用户名: 密码: 验证码:
公理设计中独立公理的扩展及其应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文受国家自然科学基金“公理设计的扩展研究及其稳健优化设计方法”(项目批准号:50575083)支持。针对公理设计的独立公理,以耦合问题的解决作为切入点,研究基于独立公理的耦合设计处理方法,基于系统性创造思维(Systematic Inventive Thinking,SIT)的解耦方法,并将人工免疫系统和集合论等工具引入公理设计框架,探讨公理设计在机械传动系统概念设计领域应用的普适性。
     首先,研究了基于独立公理的耦合设计处理方法。以公理设计的相邻域之间Z形映射为指导,分解设计问题并调整设计矩阵,揭示功能需求(Functional Requirements, FRs)和设计参数(Design Parameters, DPs)之间的交互作用,研究得出耦合FRs-DPs之间的实质解耦条件,对于满足该条件的FRs-DPs采用实质解耦方法解耦,提出基于满意度的解耦方法处理不能实质解耦的耦合任务,并对解耦处理后余下的耦合FRs-DPs任务集进行割裂从而确定最佳初始迭代顺序。基于上述工作,提出了一种基于独立公理的耦合设计处理方法,该方法充分考虑了FRs-DPs之间的交互作用,为在FRs不独立的情况下完成设计提供解决方案。以金属基/陶瓷复合涂层柱塞杆设计问题以及冷凝器设计问题,说明和验证了该方法。
     其次,研究了基于SIT的解耦方法。通过从原理、方法和工具层面,也即从独立公理与性质变化原理、公理设计与封闭世界原理、层次结构与SIT、信息公理与SIT的关系四个方面研究和分析了公理设计与SIT之间的关系、兼容性和集成的可能性,揭示出应用公理设计中遇到的耦合问题可借助于SIT方法来解决,并根据两者之间的联系和一致性分析结果提出公理设计下基于SIT的解耦方法,详细探讨了该方法的具体步骤,并在此基础上提出升级已有的旧系统或根据已有的旧系统开发新系统的步骤。此外,对该解耦方法的特征和可能的扩展——引入TRIZ作为辅助工具,进行了讨论。通过冲水振动和噪声问题实例说明该方法在解决耦合问题的过程中,如何逐步明确表达和陈述问题并系统的搜索可行解。该方法可以避免耦合度度量、参数折中及寻求替代技术概念等常规方法的措施,通过引入创造性的概念实现耦合FRs的完全解耦,得到满足独立公理的无耦合设计。
     再次,研究了基于公理设计的机械传动系统概念设计方法。以公理设计框架为指导,将行为作为功能需求和设计参数之间的桥梁,根据运动特征集,基于集合论对功能需求和设计参数进行形式化描述,从而划分基本功能需求块和设计参数块;给出功能域向物理域映射的基本条件,功能需求分解规则的产生步骤,在上述工作的基础上,提出一种基于公理设计的机械传动系统概念设计方法。该方法通过对功能域向物理域映射过程的描述,产生功能分解规则进行功能分解并搜索出各子功能的解,在组合子功能解的过程中,通过建立组合解搜索问题的数学模型,引入免疫算法来处理该问题,有效加快搜索过程和处理可能存在的组合爆炸。通过捻线机往复导纱系统设计实例说明和验证了该方法。
     最后,在前述对公理设计的扩展性研究成果的指导下,进行新型捻线机的设计。包括,进行新型捻线机的总体方案设计,建立传动系统数学模型并进行传动系统方案设计和结构设计,分析加捻装置—锭子的加捻原理和结构原理方案,最后在上述工作的基础上获得新型捻线机的满意设计。
This dissertation is supported by the Natural Science Foundation of China (Grant No. 50575083). The functional dependency and the corresponding uncoupling method are deeply researched in this dissertation, which include the strategy of disposing of coupled design based on the independence axiom, and the uncoupling method based on systematic inventive thinking (SIT). The application of axiomatic design in conceptual design of mechanical transmission system is also discussed, in which artificial immune system and set theory are introduced.
