用户名: 密码: 验证码:
复合地层中盾构法建设地铁地表沉降规律研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
盾构法目前是地铁隧道施工的主要工法,在世界地铁建设中占据了主要的地位,但施工中不可避免地会对地层产生扰动,引起地表的沉降,对附近建筑物产生影响。本文采用理论分析、现场实测研究和数值模拟的方法,开展了“复合地层中盾构法建设地铁地表沉降规律研究”。通过三种方法的相互补充,相互验证,获得了地表沉降的影响因素及其变化规律,为预测、控制和进一步研究盾构隧道施工引起的地表沉降奠定了基础。
     通过对盾构隧道周围地层的弹性和弹塑性分析,得出“地层损失引起隧道周围地层应力变化是导致地表沉降的主要原因”的结论。分析了地表沉降的主要影响因素,并根据相似理论推导了相应的相似准则,为进一步通过数值模拟和实测研究获得地表沉降的变化规律创造了条件。
     运用表述矿山巷道压力的普氏理论,结合广州地区岩土复合地质条件和地表沉降实测数据,分类研究了盾构隧道免压拱高度,为地表沉降是否发生提供了前瞻性的判定方法。研究表明:普氏免压拱对隧道地表沉降具有很大的影响——能够形成免压拱的地层,地表最大沉降小,沉降范围小,沉降曲线和缓;反之地表的变化情况则相反。
     通过研究盾构推进过程中“沉降槽”随时空的变化规律来寻求地表沉降计算公式,改变了地表沉降传统的“沉降盆”(变形场)研究模式,并将该思路应用于实测研究和数值模拟研究。
     运用实测研究手段,结合广州地铁三号线【珠-客】区间盾构工程实测数据,采用相似准则从空间和时间的四维角度对盾构隧道施工引起的地表沉降进行了研究,得出了反映地表沉降的简洁有效的拟合方程(1),首次总体
     反映了盾构施工导致的地表沉降在四维空间的连续变化规律,只要“隧道两侧地表沉降观测点与隧道中线的距离”以及“盾构机通过监测断面后的推进时间及推进距离”与“隧道所处地层性质及埋深”确定,通过拟合方程都将推导出类似的地表沉降规律,对广州地区盾构施工引起的地表沉降预测具有借鉴意义。
     运用Ansys有限元软件建立了盾构推进过程的四维有限元模型,分析了隧道轴线??断面“沉降槽”的变化规律,由此确定地表沉降的分布形式;推导了地表沉降量及其分布与各影响参数间关系的计算公式,实际工程中可采用此公式对实测数据进行拟合。
     通过数值模拟和实测研究得到的地表沉降变化规律,与工程实际情况能很好地吻合,可以利用地表沉降的前期实测数据反演方程系数(或借用相近似地层中的有关参数),通过不断增加的实测数据进一步修正方程系数,从而较好地预测盾构隧道中后期地表沉降变化规律和最终沉降量。
     最后,将本论文的研究成果应用在深圳地铁的相关工程并通过对比研究发现:在取得地表沉降的初期实测数据后,可以计算和预测地表沉降的变化规律和最终沉降量;参与拟合的初期实测数据越多,计算与预测结果越接近后期实测结果。这对于指导工程施工、及早采取有效措施控制地表沉降具有重大意义。
Shield tunnel method is one of the major methods of subway construction which occupies a dominated position in the underground construction in the world. However, shield tunnel construction could inevitably cause some disturbances on the stratum by causing the ground surface subsidence which has an negative impact on nearby buildings and infrastructures. In this thesis, theoretical analysis, field measurement and numerical simulation study methods are used to launch the research regarding“the ground surface subsidence induced by shield tunnel during underground constructing”.
     Through these three methods which complement and verify each other, this research reached to the influencing factors and their changing laws of the ground surface subsidence, which lays the foundation for predicting, controlling and further studying the ground surface subsidence induced by shield tunnel. In specifics:
     Through the elastic and plastic analysis of the stratum around the shield tunnel, this research gained the conclusion that‘the stress change caused by the stratum loss is the main reason causing the ground surface subsidence’. Then, the main influencing factors of ground surface subsidence were analysed. According to the similar theory, the similar criteria of calculating the ground surface subsidence was deduced which created basic theoretical conditions for both numerical simulation and field measurement of the further studying on ground surface subsidence.
