用户名: 密码: 验证码:
基于支持向量机的热工过程逆动力学建模及控制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
系统逆动力学问题是一类典型的动态系统反演课题,其核心内容在于,根据所期望的系统输出过程和已知的系统当前和历史状态,确定应该施加于系统的输入过程。热力系统逆动力学问题已经成为热工过程控制与故障诊断等许多相关领域的一个基础性的重要课题,对该问题进行深入研究,具有十分重要的科学意义和工程实际意义。
     支持向量机(SVM)是建立在统计学习理论基础上的一种机器学习算法,具有理论完备、全局优化、适用于小样本建模和泛化能力强等优点,已经成为复杂系统辨识的有效工具。本文研究了基于SVM的热工过程逆动力学模型辨识与控制问题,主要研究工作与结果包括以下五个方面。
     ①针对两类典型热工对象,建立了逆动力学模型的基本结构;提出了一种基于对象动态过程相关分析的多输入多输出(MIMO)系统逆动力学模型输入向量的约简方法,通过对象动态过程的相关分析,获得对象逆动力学过程的最大相关量和主导参数,在此基础上确定MIMO系统逆动力学模型的输入向量。利用该方法对双输入双输出系统逆动力学模型进行了深入研究,提出了双输入双输出系统逆动力学模型的四种基本结构。
     ②与标准SVM相比,最小二乘支持向量机(LSSVM)将SVM的学习问题转化成线性方程组的求解问题,在函数估计和逼近中得到了广泛应用,其主要问题在于,在基于LSSVM的系统建模过程中,模型的每次更新都需要进行一次矩阵求逆,难以用于复杂系统的在线辨识。本文将递推最小二乘法(RLS)和LSSVM算法相结合,利用RLS在线调整LSSVM的权向量和偏移量,通过修剪算法减少支持向量个数,提出了一种递推最小二乘支持向量机(RLSSVM),明显地提高了系统模型在线辨识过程的实时性和模型的精确性。文中利用RLSSVM实现了几类典型热工对象逆动力学模型的在线辨识,验证了基于RLSSVM的系统逆动力学过程模型在线辨识方法的有效性。
     ③针对LSSVM方法存在的核函数及算法参数选取问题,以及系统模糊辨识模型泛化能力不足问题,将LSSVM方法和模糊辨识方法相结合,提出了一种基于最小二乘支持向量机的模糊辨识方法(FLSSVM),并证明了该方法与LSSVM的等价性;在基于FLSSVM模型在线辨识算法中,采用滚动时间窗概念,由模糊竞争学习算法修正聚类中心;在结论参数辨识中,对滚动时间窗内的样本数据根据采样时间的不同,分配不同的权值。基于FLSSVM的热工对象逆动力学过程辨识结果表明,该方法具有较高的辨识精度和良好的跟踪性能,具有良好的泛化能力和对噪声的适应能力。
     ④将前述的逆动力学模型辨识方法与自适应逆控制技术相结合,建立了一种基于FLSSVM逆动力学模型的自适应逆控制系统。在控制过程中,通过FLSSVM方法在线辨识控制对象的逆动力学模型,对控制器进行在线更新;同时利用基于FLSSVM的逆动力学模型自适应地完成系统输出扰动消除过程。针对火电机组过热汽温对象和负荷对象设计了相应的自适应逆控制系统,控制过程仿真实验表明,所建立的自适应逆控制系统具有良好的控制性能和自适应能力,并表现了良好的输出扰动消除效果。
     ⑤根据直流锅炉汽温对象典型动态特性的分析结果,明确了现有的汽温分段控制方法存在的主要问题,建立了一种基于逆动力学模型的直流锅炉给水及过热汽温的自适应逆控制系统,通过逆动力学模型在线辨识,同时考虑直流锅炉出口汽温以及微过热汽温等对给水量和各级喷水量的共同需要,实现直流锅炉给水及过热汽温的综合控制。仿真实验表明,该控制系统具有良好的控制品质和自适应能力,并有效地消除了现有的汽温分段控制方法中存在的控制量反复振荡现象。
System inverse dynamics is a class of typical inverse subject, its key problem is that the input of system is determined according to the anticipant output and known current and past information. Inverse dynamics of thermal system has become an important issue in many relative areas such as thermal process control and fault diagnosis. It has very important scientific and practical significance that study on inverse dynamics of thermal system.