     Firstly, the method of disposing of coupled design based on the independence axiom is studied. Guided by zigzagging mapping between functional requirements (FRs) and design parameters (DPs), the design problem is decomposed. After rearrangement of the created design matrix, the interaction between FRs and DPs can be identified and analyzed. Based on the interaction analysis, the virtually decoupling condition is investigated. The coupled FRs-DPs that satisfy the virtually decoupling condition are disposed by the virtually decoupling method. A satisfaction degree-based decoupling method is also proposed to deal with the coupled FRs-DPs that don’t satisfy the virtually decoupling condition. As regards the remained coupled FRs-DPs after decoupling, it is a good way that adopting tearing method to find the better initial ordering of iteration to avoid additional iterations. Based on above work, a method of disposing of coupled design based on the independence axiom is proposed. This method takes into account the interaction between FRs and DPs, and provides guidance for accomplishing design in the case of violating the independence axiom. Two practical examples, the design of plunger rod and the design of condenser, are provided to illuminate this method.
     Secondly, the uncoupling method based on SIT is investigated. The relationships, compatibilities, and possibility of integration between axiomatic design and SIT at principle, methodological, and tools levels are analyzed, in terms of relationship between independence axiom and qualitative change principle, axiomatic design and closed world principle, hierarchy and SIT, information axiom and SIT. Based on this analysis, a method for uncoupling design with the aid of SIT is proposed. The detailed uncoupling steps of this method are explained and a strategy to upgrade an old system or develop new systems based on an existing one is also proposed in terms of this uncoupling method. In addition, a discussion of the proposed uncoupling method and the possible extension of this method with TRIZ are presented. An example of solving vibration and noise problem of flushing facility is provided to demonstrate how the uncoupling method can lead to a focused formulation of the functional dependency problem and a systematic search for promising solutions. This proposed uncoupling method is different from the conventional approaches, which removes the functional dependency through employing creative technology, and avoids measuring functional dependency, harmonizing parameters, or searching for substitutable technological ideas.
     Thirdly, the method for conceptual design of mechanical transmission system is discussed. Guided by axiomatic design framework, behavior as the bridge between FRs and DPs, FRs and DPs are formalized in terms of kinematic characteristics set by set theory, and the basic FR elements and basic DP elements are also classified. The basic mapping condition from functional domain to physical domain is studied. The steps of automated creation of FR decomposition rules are given. Then a method for conceptual design of mechanical transmission system is proposed. Based on the description of mapping from functional domain to physical domain, the FR decomposition rules are created firstly to guide FR decomposition and search for sub-solutions for each sub-FR. After constructing the mathematical model of searching for the optimal combinatorial solution, immune algorithm is introduced to dispose of this combinatorial optimization problem,which can speed up search process and deal with the possible combinatorial explosion. A design case of to-and-fro yarn-guiding system is presented to illustrate the application of this method.
     Finally, the design of latest twister is discussed based on axiomatic design. The overall scheme of the latest twister is given through zigzagging decomposition. The mathematical model of transmission system is constructed, the mechanical kinematic scheme is generated, and the design of mechanical transmission system is fulfilled. Then the twisting principles and basic concept of twisting device– spindle are analyzed. Lastly, the overall design of the latest twister is successfully accomplished.
