engng Sci., 1971, 13: 173-189.
    [91] Wu, Y.W., Yan, S.M. A full numerical solution for the non-steady state elastohydrodynamic problem in nominal linecontacts[C]. Proceedings of the 13th Leeds-Lyon Symposium on Tribology. 1986: 291-298.
    [92] Ai, X., Yu, H.A. Full numerical solution for general transient elastohydrodynamicline contacts and its application[J]. Wear, 1988, 121: 143-159.
    [93] Ai, X., Cheng, H.S. A transient EHL analysis for line contacts with measured surface roughness using multigrid technique[J]. Journal of Tribology, 1994, 116: 549-558.
    [94] Hooke, C.J. The minimum film thickness in lubricated line contacts during reversal of entrainment-general solution and the development of a design[J]. Journal of Engineering Tribology, 1994, 208(J1): 53-64.
    [95] Sugimura, J.O., Kumura, T., Spikes, H.A. Simple equation for elastohydrodynamic film thickness under acceleration[J]. Tribology International, 1999, 32: 117-123.
    [96] Zhao, J.X., Sadeghi, F., Hoeprich, M.H. Analysis of EHL circular contact start up:Part1-Mixed contact model with pressure and film thickness results[J]. Journal of Tribology, 2001, 123: 67-74.
    [97] Wang J., H.T. Pure rolling elastohydrodynamic lubrication of short stroke reciprocating motion[J]. Tribology International, 2005, 38(11): 1013-1021.
    [98] Kaneta, M., Nishikawa, H., Kameishi, K. Observation of wall slip in elastohydrodynamic lubrication[J]. Journal of Tribology, 1990, 112: 447-452.
    [99] Ren, N., Zhu, D., Wen, S.Z. Experimental method for quantitative analysis of transient EHL[J]. Tribology International, 1991, 24: 225-230.
    [100] Sugimura, J., Jones, W.R., Spikes, H.A. EHD film thickness in non-steady state contacts[J]. Journal of Tribology, 1998, 129: 442-452.
    [101] Glovnea, R.P., Spikes, H.A. Elastohydrodynamic film formation at the start-up of the motion[J]. Journal of Engineering Tribology, 2001, 215: 125-138.
    [102] Homels, M.J.A., Evans, H.P., Snidle, R.W. Comparison of transient EHL calculation with start-up experiments[C]. Proceedings of the 29th Leeds-Lyon Symposium on Tribology. 2003: 79-90.
    [103]耿美香,郭峰.滑动条件下弹流润滑启动过程的实验观察[J].润滑与密封, 2007, (8): 85-87.
    [104]耿美香,郭峰,栗心明.弹流接触区高压润滑油的移动与壁面滑移[C].第八届全国摩擦学大会论文集. 2007.
    [105]耿美香.弹流油膜对时变润滑油卷吸的响应[D].青岛理工大学, 2007.
    [106]吉田孝文.机床高速主轴用角接触球轴承自旋运动时的润滑状态[J].国外轴承术, 2001, (2): 60-64.
    [107]徐荣瑜.角接触轴承摩擦力矩的计算[J].轴承, 1994, (6): 2-5.
    [108]祝永成,任涵文.机械无级变速器弹流接触区功率损失研究[J].河北机电学院学报, 1993, 10(1): 14-21.
    [109] Nikas, G.K. Fatigue Life and Traction Modeling of Continuously Variable Transmissions[J]. ASME J.Tribol., 2002, 124: 689-698.
    [110] Miller, S.T., Parker, R.J., Zaretsky, E.V. Appartus for studying ball spinning friction[R]. 1965.
    [111] Parker, R.J., Zaretsky, E.V., Anderson, W.J. Spinning friction coeffients with three lubricants[J]. Trans. ASME, J. Lubr. Tech., 1968, 90(1): 330-331.
    [112] Dietrich, N.W., Parker, R.J., Zaretsky, E.V., et al. Contact conformity effects on spinning torque and friction[J]. Trans. ASME J. Lubr. Tech., 1969, 91(2): 308-313.
    [113] Allen, C.W., Townsend, D.P., Zaretsky, E.V. Elastohydrodynamic lubrication of a spinning ball in a nonconforming groove[J]. ASME J Lubr Technol, 1970, 91(1): 89-95.
    [114] Snidle, R.W., Archard, J.F. Theory of hydrodynamic lubrication for a spinning sphere[C]. 1969,184(L44): 839-848.
    [115] Dowson, D., Talor, C.M., Xu, H. Fluid film lubrication-Osbrone Reynolds Centenary[C]. Proceedings of Thirteen Leeds-Lyon Sympostium on Trboligy. 1987: 451-463.
    [116] Dowson, D., Talor, C.M., Xu, H. Elastohydrodynamic lubrication of elliptical contacts with spin and rolling[C]. Proc.Instn.Mech.Engrs. 1991,205(C): 165-174.
    [117] Dowson, D., , X.H. Elastohydrodynamically lubricated of elliptical contacts with pure spin[C]. Proc.Instn.Mech.Engrs. 1993,207(C): 89-92.