     Support vector machines(SVM) based on the statistical learning theory is a new approach in machine learning. SVM has become an effective tool for complexity system identification because of its advantages such as firm mathematic theory foundation, strict theory analysis, global optimization as well as good adaptability and generalization. Inverse dynamic model identification and control for thermal system based on SVM is studied in this dissertation. The main works include the following five parts:
     ①The basic structure of inverse dynamic model is built for two typical thermal system. A reduction method for input vector of multiple input and multiple output(MIMO) inverse dynamic model is proposed. The largest relation value and leading parameters are obtained through analyzing dynamic characteristics of object, and then the input vector of MIMO system inverse dynamic model is determined. Four basic structures of input vectors are proposed by studying on inverse dynamic model of dual input and dual output system.
     ②Compared with SVM, LSSVM whose learning algorithm is changed to solve linear equations has widely applied in function estimation and approximation. However, LSSVM is difficult to realize on-line identification for complexity system because it need solve inverse matrix when updating model in dynamic modeling process. Recursive least square support vector machines(RLSSVM) is developed by combining recursive least square(RLS) algorithm with LSSVM. The parameters of model are updated by RLS algorithm. To speed up the computational speed, the number of support vectors is reduced by doing pruning. The accuracy of model and real-time of on-line identification is improved in this method. On-line identification for thermal system inverse dynamic model is realized by RLSSVM. The simulation results show the effectiveness of on-line identification method which is based on RLSSVM for inverse dynamic model.
     ③Because selecting kernel function and its parameters is very complex in LSSVM and T-S fuzzy model has weak generalization performance. Fuzzy modeling method based on LSSVM(FLSSVM) is proposed by combing LSSVM with fuzzy model. FLSSVM is proved that is equivalence with LSSVM. The concept of sliding time widow is adopted in on-line algorithm of FLSSVM, the cluster centers are updated by fuzzy competitive learning algorithm. Different weighs are assigned to the samples in sliding time window according to the sampling time when identifying conclusion parameters. The simulation results of identification for thermal inverse dynamic model show that modeling method based on FLSSVM has good precision and tractability. The model based on FLSSVM also has good generalization ability and adaptability to noise.
     ④An adaptive inverse control system based on inversed dynamic model of FLSSVM is constructed by combining the identification method of inverse dynamic model with adaptive inverse control method. The inverse dynamic model of control object is identified on-line by using FLSSVM, and then the controller is updated in the control process. The output disturbance of system is canceling adaptively with inverse dynamic model based on FLSSVM. Adaptive inverse control systems are designed for superheated steam temperature and unit load of power plant. Simulation results show that the adaptive inverse control system has good control performance and adaptability, and has good disturbance canceling effect.
     ⑤The main problem of present two section control method is ensured according to analyze typical dynamic characteristics of steam temperature in once-through boiler. An adaptive inverse control system is built for feed water and superheated steam temperature in once-through boiler based on inverse dynamic model. The control of feed water and superheated steam temperature is realized through on-line identification for inverse dynamic model. In this control system, the demand of feed water and spray water flow to superheated steam temperature and micro-superheated steam temperature is considered. Simulation results show that the control system is designed has good control performance and adaptability and can void the repeated oscillation phenomena of control variables which appear in present two section control system.
引文
[1]王广军,邓良才,陈红,等.锅炉汽温对象逆动力学过程模糊辨识[J].中国电机工程学报. 2007, 20(8): 76-80.
    [2] Widrow. B. Adaptive inverse control[C]. Second IFAC Workshop on adaptive systems in control and signal processing. Lund, Sweden, plenary paper, Pergamon Press. 1986:1-5.
    [3] Widrow B., Plett G.L. Nonlinear Adaptive inverse control. Proceedings of 36th IEEE conference. Decision Control[C]. San Diego, CA 1997, 2: 1032~1037.
    [4] Du Gang, Zhan Xingqun, Zhang Weiming, et al. Improved filtered-Εadaptive inverse control and its application on nonlinear ship maneuvering[J]. Journal of Systems Engineering and Electronics, 2006, 17(4): 788-792.
    [5] Karshenas A.M., Dunnigan M.W., Williams B.W. Adaptive inverse control algorithm for shock testing[J]. Control Theory and Applications, 2000, 147(3): 267-276.
    [6] Patton R.J. Fault-tolerant control: the 1997 situation[C]. Proc. of IFAC/IMACs Symposium on Fault Detection, Supervision and Safety for Technical Process. Hull, England, 1997: 1033-1055.