引文
[1]肖人彬,陶振武,刘勇.智能设计原理与技术.北京:科学出版社, 2006
    [2] Zeng Y. Axiomatic approach to the modeling of product conceptual design processes using set theory. Ph. D Dissertation, The University of Calgary, Canada, 2001
    [3] Pahl G, Beitz W. Engineering Design (second edition). London: Springer, 2001
    [4] Suh N P. The Principles of Design. New York: Oxford University Press, 1990
    [5] Suh N P. Axiomatic Design: Advances and Applications. New York: Oxford University Press, 2001
    [6] Suh N P. Complexity: Theory and Applications. New York: Oxford University Press, 2005
    [7] Braha D, Maimon O. A Mathematical Theory of Design: Foundations, Algorithms and Applications. New York: Kluwer Academic Publishers, 1998
    [8] Yoshikawa H. General design theory and a CAD system. Man-Machine Communication in CAD/CAM, Tokyo, Oct. 2-4, 1980, Proceedings of the IFIP WG5.2, North-Holland, Amsterdam, 35-38
    [9] Yoshikawa H. Introduction to general design theory, Seimitsukikai.1979, 45: 906-926
    [10] Tomiyama T. From general design theory to knowledge-intensive engineering, Artificial Intelligence for Engineering Design, Analysis and Manufacturing, 1994, 8: 319-333
    [11] Salustri F A, Venter R D. An axiomatic theory of engineering design information. Engineering with Computers, 1994, 10(2): 95-111
    [12] Grabowski H. Universal design theory: elements and applicability to computers. Universal Design Theory, Aachen: Shaker-Verlag, 1998
    [13] Souchkov V. TRIZ: a systematic approach to conceptual design. Universal Design Theory, Aachen: Shaker-Verlag, 1998
    [14] Altshuller G. The innovation algorithm, TRIZ, systematic innovation and technical creativity. INC Worcester: Technical Innovation Center, 1999
    [15]刘鄂.现代设计理论与方法.北京:科学出版社, 2007
    [16]闻邦春,周知承,韩清凯等.现代机械产品设计在新产品开发中的重要作用.机械工程学报, 2003, 39(10): 43-52
    [17]殷国富,干静,胡晓兵等.面向信息时代的机械产品现代设计理论与方法研究进展.四川大学学报, 2006, 38(5): 38-47
    [18] Albano L D, et.al. Engineering design. Mechanical Engineering Handbook. Ed. Frank Kreith. Boca Raton: CRC Press LLC, 1999
    [19]冯培恩.我国设计学的发展现状和趋势,中国机械工程, 1992, 3 (3): 12~14
    [20]顾佩华.设计理论与方法学研究方面的最新进展.机械与电子, 1998(5): 26-31
    [21]谢友柏.现代设计理论和方法的研究.机械工程学报, 2004, 40(4): 1-9
    [22] Simon H A. The Sciences of the Artificial. Cambridge: MIT Press, 1969
    [23] Simon H A. Models of bounded rationality. Cambridge, MA, MIT Press, 1982, 2
    [24]徐利治.数学方法论选讲.武汉:华中理工大学出版社, 2000
    [25] Bascaran E, Tellez C. Use of the independence design axiom as an enhancement to QFD. 6th Int Conf on Design Theory and Methodology, 1994, 63-69
    [26] MIT Park Center for Complex Systems. Research [EB/OL]. [2007-04-18].http://web.mit.edu/pccs
    [27] Axiomatic Design Solutions, INC. Axiomatic Design Solutions [EB/OL]. [2006-6-21].http://www.axiomaticdesign.com/
    [28] Smith L R, Sudjianto A. Principle based approaches to product development. Industrial Engineering Research Conference Proceedings, 1997, 369-374
    [29]曹鹏彬,肖人彬,库琼.公理设计过程中耦合设计问题的结构化分析方法.机械工程学报, 2006, 42(3): 46-55
    [30]江屏,檀润华,张瑞红,等.公理设计下的闸阀结构分析.计算机集成制造系统, 2003, 9(3): 247-252
    [31] Vallhagen J. Aspects on process planning issues in axiomatic design. ASME DE, 1994, 69(2): 373-381
    [32] Lindholm D, Tate D, Harutunian V. Consequences of design decisions in axiomatic design. J Integrated Des Process Sci, 1999, 3(4): 1-12
    [33] Olewnik A T, Lewis K. On validating engineering design decision support tools. Concurrent Engineering Research and Applications, 2005, 13(2): 111-122