    [118] Zou, Q., Huang, C., Wen, S. The effects of spinning motion and design parameters on lubrication performance of bearings[C]. Proceedings of the First Asia International Conference on Tribology. 1998: 71-75.
    [119] Zou, Q., Huang, C., Wen, S. Elastohydrodynamic film thickness in elliptical contacts with spinning and rolling[J]. ASME J.Tribol., 1999, 121(4): 686-692.
    [120] Ehret, P., Dowson, D., Taylor, C.M. Thermal effects in Elliptical contacts with spin conditions[C]. Proceedings of the 25th Leeds-Lyon Symposium on Tribology. 1999: 685-703.
    [121]孟庆恩,杨沛然.椭圆接触纯自旋问题的弹流润滑数值分析[J].润滑与密封, 2006, (3): 91-94.
    [122] Yang, P., Cui, J. The influence of spinning on the performance of EHL elliptical contacts[C]. IUTAM Symposium on Elastohydynamics and Microelastohydrodynamics. 2004(2): 81-92.
    [123] Johnson, K.L., Roberts, A.D. Observation of viscoelastic behaviour of an elastohydrodynamic lubrication film[C]. Proc. R. Soc. Lond. A. 1974,337: 217-242.
    [124] Thorp, N., Gohar, R. Oil film thickness and shape for a ball sliding in a grooved raceway[J]. ASME J.Lubric. Techol., 1972, 94(3): 425–443.
    [125] Xu, H. A study of the influence of spin upon the lubrication of elliptical contacts[D]. University of Leeds, 1988.
    [126] Newell, J.P., Lee, A.P. Measurement and prediction of spin losses in the EHL point contacts of the full toroidal variator[C]. Proc. of the 30th Leeds-Lyon Symposium for Tribology. 2003: 769-779.
    [127] Hamrock, B.J., Dowson, D. Ball bearing lubrication[M]. John Wiley & Sons, 1981.
    [128] Stachowiak, G.W., Batchelor, A.W., Stachowiak, G.B. Experimental Methods in Tribology[M]. Elsevier, 2004.
    [129] Cann, P.M.E., Hutchinson, J., Spikes, H.A. Development of a space layer imaging method (SLIM) for mapping elastohydrodynamic contacts[J]. Tribology Transaction, 1996, 39: 915-921.
    [130] Foord, C.A., Hammann, W.C., Cameron, A. Evaluation of lubricants using optical elastohydrodynamics[J]. ASLE Trans, 1968, 11: 31-43.
    [131] Ciulli, E., Draexl, T., Stadler, K. Film thickness analysis for EHL contacts under steady-state and transient conditions by automatic digital image processing[R]. Hindawi, 2008.
    [132] Eguchi, M., Yamamoto, T. Film thickness measurement using white light spacer interferometry and its calibration by HSV color space[C]. Proc. 5th AITC-AIT Int. Conf. on Tribology. 2006.
    [133] Ciulli, E., Stadler, K. Improvement of the experimental approach for the interferometric test rig[R]. Pisa University, 2006.
    [134] Gohar, R., Cameron, A. Optical measurement of oil film thickness under elastohydrodynamic lubrication[J]. Nature, 1963, 200: 458-459.
    [135] Wu, M.J. Optical Interferometric Studies on EHL Oil Film Containing Additives[D].国立中山大学, 2000.
    [136] Huang, B.W. Studies on Thin Film Characteristics of Elastohydrodynamic Lubrication Using Laser Measurement Method[D].国立中山大学, 2003.
    [137] Lee, J.H. Study on the Characteristics of Elastohydrodynamic Lubrication at Pure Squeeze Motion Using Optical Interferometry[D].国立中山大学, 2001.
    [138] Johnston, G.J., Wayte, R., Spikes, H.A. The measurement and study of very thin lubricant films in concentrated contacts[J]. STLE Tribology Transactions, 1991, 34(2): 187-194.
    [139] Gustafsson, L., Hoglund, E., Marklund, O. Measuring lubricant film thickness with imageanalysis[J]. Journal of Engineering Tribology, 1994, 208: 199-205.
    [140] Glovnea, R.P., Forrest, A.K., Olver, A.V., et al. Measurement of sub-nanometer lubricant films using ultra-thin film interferometry[J]. Tribology Letters, 2003, 15(3): 217-230.
    [141] Luo, J., Wen, S., Huang, P. Thin film lubrication. Part I: study on transition between EHL and thin film lubrication using a relative intensity optical interference method[J]. Wear, 1996, 194: 107-115.
    [142]黄平,雒健斌,邹茜. NGY-2型纳米级膜厚测量仪[J].摩擦学学报, 1994, 14(2): 175-179.
    [143]雒健斌.薄膜润滑理论和实验研究[D].北京:清华大学, 1994.
    [144]付忠学.大滑滚比下弹性流体动力润滑中的界面滑移效应[D].青岛理工大学, 2007.
    [145]王学锋.异常弹流润滑油膜的实验研究[D].青岛理工大学, 2006.