    [7] Zhou DH, Frank P.M. Fault Diagnostics and Fault Tolerant Control[J]. IEEE Transanctions on Aerospace and Electronic System, 1998, 34(2): 420-427.
    [8] Wei Rong-Jone, Lin Chih-Min, Hsu Chun-Fei. Self-organizing fuzzy control for motor-toggle servomechanism via sliding-mode technique[J]. Fuzzy sets and Systems, 2002, 131(2): 235-249.
    [9] Lee Yun-Bae, Na Young-Nam. Autonomous guided vehicle control using a self-organizing fuzzy controller[J]. International Journal of Computer Integrated Manufacturing, 2002, 15(1): 62-68.
    [10]方崇智,萧德云.过程辨识[M].北京:清华大学出版社, 1988.
    [11] Yamada, T., Yabuta, T. Dynamic system identification using neural networks[J]. IEEE Transactions on Systems, Man and Cybernetics, 1993, 23(1): 204-211.
    [12] Gillard D.M., Bollinger, K.E. Neural network identification of power system transfer functions[J]. IEEE Transactions on Energy Conversion, 1996, 11(1): 107-110.
    [13] Embrechts, M.J., Benedek, S. Hybrid identification of nuclear power plant transients with artificial neural networks[J]. IEEE Transactions on Industrial Electronics, 2004, 51(3): 686-693.
    [14]刘志远.采用径向基函数神经网络的热工过程在线辨识方法[J].动力工程, 2005, 15(6): 844-848.
    [15] Ren XM, Rad A.B. Identification of nonlinear systems with unknown time delay based on rime-delay neural networks[J]. IEEE Transactions on Neural Networks, 2007, 18(5): 1536-1541.
    [16]林金星,沈炯,李益国.基于免疫原理的径向基函数网络在线学习算法及其在热工过程大范围工况建模中的应用[J].中国电机工程学报,2006,26(9):14-19.
    [17] McCulloch M.S., Pitts W. A logical calculus of the ideas immanent in nervous activity[J]. Bulletin of Mathematical Btophysics, 1990, 52(1): 99-115.
    [18] Hopfield J.J. Neural networks and physical system with emergent collective computational abilities[J]. Proceedings of the National Academy of Sciences of the USA, 1982, 79(8): 2554-2558.
    [19] Hinton G.E., Sejnowski T.J., Ackley D.H. Boltzmann machine: constraint satisfaction networks that learn[R]. Technical Report CMU-CS-84-119, Carneie-Mellon Uni., 1984.
    [20] Ackley D.H., Hinton G.E., Sejnowski T.J. A learning algorithm for boltzmann machines[J]. Cognitive Science, 1988, 9(1): 147-169.
    [21] Rumelhart D.E., McClelland J.L. Parallel Distributed Processing[M]. Cambridge, MA: MIT Press, 1986.
    [22] Broomhead D.S, Lowe D. Multivariable functional interpolation and adaptive networks[J]. Complex System, 1988, 2(4): 321-355.
    [23]周世梁.混沌系统的智能辨识和控制研究[D].保定:华北电力大学博士学位论文, 2006.
    [24] Zadeh L.A. Fuzzy Sets[J]. Information and Control, 1965, 8 (2): 338-353.
    [25] Zadeh L.A. Outline of a new approach to the analysis of complex systems and decision processes[J]. IEEE Transanctions on Systems, Man and Cybernetics, 1973, 3(1):28-44.
    [26]李人厚,张平安.关于模糊辨识的理论与应用问题[J].控制理论与应用, 1995, 12(2): 129-137.
    [27]王宏伟,马广富,王子才.模糊辨识理论与应用研究[J].系统仿真学报, 2000, 12(3): 87-91.
    [28] Mamdani E. Application of fuzzy logic to approximate reasoning using linguistic systems[J]. IEEE Transactions on computers, 1977, 26(12):1182-1191.
    [29] Pedrycz W. An identification algorithm in fuzzy relational systems[J]. Fuzzy Sets and Systems, 1984, 13(2):153-167.
    [30] Perycz W. Applications of fuzzy relational equations for methods of reasoning in presence of fuzzy data[J]. Fuzzy Sets and S ystems, 1985, 16(2):163-175.