    [34] Meijer B R, Tomiyama T, et al. Knowledge structuring for function design. CIRP Annals - Manufacturing Technology, 2003, 52(1): 89-92
    [35] Jung J, Lee K-S, Suh N P. Automatically assembled shape generation using genetic algorithm in axiomatic design. LNAI, 2005, 3681: 41– 47
    [36] Alessandro Naddeo. Axiomatic framework applied to industrial design problemformulated para-complete logics approach: the power of decoupling on optimization-problem solving. Proceedings of ICAD2006. Firenze-June 13-16, 2006, ICAD-2006-17
    [37] Hirschi N W, Frey D D. Cognition and complexity: an experiment on the effect of coupling in parameter design. Res Eng Des, 2002, 13(4):123-131
    [38] Deo H V, Suh N P. Mathematical transforms in design: case study on feedback control of a customizable automotive suspension. CIRP Annals - Manufacturing Technology, 2004, 53(1): 125-128
    [39]肖人彬,库琼,曹鹏彬.基于免疫聚类识别的耦合功能规划方法与实例.计算机集成制造系统, 2006, 12(9): 1421-1430
    [40] Cai C L, Xiao R B. A structured approach to product design management based on axiomatic design. Proc. of ICFDM2006, China, Guangzhou, 2006, 1: 195-200
    [41] Su J C-Y, Chen S-J, Lin L. A structured approach to measuring functional dependency and sequencing of coupled tasks in engineering design. Computers and Industrial Engineering, 2003, 45: 195-214
    [42] Johannesson H L. On the nature and consequences of functional couplings in axiomatic machine design. ASME 96-DETC/DTM-1528
    [43] Lee T. Optimal strategy for eliminating coupling terms from a design matrix. Journal of Integrated Design and Process Science, 2006, 10(2): 45-55
    [44] Togay C, Dogru A H. Component oriented design based on axiomatic design theory and COSEML. LNCS, 2006, 4263: 1072-1079
    [45] Yang K, Zhang H W. A comparison of TRIZ and axiomatic design. Proceedings of ICAD2000, Cambridge, MA, 2000, ICAD056, 235-242
    [46] Kang Y J. The method for uncoupling design by contradiction matrix of TRIZ and case study. Proceedings of ICAD2004, Seoul, 2004. ICAD-2004-11
    [47] Hwang K H, Lee K H, Park G-J. Robust design of the vibratory gyroscope with unbalanced inner torsion gimble using axiomatic design. The Second International Conference on Axiomatic Design, Ma-June, 10-11, 2002
    [48] Kar A K. Linking axiomatic design and Taguchi methods via information content in design. Proceedings of ICAD2000, Cambridge, MA, 2000, ICAD033, 219-224
    [49] Pappalardo M, Naddeo A. Failure mode analysis using axiomatic design and non-probabilistic information. Journal of Materials Processing Technology, 2005,164-165: 1423-1429
    [50] Shin G-S, Yi J-W, Yi S-I, et al. Calculation of information content in axiomatic design. Proceedings of ICAD2004, Seoul, Korea, 2004, ICAD-2004-22
    [51] Naidu P C, Goldenberg A A. Design of intelligent systems: Measure of information content. Proc. ASME DETC/CIE - DETC2005, 3(A): 23-32
    [52] Gu P, Lu B, Spiewak S. A new approach for robust design of mechanical systems. Annals of the CIRP, 2004, 53(1): 129-134
    [53]罗振壁,朱耀祥,莫汝虎,等.新产品的创新设计、开发与管理.海口:南海出版公司, 2007
    [54]宋慧军,林志航.产品概念设计方案生成模型.计算机集成制造, 2002, 8(5): 342-346
    [55] Hu M, Yang K. Taguchi S. Enhancing robust design with the aid of TRIZ and axiomatic design (Part I) [EB/OL]. [2006-6-21]. http://www.axiomaticdesign.com/
    [56] Hu M, Yang K, Taguchi S. Enhancing robust design with the aid of TRIZ and axiomatic design (Part II). [EB/OL]. [2006-6-21].http://www.axiomaticdesign.com/