     Based on the M.M. PROMOJIYFAKONOV theory which was used to state the mine roadway plats pressure, and combined with th??ological conditions and the measured ground surface subsidence data from compound stratum with rock and soil in Guangzhou, this research studied the height of the arching effect of shield tunnel which provides a predicting method to determine whether the ground surface subsidence will happen or not. Research showed that: the arching effect has great influence on the ground surface subsidence caused by shield tunnel——if the arch can be formed in stratum, the largest subsidence will be small, the affected subsidence scope will be limited, and the curve of subsidence will be gentle; on the contrary, all reversed.
     The research derived the formula for calculating the value of ground surface subsidence by studying the changes of“subsidence trough”with time and space during shield promoting, which brakes through the troditional research model of“subsidence basins“(deformation). This method then were used in the measured analysis and numerical simulation study of subsidence.
     By adopting the similar criteria to study the ground surface subsidence induced by the shield tunnel from the perspective of four-dimensional (3Dspace and time), the measured data are analysed which are from the shield project of ZHU-KE area within the third line of Guangzhou Subway. A simple and effective equation S ? ke? k X?e?kL which is the first formula reflecting the continuous dynamic changes of the ground surface subsidence in the four-dimensional space.was regressed from the data analysis. By this equation, once“the distance between the points of the settlement monitoring on the tunnel’s both sides and the center line of the tunnel”,“the promoting time and length after the shield machine crossed the monitoring section”and“the stratum’s attribute and depth of the tunnel”are available, it is possible to derive the similar ground surface subsidence rule. This research result can be used for predicting the ground surface subsidence induced by the shield tunnel in Guangzhou area.
     The finite element software ANSYS was used to build a four-dimensional dynamic finite element model to simulate the process of shield promoting. This model analysed the changing law of“subsidence trough”in the transect section on tunnel axis thus to determine the shape of the ground surface subsidence;. This model was also used to derive the calculating formula between the ground surface subsidence value and its distribution with impact parameters. All these foundations can be used to regress the measured data.
     The law of the ground surface subsidence gained from numerical sim??ion and practical study inosculated well with the actual situation of the project. These law can be used to predict the latter and final settlement value through the coefficients regressed from the pre-measured data (or use relevant parameters of similar stratum for reference).
     Finally, the research results of this thesis were used to comparatively study the project of Shenzhen subway which which shows that,: once the parameters in the early stages of construction are gained, it is possible to calculate and predict the law and the final value of the ground surface subsidence, the predict results could be further improved by more pre-measured data. These research results have great significance in guiding construction and in early control of the subsidence.
引文
[1]周文波.盾构法隧道施工技术及应用[M].北京:中国建筑工业出版社,2004年.
    [2]孙钧.地下结构(上、下)[M].北京:科学出版社,1991年.
    [3]尹旅超等译.日本盾构隧道新技术[M].武汉:华中理工大学出版社,1999年.
    [4]刘建航.盾构法隧道[M].北京:中国铁道出版社,1991年.
    [5] Yukinori Koyama. Present status and technology of shield tunneling method in Japan. Tunneling and Underground Space Technology, 2003(18):145-159.
    [6]朱伟.盾构隧道基本原理及在我国的使用情况[J].岩土工程界,2001年.
    [7] Peck R B, Yeates. Tunneling in soils10th ICSMFE [J], Stockholm:607-628.
    [8] Attewell P B. Engineering contract, site investigation and surface movements. In tunneling works [J]. In soft ground tunneling A.A.Balkema, 1981:5-12.
    [9] Attewell P B. Ground movements caused by tunneling in soil. Proceeding of first Conference on large Ground Movements and Structures, edited by Geddes J D, Cardiff 1978: 812-948.
    [10]白云.盾构引起的土体扰动和变形分析.上海隧道[J],2001. (1).
    [11]孙钧.盾构施工扰动与地层移动及其智能神经网络预测[J].岩土工程学报,2001.(5)
    [12]张志勇.盾构施工对周围环境影响研究综述[J].现代隧道技术,2002年第39卷第2期:7-11.
    [13] K.M.Lee, H.W.Ji, J.H.Liu. A case of ground control mechanism of EPB shield tunneling in soft clay. Geotechnical Aspects of Underground Construction in soft ground. Tokyo, 1999.