    [31]吕剑虹,沈炯.基于模糊规则的热工过程非线性模型研究[J].中国电机工程学报, 2002, 22(11): 132-137.
    [32] Takagi T, Sugeno M. Fuzzy identification of systems and its applications to modeling andcontrol[J]. IEEE Translations on Systems, Man and Cybernetics, 1985, 15(1): 116-132.
    [33] Sugeno M, Kang G. T. Structure identification of fuzzy model[J]. Fuzzy Sets and Systems, 1988,28(1): 15-33.
    [34] Sugeno M, Tanaka K. Successive identification of a fuzzy model and its applications to prediction of a complex system[J]. Fuzzy Sets and Systems, 1991, 42(3): 315-334.
    [35] Cheng, C.M., Rees N.W. Application of the fuzzy dynamical model approach for identification of nonlinear drum-boiler process[C]. Proceedings of the IEEE International Conference on Fuzzy Systems, Newe Orleans, 1996, 8-11.
    [36]陈健勤,席裕庚,张钟俊.模糊规则的学习及其在非线性系统建模中的应用[J].自动化学报, 1997, 23(4): 533-537.
    [37] Babuska R., Roubos J.A., Verbruggen H.B. Identification of MIMO systems by input-output TS fuzzy models[C]. 1998 IEEE International Conference on Computational Intelligence, Anchorage, 1998, 657-662.
    [38]谭悦,孙建平,王建勇,等.非线性模糊辨识新算法及其在热工过程中的应用[J].控制理论与应用, 2005, 24(9):1-4.
    [39] dos Santos Coelho L., Herrera B.M. Fuzzy identification based on a chaotic particle swarm optimization approach applied to a nonlinear Yo-yo motion system[J]. IEEE Transactions on Industrial Electronics, 2007, 54(6): 3234-3245.
    [40] Chiu S.L. Fuzzy model identification based on cluster estimation[J]. Journal of Intelligent and Fuzzy systems, 1994, 2(3): 267-278.
    [41] Chen JQ, Xi YG, Zhang ZJ. A clustering algorithm for fuzzy model identification[J]. Fuzzy Sets and Systems, 1998, 98(3): 319-329.
    [42]王宏伟,詹荣开,贺汉根.基于模糊聚类的改进模糊辨识方法[J].电子学报, 2001, 29(4): 436-438.
    [43]刘福才,关新平,裴润.基于一种新模糊模型的非线性系统模糊辨识[J].控制理论与应用, 2003, 20(1):113-116.
    [44] Leski J.M. TSK-Fuzzy modeling based onε-insensitive learning[J]. IEEE Transactions on Fuzzy Systems, 2005, 13(2): 181-193.
    [45]李益国,沈炯.基于v-支持向量回归的T-S模糊模型辨识[J].中国电机工程学报, 2006, 26(18): 148-153.
    [46] Vapnik V N. The Nature of Statistical Learning Theory[M]. NY: Springer-Verlag, 1995..
    [47]张学工译.统计学习理论的本质[M].北京:清华大学出版社, 2000.
    [48] Cao L.J., Tay F.E.H. Support vector machine with adaptive parameters in financial time series forecasting[J]. IEEE Transactions on Neural Networks, 2003, 14(6): 1506-1518.
    [49]张浩然;韩正之;李昌刚.基于支持向量机的非线性系统辨识[J].系统仿真学报, 2003, 15(1): 119-121.
    [50] Li ST, James T. Wang YN. Texture classication using the support vector machines[J]. Pattern Recognition ,2003,36(12): 2883-2893.
    [51]王春林,周昊,周樟华,等.基于支持向量机的大型电厂锅炉飞灰含碳量建模[J].中国电机工程学报, 2005, 25(20):72-76.
    [52]林勇刚,李伟,崔宝玲.基于SVR增量学习算法的变桨距风力机系统在线辨识[J].太阳能学报, 2006, 27(3):223-229.
    [53]郭建民,刘石,姜凡,等.基于SVM的对冲燃煤锅炉NOX排放特性[J].燃烧科学与技术, 2006, 12(3): 243-247.
    [54] Desai K., Badhe Y., Tambe, S.S., et al. Soft-sensor development for fed-batch bioreactors using support vector regression [J]. Biochemical Engineering Journal, 2006, 27(3):225-239.
    [55] Meng JC, Xia L. Support vector regression model for millimeter wave transitions[J]. International Journal of Infrared and Millimeter Waves, 2007, 28(5):413-421.