    [57] Xiao R B, Cheng X F. An analytic approach to the relationship of axiomatic design and robust design. Int. J. Materials and Product Technology (IJMPT), 2008, 31(2/3/4): 241-258
    [58] Hwang K-H, Lee K-H, Park G-J, et al. Robust design of a vibratory gyroscope with an unbalanced inner torsion gimbal using axiomatic design. Journal of Micromechanics and Microengineering, 2003, 13(1): 8-17
    [59] Arcidiacono G, Campatelli G, Citti P. Axiomatic design for Six Sigma. Proc. of ICAD2002, Cambridge, MA, 2002, ICAD004
    [60] Yang K, Ei-Haik B S. Design for six sigma. McGraw-Hill Professional. 2003
    [61] Goncalves-Coelho Antonio M, Mourao Antonio J F, Pereira Zulema L.Improving the use of QFD with axiomatic design.Concurrent Engineering Research and Applications, 2005, 13(3): 233-239
    [62]程贤福,肖人彬.基于公理设计的优化设计方法与应用.农业机械学报, 2007, 38(3): 117-121
    [63] Arcidiacono G,Campatelli G. Reliability improvement of a diesel engine using the FMETA approach. Qual Reliab Eng Int, 2004, 20(2): 143-154
    [64] Duflou J R, Dewulf W. On the complementarity of TRIZ and axiomatic design: fromdecoupling objective to contradiction identification. TRIZ Future 2006 Conference. 2006
    [65] Sekimoto S, Ukai M. Study of creative design based on the axiomatic design theory. ASME DE, 1994, 68: 71-77
    [66] Albano L D, Suh N P. Axiomatic design and concurrent engineering. Computer Aided Design, 1994, 26(7): 499-504
    [67] Jung J Y, Billatos S B. Applicability of axiomatic design in concurrent engineering. ASME DE, 1993, 52: 129-135
    [68] Guenov M D, Barker S G. Application of axiomatic design and design structure matrix to the decomposition of engineering systems. Systems Engineering, 2005, 8(1): 29-40
    [69] Chen K-Z. Identifying the relationship among design methods: key to successful applications and developments of design methods. Journal of Engineering Design, 1999, 10(2): 125-141
    [70] Sarno E, Kumar V, Li W. A hybrid methodology for enhancing reliability of large systems in conceptual design and its application to the design of a multiphase flow station. Res Eng Des, 2005, 16(1-2): 27-41
    [71] Yi J-W, Park G-J. Development of a design system for EPS cushioning package of a monitor using axiomatic design. Adv Eng Softw, 2005, 36: 273-284
    [72]朱龙英,朱如鹏,刘正埙.公理化设计理论研究及其应用进展.机械设计与研究, 2004, 20(4): 43-46
    [73] Goncalves-Coelho A M, Mourao Antonio J F, Pamies-Teixeira J J. Axiomatic design as a background for concurrent engineering education and practice. Proceedings of the 10th ISPE International Conference on Concurrent Engineering. Madeira, Portugal, 2003: 419-427
    [74] Odom E, Beyerlein S, Brown C A, et al. Role of axiomatic design in teaching capstone courses. ASEE Annu. Conf. Expos. Conf. Proc, 2005, 12421-12436
    [75] Melvin J W,Suh N P. Simulation within the axiomatic design framework .CIRP Annals - Manufacturing Technology. 2002, 51(1):107-110
    [76] Hirani H, Suh N P. Journal bearing design using multi-objective genetic algorithm and axiomatic design approaches. Tribology International, 2005, 38: 481-491
    [77] Lee H, Seo H, Park G-J. Design enhancements for stress relaxation in automotive multi-shell-structures. Int. J. of Solids & Structures, 2003, 40(20): 5319-5334
    [78] Thielman J, Ge P, Wu Q, et al. Evaluation and optimization of General Atomics’GT-MHR reactor cavity cooling system using an axiomatic design approach. Nuclear Engineering and Design, 2005, 235: 1389-1402