    [14] Clough G.W. EPB shield tunneling in mixed face conditions. Journal of Geotechnical Engineering, ASCE, 1993, 119(10).
    [15]侯学渊.软土工程施工新技术[M].合肥:合肥科技出版社,1999.
    [16] Phienwej N. Ground movements in shield tunneling in Bangkok soil [A]. In: Pr??f the Fourteenth International Conference on soil Mechanics and Foundation Engineering[C].Hamburg:A.A.Balkema, 1997.
    [17]赵运臣.广州地铁二号线某区间盾构工程地表沉降监测[J].西部探矿工程.2002(3).
    [18] Fang,Y.-S.Lin S.-J.Time & settlement in EPB shield tunneling [ J ] .Tunnels & tunneling,25(November 1993),27-28.
    [19]璩继立.盾构施工引起的地面长期沉降研究[D].上海:同济大学,2002.
    [20]胡坚.盾构法隧道的纵向沉降问题[J].上海地质,2000年第3期.
    [21]沈培良.上海地区地铁隧道盾构施工地面沉降分析[J].河海大学学报(自然科学版),2003年9月.
    [22]阳军生.挤压式盾构隧道施工引起的地表移动及变形[J].岩土力学,1998年第19卷第3期:10-13.
    [23]施成华.盾构法施工隧道纵向地层移动与变形预计[J].岩土工程学报,2003年第25卷第5期:586-589.
    [24]施成华.随机介质理论在盾构法隧道纵向地表沉陷预测中的应用[J].岩土力学,2004年第25卷第2期:320-323.
    [25]朱忠隆.软土隧道纵向地表沉降的随机预测方法[J].岩土力学,2001年第22卷第1期:56-59.
    [26]孙洪涛.盾构法施工地层移动分析的模糊数学模型[J].西部探矿工程,2000年第6期:73-75.
    [27] Ghaboussi J, Ranken R E and Karshenas M. Analysis subsidence over soft ground tunnels. Evaluation and Prediction of subsidence. Edited by Saxena, Published by ASCE, New York: 1978: 182-196.
    [28] Ghaboussi J, Hansmire W H, Parker H W. Finite element simulation of tunnelling over subways[J]. Journal of Geotechnical Engineering, 1983, 109(3): 318-334.
    [29]苏海东.盾构法隧洞的平面非线性有限元分析[J].长江科学院院报.2000年第17卷第4期:22-26.
    [30] Ito T and Histake K.隧道掘进引起的三维地面沉陷分析[J].隧道译丛,1985,(9): 46-55.
    [31] Ghaboussi J, Hansmire W H, Parker H W. Finite element simulation of tunnelling over subways[J]. Journal of Geotechnical Engineering, 1983, 109(3): 318-334.
    [32] Lee K M, Rowe R K. Finite element modeling of the three-dimensional ground deformations due to tunnelling in soft cohesive soils: pant I-method of analysis[J]. Computers and Geotechnics, 1990, (10): 87-109.
    [33] Lee K M, Rowe R K. Finite element modelling of the three-dimensional ground deformations due to tunnelling in soft cohesive soils: part II-results[J]. Computers and Geotechnics, 1990. 10: 111-138.
    [34] Lee K M, Rowe, R. K. An analysis of three-dimensional ground movements: The thunder ba??nnel[J]. Canadian Geotechnical Journal, 1991, 28: 25-41.
    [35] Ezzeldine, Estimation of the Surface Displacement Field due to Construction of Cairo Metro Line El Khalafawy-St.Therese, Tunnelling and Underground Space Technology, 1999,14(3): 267-279.
    [36] G.Swoboda, A.Abu-Krisha, Three-Dimensional Numerical Modeling for TBM Tunnelling in Consolidated Clay, Tunnelling and Underground Space Technology, 1999,14(8): 327-333.
    [37]朱合华.盾构隧道施工力学性态模拟及工程应用[J].土木工程学报,2000年第33卷第3期:98-103.
    [38]潘景副.北京地铁五号线盾构法隧道施工的三维有限元数值模拟[J].岩土工程界,第七卷第7期:79-80.
    [39]王善勇.地铁开挖对地基沉降影响的数值分析[J].东北大学学报(自然科学版),2002年第23卷第9期:887-890.
    [40]李强.盾构千斤顶推力变化对地面变形的影响[J].地下空间,2002年第22卷第1期:12-15.