    [56] Vapnik V N, Golowich S, Smola A. Support vector method for function approximation, regression estimation, and signal processing[A]. Mozer M, Jordan M, Petsche T eds, Advances in Neural Information Processing Systems[C], MIT Press, 1997, 9: 281-287.
    [57]刘江华,程君实,陈佳品.支持向量机训练算法综述[J].信息与控制, 2002, 31(1): 45-49.
    [58] Cortes C, Vapnik V N. Support vector networks[J]. Machine Learning, 1995, 20(3):273-297.
    [59] Osuna E, Freund R, Girosi F. An improved training algorithm for support vector machines[C]. Proceedings of the 1997 IEEE Workshop on Neural Network for Signal Processing VII, Amelea Island, 1997: 276~285.
    [60] Joachims T. Making large-scale support vector machine learning practical[A]. Scholkopf B,Burges C, Smola A, ed. Advances in Kernel Methods-Support Vector Learning[C], Cambridge, MA: MITPress, 1999: 169~184.
    [61] Platt J. Fast training of support vector machines using sequential minimal optimization[A]. Scholkopf B,Burges C, Smola A, ed. Advances in Kernel Methods-Support Vector Learning[C], Cambridge, MA: MITPress, 1999: 185~208.
    [62] Keerthis S, Shevade S, Bhattacharyya C, et al. Improvements to Platt’s SMO algorithm for SVM classifier design[J]. Neuroal Computation, 2001, 13(3):637-649.
    [63] Chang C.C., Lin C.J. LIBSVM: a library for support vector machines[EB/OL]. 2001, http://www.csie.ntu.edu.tw/~cjlin/libsvm.
    [64] Ahmed N, Syed H, Liu K, et al. Incremental Learning with Support Vector Machines[C]. Proc. International Joint Conferneces on Artificial Intelligence (IJCAI99), Stockholm, Sweden,1999.
    [65] Cauwenberghs G, Poggio T. Incremental and decremental support vector machine learning[C]. Advances in Neural Information Processing 13, Denver, 2000: 409-415.
    [66] Martin M. On-line support vector machines for function approximation(EB/OL). 2002, http://www.lsi.upc.es/~mmartin/svmr.html/.
    [67] Ma J, Theiler J, Perkins S. Accurate on-line support vector regression[J]. Neural Computation, 2003, 15(11): 2683-2704.
    [68] Suykens J.A.K., Vandewalle J.. Least squares support vector machine classifiers[J]. Neural Processing Letters. 1999, 9(3): 293–300.
    [69] Suykens J.A.K., Lukas L., Van Dooren P., et al. Least squares support vector machine classifiers: a large scale algorithm[C], European Conference on Circuit Theory and Design, Torino, Italy, 1999:839-842.
    [70] Chu W., Ong C.J., Keerthy S.S. An improved conjugate gradient method scheme to the solution of least squares SVM[J], IEEE Transanctions on Neural Networks, 2005, 16(2):498–501.
    [71] Keerthi S.S., Shevade S.K.. SMO for least squares SVM formulations[J]. Neural Computation, 2003, 15(2): 487–507.
    [72] Suykens J.A.K., Lukas L., Vandewalle J. Sparse approximation using least squares support vector machines[C]. IEEE International Symposium on Circuits and Systems, Geneva, Switzer 2000: 757-760.
    [73] Kruif B.J., Vries T.J. Pruning error minimization in least squares support vector machines[J]. IEEE Transanctions on Neural Networks, 2005, 16(2): 498-501.
    [74] Kuh A., Wilde P. Comments on“Pruning error minimization in least squares support vector machines”[J]. IEEE Transanctions on Neural Networks, 2007, 18(2): 606–609.
    [75] Zeng X.Y., Chen X.W. SMO-based pruning methods for sparse least squares support vector machines[J]. IEEE Transanctions on Neural Networks, 2005, 16(6): 1541–1546.
    [76] Jiao L., Bo L., Wang L. Fast sparse approximation for least squares support vector machine[J]. IEEE Transanctions on Neural Networks, 2007, 18(3): 685–697.
    [77]崔万照,朱长纯,保文星,等.最小二乘小波支持向量机在非线性系统辨识中的应用[J].西安交通大学学报. 2004, 38(6):562-566.