    [79] Pimentel A R, Stadzisz P C. Application of the independence axiom on the design of object-oriented software using the axiomatic design theory. Journal of Integrated Design and Process Science, 2006, 10(1): 57-69
    [80] Chen K-Z, Feng X-A. Computer-aided design method for the components made of heterogeneous materials. Computer-Aided Design, 2003, 35(5): 453-466
    [81] Schreyer M, Tdeng M M. Hierarchical state decomposition for the design of PLC software by applying axiomatic design. Proceedings of ICAD2000. Cambridge, MA, 2000, ICAD006, 264-271
    [82] Cochran D, Arinea J, Duda J, et al. A decomposition approach for manufacturing system design. Journal of Manufacturing Systems, 2001a, 20(6)
    [83] Gu P, Rao H A, Tseng M M. Systematic design of manufacturing systems based on axiomatic design approach. CIRP Annals - Manufacturing Technology, 2001, 50(1): 299-304
    [84] Houshmand M, Jamshidnezhad B. A lean manufacturing roadmap for an automotive body assembly line within axiomatic design framework. Int. J. of Engineering, Transactions A: Basics, 2004, 17(1): 51-72
    [85] Kulak O, Durmusoglu M B, Tufekci S. A complete cellular manufacturing system design methodology based on axiomatic design principles. Computers & Industrial Engineering, 2005, 48(4): 765-877
    [86] Gunasekera J S, Ali A F. Three-step approach to designing a metal-forming process. JOM, 1995, 47(6): 22-25
    [87] Zak G, Sela M N, Yevko V, et al. Layered-manufacturing of fiber-reinforced composites. J Manuf Sci E-T ASME, 1999, 121(3): 448-456
    [88] Kulak O, Kahraman C. Multi-attribute comparison of advanced manufacturing systems using fuzzy vs. crisp axiomatic design approach. Int. J. Production Economics, 2005, 95(3): 415-424
    [89] Dan B, Tseng M M. Assessing the inherent flexibility of product families for meeting customisation requirements. Int. J. of Manufacturing Technology and Management, 2007, 10(2-3): 227-246
    [90]肖人彬,程贤福,廖小平.基于模糊信息公理的设计方案评价方法及应用.计算机集成制造系统, 2007, 13(12): 2331-2338
    [91] Li C L, Tan S T, Chan K W. A qualitative and heuristic approach to the conceptual design of mechanisms. Engineering Applications of Artificial Intelligence, 1996, 9: 17-31
    [92] Chiou S-J, Kota S. Automated conceptual design of mechanisms. Mechanism and machine theory, 1999, 34: 467-495
    [93]肖人彬,曹鹏彬,刘勇.工程免疫计算.北京:科学出版社
    [94]张智明,梅顺齐,吴世林等.新型捻线机多电机控制系统的开发.武汉科技学院学报, 2001,14(4): 16-20
    [95]梅顺齐,张智明,尤洪松.基于步进成形的往复导纱系统.机电产品开发, 2003, 4: 46-47
    [96] Brown C A. Kinds of coupling and approaches to deal with them. Proceedings of ICAD2006. Firenze-June 13-16, 2006. ICAD-2006-15
    [97] Gebala D A,Eppinger S D. Methods for analyzing design procedures. Proceedings of the ASME Third International Conference on Design Theory and Methodology, 1991, DE31: 227-233
    [98] Warfield J N. Binary matrices in system modeling. IEEE Transactions on Systems,Man, and Cybernetics, 1973, 3(5): 441-449
    [99] Kusiak A, Wang J, He D W, et al. A structured approach for analysis of design processes. IEEE Transactions on Components, Packaging, and Manufacturing Technology - Part A, 1995, 18(3): 664-673
    [100] The Leading Source for Online Professional Development Courses in Statistics www.statistics.com
    [101]陈立周.稳健设计.北京:机械工业出版社, 2000
    [102]陈建江.面向飞航导弹的多学科稳健优化设计方法及应用.华中科技大学博士学位论文.武汉, 2004:59-68
    [103]陈柏鸿,肖人彬,刘继红,等.复杂产品协同优化设计中耦合因素的研究.机械工程学报, 2001, 37(1): 19-23
    [104] Eppinger S, Nukala M, Whitney D. Generalized models of design iteration using signal flow graphs, Research in Engineering Design, 1997, 9: 112-123