    [41]于宁.盾构施工仿真及其相邻影响的数值分析[J].岩土力学,2004年第25卷第2期:292-296.
    [42]于宁.盾构隧道施工地表变形分析与三维有限元模拟[J].岩土力学,2004年第25卷第8期:1330-1334.
    [43]孙钧.盾构施工扰动与地层移动及其神经网络预测[J].岩土工程学报,2001年.
    [44]曾晓清.地铁工程双线隧道平行推进的相互作用及施工力学的研究[D].上海:同济大学,1995年.
    [45]凌贤长.盾构施工触发隧道周围土体位移变化规律的数值模拟分析[J].中国公路学报,2003年4月.
    [46]凌贤长.隧道盾构法掘进触发二次地应力分布规律研究[J].哈尔滨工业大学学报.2003年第35卷第4期:428-432.
    [47]张玉军.拟建武汉地铁盾构法施工的有限元数值模拟[J].岩土力学,2001年3月.第22卷第1期:51-55.
    [48]刘洪洲.软土隧道盾构推进中地面沉降影响因素的数值法研究[J].现代隧道技术,2001年10月.第38卷第6期:24-28.
    [49]刘元雪.盾构法隧道施工数值模拟[J].岩土工程学报,2004年第26卷第2期:239-243.
    [50]朱忠隆.盾构法施工对地层扰动的试验研究[J].岩土力学,2000年第21卷第1期:49-52.
    [51]易宏伟.静力触探在盾构施工对土体扰动研究中的应用[J].世界隧道,2000年第2期:7-10.
    [52]易宏伟.盾构法施工中土体扰动的静力触探试验研究[J].武汉城市建设学院学报,1999年第16卷第2期:39-43.
    [53]易宏伟.盾构施工对软粘土的扰动机理分析[J].同济大学学报,2000年第28卷第3期:277-281.
    [54]张庆贺.盾构推进引起土体扰动理论分析及试验研究[J].岩石力学与工程学报,1999年第18卷第6期:699-703.
    [55]蒋洪胜.盾构掘进对隧道周围土层扰动的理论与实测分析[J].岩石力学与工程学报,2003年第22卷第9期:1514-1520.
    [5??开达.软土地基盾构推进力和管片摩阻力的测试研究[J].建筑施工,1995年第五期:30-33.
    [57]徐永福.盾构掘进对周围土体力学性质的影响[J].岩石力学与工程学报,2003年第22卷第7期:1174-1179.
    [58]龚玉锋.盾构法施工过程中技术问题的分析研究[J].水利水电快报,2000年第22卷第9期:23-25.
    [59]张荣国.盾构法施工的几点问题及其发展方向[J].国外建材科技,2004年第25卷第4期:123-124.
    [60]沈永东.临江过江隧洞盾构掘进的问题与对策[J].世界隧道,1998年第3期:48-52.
    [61]王洋.盾构过江隧道浅覆土区域施工安全防范措施[J].建筑安全,2005年第6期:14-16.
    [62]叶作楷.盾构过珠江施工技术[J].西部探矿工程,2005年第6期:116-118.
    [63]罗伟雄.盾构法过江施工的风险及对策[J].广东建材, 2005年第9期:67-69.
    [64]丁春林.地应力释放对盾构隧道围岩稳定性和地表沉降变形的影响[J].岩石力学与工程学报,2002年第21卷第11期:1633-1638.
    [65]郑坚.在软土层中应用盾构法施工的关键技术研究[J].建筑施工,2000年第6期:53-56.
    [66]唐益群.上海地铁盾构施工引起地面沉降的分析研究(三)[J].地下空间,1995年第15卷第4期:250-258.
    [67]周杜鑫.盾构掘进参数与地面沉降控制[J].建筑施工,1994年第6期:16-20.
    [68]刘招伟.地铁隧道盾构法施工引起的地表沉降分析[J].岩石力学与工程学报,2003年第22卷第8期:1297-1231.
    [69]刘招伟.城市地铁盾构法施工引起的地表沉降的研究[D].北京:北方交通大学,2002年.
    [70]张云.盾构法隧道引起的地表变形分析[J].岩石力学与工程学报,2002年第21卷第3期:388-392.
    [71]张云.盾构法隧道的位移反分析及其工程应用[J].南京大学学报(自然科学).2001年第37卷第3期:354-341.