    [78]朱燕飞,宗源,谭光兴.锌钡白煅烧过程的LS-SVM建模仿真[J].华南理工大学学报, 2004, 32(11):46-50.
    [79]刘涵,刘丁,郑岗,等.基于最小二乘支持向量机的天然气负荷预测[J].化工学报, 2004, 55(5): 828-832.
    [80]李曦,曹广益,朱新坚,等.基于LS-SVM的燃料电池控制建模的研究[J].系统仿真学报, 2005, 17(6): 1360-1363.
    [81]王勇,刘吉臻,刘向杰,谭文.基于最小二乘支持向量机的软测量建模及在电厂烟气含氧量测量中的应用[J].微计算机信息, 2006, 20(10): 241-243.
    [82]杨奎河,单甘霖,赵玲玲.基于最小二乘支持向量机的汽轮机故障诊断[J].控制与决策, 2007, 22(7): 778-782.
    [83] Zhang HR, Wang XD, Zhang, CJ. Using least square SVM for nonlinear systems modeling and control[J]. Asian Journal of Control, 2007, 9(2): 215-220.
    [84] Li C; Wang SL, Zhang XM. Soft sensor modeling for vacuum oil purification machine based on LSSVM[J]. Journal of Advanced Manufacturing Systems, 2008, 7(1): 141-144.
    [85]李春文,冯元琨.逆系统方法及其应用[J].清华大学学报, 1986, 26(2): 105-114.
    [86]李春文,冯元琨.多变量非线性控制的逆系统方法[M].北京:清华大学出版社, 1991.
    [87]戴先中.多变量非线性系统的神经网络逆控制方法[M].北京:科学出版社, 2005.
    [88]陈检根,杨军.逆系统方法在飞行器直接侧力控制中的应用[J].西北工业大学学报, 2000, 18(1):152-155.
    [89]徐骋,强文义,王长.基于逆动力学的飞行器直接力控制系统及其稳定性分析[J].宇航学报, 2008, 29(4): 1308-1313.
    [90]张兴华,戴先中.基于逆系统方法的感应电机调速控制系统[J].控制与决策, 2000, 15(6): 708~711.
    [91]李春文,刘艳红,陈铁军,等.基于逆系统方法的广义非线性系统控制及电力系统应用[J].控制理论与应用, 2007, 24(5): 799-802.
    [92]戴先中,陈珩,何丹.神经网络逆系统及其在电力系统控制中的应用[J].电力系统自动化, 2001, 25(3): 11-17.
    [93]戴先中,孟正大,沈建强.神经网络α阶逆系统控制方法在机器人解耦控制中的应用[J].机器人, 2001, 23(4): 363-366.
    [94]王东风,于希宁.宋之平.制粉系统球磨机的动态数学模型及分布式神经网络逆系统控制[J].中国电机工程学报, 2002, 22(1):97-101.
    [95]于达仁,徐志强,郭洪波.基于神经网络解耦线性化方法的锅炉主汽压力控制[J].中国电机工程学报, 2002, 22(5): 143-147.
    [96]陈庆伟,吕朝霞,胡维礼.基于逆系统方法的非线性内模控制[J].自动化学报, 2002, 28(5): 715-721.
    [97]宋夫华,李平.基于支持向量机α阶逆系统方法非线性内模控制[J].自动化学报, 2007, 33(7): 778-781.
    [98]周涌.非线性系统的神经网络内模控制研究[D].南京:南京理工大学博士学位论文, 2003.
    [99] Widrow B., Walach E..刘树棠,韩崇昭译.自适应逆控制[M].西安:西安交通大学出版社,
    [100] Widrow B., Plett G. L., Ferreira E., et al. Adaptive inverse control based on nonlinear adaptive filtering[C]. Proceedings of 5th IFAC workshop Algorithms arthitectures for real-time control. AARTC’98, Cancun, Mexico, 1998: 247~252.
    [101] Widrow B., Plet t G. L.. Adpative Inverse Control based on linear and nonlinear adaptive filtering[C]. Proceedings of World congress. Neural networks, San Diego, CA, 1996: 620~627.
    [102] Plett G. L.. Adaptive inverse control of unknown stable SISO and MIMO linear systems[J]. International Journal of Adaptive control. Signal Processing, 2002, 16(4): 243~272.
    [103] Plett G. L.. Adaptive inverse control of linear and nonlinear systems using dynamic neural networks[J]. IEEE transactions on neural netoworks, 2003, 14(2): 360~376.