    [105] Cho Soo-Haeng, Eppinger S D. Product development process modeling usingadvanced simulation, ASME 2001 Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Pittsburgh, Pennsylvania September 9-12, 2001
    [106] Yassine A A. An introduction to modeling and analyzing complex product development process using the design structure matrix (DSM) method, Quaderni di Management (Italian Management Review), www.quaderni-di-management.it, No.9, 2004
    [107]蔡怀崇,闵行.材料力学.西安交通大学出版社, 2004: 289-291
    [108]邹云,蔡池兰,张一兵.金属基/陶瓷涂层柱塞杆可靠性设计.机械, 2004, 31(2): 23-25
    [109]郑贤德.制冷原理与装置.北京:机械工业出版社, 2001
    [110]朱聘冠.换热器原理及计算.北京:清华大学出版社, 1987
    [111] Altshuller G S. Creativity as an exact science, Moscow, 1979 (in Russian). Translated into English by Anthony White, published by Gordon and Breach. New York, 1988
    [112] Altshuller G S. The innovation algorithm. Technical Innovation Center. Worcester, MA. 1999
    [113] Shin G.–S, Park G -J. Decoupling process of a coupled design using the TRIZ module. In Proceedings of ICAD2006, Firenze, June 13-16, 2006, ICAD-2006-04
    [114] Lee K W. Development of mosquito trap with effect of air cleaning by using theory of inventive problem solving (TRIZ). Journal of KSPE, 2002, 19(6): 155-159
    [115] Altshuller G S, Shulyak L, Fedoseev U. 40 Principles TRIZ Key to Technical Innovation. Technical Innovation Center Inc., Worcester, MA, 1998.
    [116] Horowitz, R. From TRIZ to SIT in 4 Steps. TRIZ Journal, 2001, Aug
    [117] Maimon O, Horowitz R. Creative design methodology and the SIT method. 9th International ASME Design Engineering Theory and Methodology Conference, Proceedings of DETCC97/DTM-3865, Sacramento, California, 14-17 September 1997
    [118] Goldenberg J, Mazursk Y D. Creativity in product innovation. Cambridge: Cambridge University Press, 2002
    [119] SIT Ltd. SIT-Sharing innovation tools that really work- SIT innovation community in the Netherlands [EB/OL]. [2006-04-29].http://www.sit-netherlands.com/
    [120] Goldenberg J, Horowitz R, Levaa A, et al. Finding your innovation sweet spot.Harvard Business Review, 2003, 81(3): 120-129
    [121]蔡池兰,肖人彬.公理设计下基于系统创新思维的解耦方法研究.机械工程学报. 2006, 42(11): 184-191.
    [122] Maimon O, Horowitz R. Sufficient conditions for inventive solutions. IEEE Transactions on Systems, Man and Cybernetics Part C: Applications and Reviews, 1999, 29(3): 349-361
    [123] Lu Stephen C-Y. Scientific foundations of TRIZ for innovative engineering design. In Proceedings of the ETRIA TRIZ Future Conference 2006, Kortrijk, Oct 9-11, 2006, 2, No.19
    [124] Ogot M. Conceptual design using axiomatic design in a TRIZ framework. In Proceedings of the ETRIA TRIZ Future Conference 2006, Kortrijk, Oct 9-11, 2006, 1, No.17
    [125] Kim Y S, Cochran D S. Reviewing TRIZ from the perspective of the axiomatic design. Journal of Engineering Design. 2000, 11(1): 79-94
    [126] Steward D V. The design structure systems: A method for managing the design of complex systems. IEEE Transactions on Engineering Management, 1981, 28(3): 71-74
    [127] SIT Ltd. SIT method, systematic inventive thinking. 2005, http://www.sitsite.com/app/homepage.asp
    [128] Horowitz R. ASIT's five thinking tools with examples. TRIZ Journal, 2001, Sept
    [129] Horowitz R. Using ASIT to develop new products. TRIZ Journal, 2001, Nov
    [130]杨客,李宝宏,李晓辉.装设延时自闭阀管道的水力计算探讨.河南城建高等专科学校学报, 2000, 9(4): 30-32
    [131]陈贵清,王维军,周红星,等.压力管道水击危害及其防治.河北理工学院学报, 2006, 28(1): 128-131
    [132]张德珍.基于状态空间方法的机械运动方案设计的理论基础.计算机集成制造系统, 2005, 11(1): 127-132