    [72]张云.土质隧道土压力和地层位移的离心模型试验及数值模拟研究[D].南京:河海大学,2000年.
    [73]杨冠天.盾构隧道周围地层位移分析[D].北京:北京交通大学,2004年.
    [74]季亚平.考虑施工过程的盾构隧道地层位移与土压力研究[D].南京:河海大学,2004年.
    [75] Resendiz D, Romo M P. Setlement upon soft ground, tunneling, theoretical solution. 1981: 65-74.
    [76] Rowe R K, Lee K M. An evaluation of simplified techniques for estimating three-dim??onal undrained ground movements due to tunneling soft soils [J].Canadian Geotechnical Journal, 1992, 29: 39-52.
    [77] Lee K M, Rowe R K. Analysis of three-dimensional ground movements: the Thunder Bay tunnel [J].Canadian Geotechnical Journal, 1992, 28: 25-41.
    [78] Lee K M, Rowe R K. Lo K Y. Subsidence owing to tunneling. I.estimating the gap parameter[J].Canadian Geotechnical Journal, 1992, 29: 39-52.
    [79] Lee K M, Rowe R K. Subsidence owing to tunneling. II. evaluation of a prediction technique[J].Canadian Geotechnical Journal, 1992, 29: 941-954.
    [80] Mair R J, Gunn M J and Oreilly M P.软粘土中浅埋隧道周围地层运动[J].隧道译丛,1983, (10): 47-53.
    [81]程展林.砂基中泥浆盾构法隧道施工开挖面稳定性试验研究.长江科学院院报,2001年第18卷第5期:53-55.
    [82]张庆贺.上海软土盾构法隧道的理论和实践[J].同济大学学报,1998年第26卷第4期:387-392.
    [83]张厚美.广州地铁2号线区间隧道盾构施工引起的地面沉降规律分析.桥梁与隧道工程网,2005.9/2006.4.
    [84]张书丰.地铁盾构隧道施工期地表沉降监测研究[D].南京:河海大学.2004年
    [85] GB 50007-2002.建筑地级基础设计规范[S].
    [86]马保松、D.Stein等.顶管和微型隧道技术[M].北京:人民交通出版社,2004.
    [87]徐芝纶,弹性力学,高等教育出版社,1990
    [88]李世平,岩石力学简明教程,中国矿业大学出版社,1996
    [89]何满潮.软岩工程力学〔M].北京:科学出版社,2001.
    [90]崔广心.相似理论与模型试验[M].徐州:中国矿业大学出版,1990
    [91]徐秉业,刘信声.应用弹塑性力学[M].清华大学出版社,1995
    [92] Shiniehiro Imamura, Toshiyuki Haglwara, Kenji Mito, Toshi~Nomoto, Osamu Kusakabe. Settlement trough above a model shield observed in a centrifuge. Centrifuge 98, 1998(Sept):317~719
    [93] Nomoto T, Imamura S, Hagiwara T, et al. Shield tunnel construction in centrifuge [J]. J Geotech. & Geoenvir. Eng., 1999, 125:289~300
    [94] Wu B R,Chiou S.Y,Lee C J,et al.Soil movement around parallel tunnels in soft ground[A].In:Centrifuge (98 Conference[C].Tokyo:[s.n.],1998.739-744.
    [95] Saeed Moaveni著,欧阳宇,王菘等译.有限元分析——ANSYS理论于与应用.北京,电子工业出版社,2004.1
    [96]吉小明,张选兵,白世伟.浅埋暗挖地铁隧道开挖过程的模拟研究[J].岩土力学,2002:828-830 ??[97]中华人民共和国国家标准.工程测量规范(GB50026-2007).北京:中国建筑工业出版社,2007
    [98]中华人民共和国国家标准.建筑变形测量规范(JGJ8-2007).北京:中国建筑工业出版社,2007
    [99]中华人民共和国国家标准.建筑地基基础设计规范(GB50007-2002).北京:中国建筑工业出版社,2002
    [100]中华人民共和国国家标准.地下铁道工程施工及验收规范(GB50299-2002).北京:中国建筑工业出版社,2002
    [101]中华人民共和国国家标准.盾构法施工及验收规范(GB50446-2008).北京:中国建筑工业出版社,2008

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700