    [104]党映农,韩崇昭.基于Volterra基函数网络的自适应逆控制方法[J].西安交通大学学报, 2000, 34(9):8-12.
    [105] Salman R. Neural networks of adaptive inverse control systems[J]. Applied Mathematics and Computation, 2005, 163(2): 931-939.
    [106] Abonyi J., Andersen H.; Nagy L., et al. Inverse fuzzy-process-model based direct adaptive control[J]. Mathematics and Computers in Simulation, 1999, 51(1): 119-132.
    [107]丁海山,毛剑琴,林岩.基于模糊树模型的自适应直接逆控制[J].自动化学报, 2008, 34(5):574-580.
    [108] Wu,S., Cetinkunt S. Model reference adaptive inverse control of a single link flexible robot[J]. Computers and Structures, 1993, 47(2): 213-223.
    [109]胡文霏,黄金泉.航空发动机自适应逆控制研究[J].航空动力学报, 2005, 20(2): 293-297.
    [110]赵隽,战兴群,张炎华.基于自适应逆控制技术的船舶操纵仿真控制[J].上海交通大学学报, 2003, 37(8): 1168~1171.
    [111] Harnold C.L.M. Lee K.Y., Lee J.H, et al. Free-model based model reference adaptive inverse controller design for power plants[C]. 1999 IEEE Power Engineering Society Summer Meeting, Edmonton, 1999, 1208-1212.
    [112] Mohammadzaheri M., Ley C., Ghaffari A. Design of a training based fuzzy controller for power plant de-superheaters[C]. Information, Decision and Control, IDC '07, Adelaide, 2007, 272-277.
    [113]王广军,邓良才,陈红,等.单元机组负荷对象逆动力学模糊规则在线辨识[J].中国电机工程学报, 2006, 26(25): 71-75.
    [114]陈红,王广军,邓良才.基于逆动力学模糊规则的单元机组协调控制[J].控制与决策, 2008, 23(6): 705-708.
    [115]王广军,朱丽娜,沈曙光.一种基于逆动力学模糊规则的自适应控制方法[J].系统仿真学报, 2008, 20(15):3907-3910.
    [116]吕剑虹,陈来九,模糊PID控制器及在汽温控制系统中的应用研究[J].中国电机工程学报, 1995, 15(1):16-22.
    [117]杨延西,刘丁,高异.火电厂锅炉主汽温模糊免疫PID-Smith预估控制[J].系统仿真学报, 2005, 17(11): 2756-2758.
    [118]张化光,陈来九,徐治皋.一种模糊自校正控制器及其在单元机组汽温过程控制中的应用[J].中国电机工程学报, 1999, 12(1):46-52.
    [119] Liu X.J., Chan, C.W. Neuro-fuzzy generalized predictive control of boiler steam temperature[J]. IEEE Transactions on Energy Conversion, 2006, 21(4): 900-908.
    [120] Prasad G., Swidenbank E.; Hogg B.W. Neural network model-based multivariable predictive control algorithms with application in thermal power plant control [J]. Control and Intelligent Systems, 1999, 27(3): 108-131.
    [121]王勇,刘吉臻,刘向杰,等.基于折息递推最小二乘自适应动态矩阵的过热汽温控制器设计[J].中国电机工程学报, 2007, 27(8):70-75.
    [122]范永胜,徐治皋,陈来九.基于动态特性机理分析的锅炉过热汽温自适应模糊控制系统研究[J].中国电机工程学报, 1997, 17(1); 23-28.
    [123]程启明,王勇浩.基于最小二乘算法的模糊支持向量机控制器及其应用[J].中国电机工程学报, 2007, 27(8): 76-80.
    [124]边立秀,周俊霞,赵劲松,等.热工控制系统[M].北京:中国电力出版社, 2001.
    [125]柴天佑,刘红波,张晶涛,等.基于模糊推理和自适应控制的协调控制系统设计新方法及其应用[J].中国电机工程学报, 2000, 20(4): 14-18.
    [126] Tan W, Marquez H.J., Chen TW. Multivariable robust controller design for a boiler system[J]. IEEE Transactions on Control Systems Technology, 2002, 10(5):735-742.
    [127]房方,刘吉臻,谭文.单元机组协调系统的非线性内模控制[J].中国电机工程学报, 2004, 24(4): 195-199.