    [146]栗心明.自旋条件下弹性流体动力润滑的研究[D].青岛:青岛理工大学, 2007.
    [147]三菱电机株式会社.三菱MR-J2S-A型伺服放大器用户手册[M]. 2000.
    [148]杨渝钦.控制电机[M].北京:机械工业出版社, 1989.
    [149]欧超光,姜培刚,周希胜, et al. PCI-1240在光弹流实验台中的应用[J].工业控制计算机, 2008, (2): 24-28.
    [150]研华工控有限公司. PCI-1240用户手册[M]. 2001.
    [151]韩曾晋.自适应控制[M].北京:清华大学出版社, 1995.
    [152] Kosko, B.模糊工程[M].西安:西安交通大学出版社, 1999.
    [153]赵俊,陈建军,王灵刚.航空发动机的智能神经网络自适应控制研究[J].航空动力学报, 2008, 23(10): 1913-1920.
    [154]赵俊,陈建军.混沌粒子群优化的模糊神经PID控制器设计[J].西安电子科技大学学报, 2008, 35(1): 54-59.
    [155]徐亚兰,陈建军,胡太彬, et al.基于逆动力学的柔性连杆机械臂的混合模糊控制[J].航空计算技术, 2005, 35(1): 7-10.
    [156]陈建军,王德周,徐亚兰, et al.随机激励下柔性智能梁结构振动的模糊自适应控制[J].应用力学学报, 2006, 23(2): 313-317.
    [157]赵俊,陈建军.一种不确定对象的自适应智能PID控制系统[J].仪器仪表学报, 2008, 29(6): 1193-1197.
    [158]王德周,张驰江,陈建军, et al.智能结构模糊振动控制的在环仿真[J].航空计算技术, 2006, 36(3): 93-96.
    [159]窦振中.模糊逻辑控制技术及其应用[M].北京:北京航空航天大学出版社, 1995.
    [160]李士勇.模糊控制、神经控制和智能控制论[M].哈尔滨:哈尔滨工业大学出版社, 1998.
    [161]金晓明.自适应模糊控制的新进展[J].信息与控制, 1996, (4): 217-223.
    [162] Layne, J.R., Passino, K.M. Fuzzy Model Reference Learning Control for a Cargo Ship Steering[J]. IEEE Control Systems, 1993, (1): 23-34.
    [163]丛爽.神经网络、模糊系统及其在运动控制中的应用[M].合肥:中国科技大学出版社, 2001.
    [164]赵俊,陈建军.基于混沌蚁群算法的大时滞对象神经网络控制[J].上海交通大学学报, 2008, 42(7): 1198-1202.
    [165]胡炜,沈理.遗传优化模糊逻辑控制器[J].计算机科学, 1997, 24(6): 35-37.
    [166]刘向杰,周孝信.模糊控制研究的现状与新发展[J].信息与控制, 2003, 28(4): 283-292.
    [167] Rojas, I., Pomeres, H. New Methodology for the Development of Adaptive and Self-Learning Fuzzy Controllers in Real Time[J]. International Journal of Approximate Reasoning, 1999, 21: 109-136.
    [168]王立新.模糊系统与模糊控制[M].北京:清华大学出版社, 2003.
    [169]石田亲一郎. Modeling of Friction for Feed Drive Mechanism by Shin-ichiro[C]. ISHIDA. 1995.
    [170]毛宗源,狄净.自调整比例因子控制器控制锅炉燃烧过程[J].自动化学报, 1991, 17(5): 27-30.
    [171]黄进.基于自调整量化因子模糊控制器的摩擦补偿研究[J].机械设计与研究, 1991, (5): 27-30.
    [172] Yuan, H., Chen, B.C., Lin, J.J. A PI-type Fuzzy Controller with Self-Tuning Scaling Factors[J]. Fuzzy Sets and Systems, 1998, 93(1): 23-28.
    [173] Holmes, M.J.A., Evans, H.P., Snidle, R.W. Comparison of Transient EHL Calculations with Start-up Experiments[C]. Tribological Research and Design for Engineering Systems. 2003: 79-89.
    [174] Holmes, M.J.A. Transient Analysis of the Point Contact Elastohydrodynamic Lubrication Problem Using Coupled Solution Methods[D]. University of Wales, 2002.
    [175] Guo, F., Wong, P.L. An anomalous elastohydrodynamic lubrication film-inlet dimple[J]. Journal of Tribology, 2005, 127: 425-434.
    [176] Fu, Z.X., Guo, F., Wong, P.L. Non-classical elastohydrodynamic lubricating film shape under large slide-roll ratios[J]. Tribology letters, 2007, 27(2): 211-219.
    [177] Gohar, R. Elastohydrodynamicse[M]. London: Imperial Colledge Press, 2001.
    [178] Hamrock, B.J., Dowson, D. Isothermal elastohydrodynamic lubrication of point contact: Part 3 - fully flooded results[J]. Journal of Lubrication Technology, 1977, 99: 264-276.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700