    [133]唐林,邹慧君.用设计单元法实现计算机辅助机械运动方案设计.计算机辅助设计与图形学学报, 2000, 12(8): 614-617
    [134] Chen Y, Feng P E, Lin Z, et al. Automated conceptual design of mechanisms using improved morphological matrix. Transactions of the ASME, 2006, 128: 516-526
    [135] Hsu W, Woon I M Y. Current research in the conceptual design of mechanicalproducts. Computer-Aided Design, 1998, 30(5): 377-389
    [136]曹东兴,檀润华,苑彩云,等.基于功能分解的机械产品概念设计.机械工程学报, 2001, 37(11): 13-17
    [137]焦李成,杜海峰.人工免疫系统进展与展望.电子学报, 2003, 31(10): 1540-1548
    [138]丁永生,任立红.人工免疫系统:理论和应用.模式识别与人工智能, 2000, 13(1): 52-59
    [139] De Castro L N, Timmis J I. Artificial immune system: a new computational intelligence approach. London: Springer-Verlag, 2002
    [140]肖人彬,王磊.人工免疫系统:原理、模型、分析及展望.计算机学报, 2002, 25(12): 1281-1293
    [141] Kim J, Bentley P. Towards an artificial immune system for network intrusion detection: An investigation of clonal selection with a negative selection operator. In: Proc Congress on Evolutionary Computation, Seoul, Korea, 2001, 27-30
    [142] Carter J H. The immune system as a model for pattern recognition and classification. Journal of the American Medical Informatics Association, 2000, 7(3): 28-41
    [143] De Castro L N, Von Zuben F J. An evolutionary immune network for data clustering. Proc 6th Brazilian Symposium on Neural Networks, Rio de Janeiro, Brazil, 2000, 84-89
    [144] Timmis J, Neal M, Hunt J. Artificial immune system for data analysis. Biosystems, 2000, 55(1-3): 143-150
    [145] Chun J S, Lim J P, Jung HK. Optimal design of synchronous motor with parameter correction using immune algorithm. IEEE Trans Energy Conversion, 1999, 14(3): 610-615
    [146] Ishiguro A, Watanabe Y, Kondo Tet al. Decentralized consensus making mechanisms based on immune system: Application to behavior arbitration of an autonomous mobile robot. Proc IEEE International Conference on Evolutionary Computation, Nagoya Japan, 1996, 82-87
    [147]何海,钟毅芳,蔡池兰.混合动力汽车能量管理控制器参数优化.华中科技大学学报. 2006, 34(9): 94-96
    [148] Chun J S, Kim M K, Jung H K, et al. Shape optimization of electromagnetic devices using immune algorithm. IEEE Transaction on Magnetics, 1997, 33(2): 1876-749
    [149] Liu Y, Xiao R B. Optimal synthesis of mechanisms for path generation using refinednumerical representation based model and AIS based searching method. ASME Journal of Mechanical Design. 2005, 127(4): 688-691
    [150] Dasgupta D, Attoh-Okine N. Immunity based systems: A survey. In: Proc IEEE International Conference on Systems, Man, and Cybernetics, Orlando, Florida, 1997, 369-374
    [151] De Castro L N, Timms J. Artificial immune systems: a novel approach to pattern recognition. Alonso L, Corchado J, Fyfe C eds. Artificial Neural Networks in Pattern Recognition. Scotland: University of Paisley Press, 2000. 67~84
    [152] Farmer J D, Packard N H, Perelson A S. The immune system, adaptation, and machine learning. Physica D, 1986, 22: 187-204
    [153]肖人彬,陶振武.孔群加工路径规划问题的进化求解.计算机集成制造系统, 2005, 11(5): 682-689
    [154] Forrest S, Hofmeyr S A, Immunology as information processing. Segel and Cohen eds. Design Principles for the Immune System and Other Distributed Autonomous Systems. USA: Oxford University Press, 2000
    [155] Jerne N K. The immune system. Scientific American, 1973, 229(1): 51-60
    [156] Burnet F M. Clonal selection and after. Bell G I, Perelson A S, Pimbley G H eds. Theoretical Immunology, New York: Marcel Dekker Inc., 1978, 63-85

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700