    [128]葛友,李春文.反馈线性化方法在锅炉汽轮机系统控制中的应用[J].清华大学学报, 2001, 41(7): 125-128.
    [129] Yu DR, Xu ZQ. Nonlinear coordinated control of drum boiler power unit based on feedback linearization[J]. IEEE Transactions on Energy Conversion, 2005, 20(1):204-210.
    [130]陈彦桥.单元机组模糊多模型协调控制系统研究[D].北京:华北电力大学博士学位论文, 2003.
    [131]张法文.直流炉单元机组自动调节系统[M].北京:水利电力出版社, 1986.
    [132]于达仁,徐志强.超临界机组控制技术及发展[J].热能动力工程, 2001, 16(3): 115-121.
    [133]张学工.关于统计学习理论和支持向量机[J].自动化学报, 2000, 26(1): 32-43.
    [134] Kim E, Park M, Ji. S. A new approach to fuzzy modeling[J]. IEEE Transantions on FuzzySystems, 1997,5(3): 328-337.
    [135]刘兴堂.现代辨识工程[M].北京:国防工业出版社, 2006.
    [136]沈炯,陈来九.基于智能解耦的协调控制系统参数自整定[J].中国电机工程学报, 1993, 13(4): 13~19.
    [137]沈炯,金林,陈来九.火电单元机组负荷最优预见控制系统仿真研究[J].中国电机工程学报, 1999, 19(3): 14-17.
    [138]黄景陶.支持向量机算法参数选择及其在电站锅炉系统中的应用研究[D].杭州:浙江大学博士学位论文, 2005.
    [139] Chapelle O., Vapnik V., Bousquet O., et al. Choosing multiple parameters for support vector machines[J]. Machine Learning. 2002, 46:131-159.
    [140] Steinwart I. On the optimal parameter choice for support vector machines[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2003,25(10):1274-1284.
    [141] Chen YX, Wang JZ. Support vector learning for fuzzy rule-based classification systems[J]. IEEE Transanctions on Fuzzy Systems, 2003, 11(6):716–728.
    [142] LeRski J.M. Anε-insensitive approach to fuzzy clustering[J] International Journal Applicaion Mathematical Computation Science, 2001, 11(4): 993–1007.
    [143] LeRski J.M.ε-insensitive learning techniques for approximate reasoning systems[J]. International Journal Computation Cognition, 2002, 1(1):21–77.
    [144] LeRski J.M.ε-insensitive fuzzy c-regression models: introduction toε-insensitive fuzzy modeling[J]. IEEE Transactions on Systems Man Cybernet—Part B: Cybernet, 2004, 34(1):4–15.
    [145] Chiang J.H., Hao P.Y. Support vector learning mechanism for fuzzy rule-based modeling: a new approach[J]. IEEE Transactions on Fuzzy Systems, 2004, 12(1): 1–12.
    [146] Gomez-Skarmeta A.F., Delgado M., Vila M.A. About the of fuzzy clustering techniques for fuzzy modelI dentification[J]. Fuzzy Sets and Systems, 1999, 106(2):179-188.
    [147] Bezdek, J., Hathaway R., Sabin M., et al. Convergence theory for fuzzy c-means: counterexamples and repairs[J]. IEEE Transactions on Systems, Man and Cybernetics, 1987, 17(5): 873-877.
    [148]王宏伟.基于模糊模型的模糊辨识方法及其应用研究[D].哈尔滨:哈尔滨工业大学博士学位论文, 1999.
    [149]高新波.模糊聚类分析及其应用[M].西安:西安电子科技大学出版社, 2004.
    [150]裴继红,范九伦,谢维信.聚类中心的初始化方法[J].电子科学学刊, 1999, 21(3): 320-325.
    [151]阎威武,常俊林,邵惠鹤.基于滚动时间窗的最小二乘支持向量机回归估计方法及仿真[J].上海交通大学学报, 2004, 38(4): 524-527.
    [152] Pal N. R., Bezdek J.C., Hathaway R.J. Sequential competitive learning and the fuzzy c-means clustering algorithms[J]. Neural Networks, 1996, 9(5): 787-796.
    [153]金以慧.过程控制[M].北京:清华大学出版社, 1991.
    [154]陈来九.热工过程自动调节原理和应用[M].北京:水利电力出版社, 1982.
    [155]王广军,辛国华.热力系统动力学及其应用[M].北京:科学出版社, 1997.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700