用户名: 密码: 验证码:
多孔介质隧道围岩稳定性分析的程序研发与应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
土体本构模型的建立直接影响数值计算结果,在前人研究的基础上,本论文针对多孔介质,建立了固-液-气三相耦合状态下的本构方程,设计了弹塑性变形的积分求解算法,编制了大型有限元数值计算程序;以多孔泥质页岩隧道为研究对象,探讨了渗水作用下,多孔土体质的软弱围岩隧道发生变形的内涵以及变形特征,其主要成果有:
     (1)基于非线性连续力学以及混沌理论,建立了多孔介质中,三相形变和应变集中的数学和力学本构模型。从质量守恒、动量守恒和能量守恒三大物理定律出发,建立了固-液-气三相耦合本构模型;并从有效应力σ~*与固相矩阵形变ε、饱和度S_r与吸力s、三相状态中固有质量密度与固有压力p_α以及相关联的流动法则与固有压力之间的发展方程这四个方面,详细阐述了本构关系模型;基于达西定律,进行了本构模型孔隙水压力的修正,通过Piola转换,得到了相关流体向量的拉格朗日完全形式。
     (2)对非线性准则下的弹塑性本构关系进行积分求解,得到了其增量表达形式,设计了迭代求解算法。通过引入牛顿迭代-预条件共轭梯度法的复合算法来进行有限元计算中大型刚度矩阵的迭代求解,编制了算法程序,并进行了与传统Newton迭代法相比较的效率分析;给出了土体产生局部化变形时的数值表达,即计算高斯点的第一切线算子为零,为判断土体变形发生的数值计算提供了理论依据,从而能够模拟出岩土体发生局部化变形的发展过程。
     (3)编写了基于有限元理论大型有限元计算软件SN-2D,实现了本构模型的有限元程序化。开发了FORTRAN语言平台的大型有限元数值计算程序以及Q9P4数值模拟单元,并实现了与Matlab的程序对接,实现了计算程序的图形输出功能。
     (4)通过开发的SN-2D有限元分析软件,进行了多孔渗水砂土和泥质页岩隧道的数值模拟分析,揭示了多孔渗水介质变形的内涵。模拟了非饱和砂土在不排水平面应变压缩下局部变形带的形成和发展过程,讨论了所编写程序的网格尺寸效应;分析了多孔泥质页岩隧道围岩变形的规律和应力特征。
     (5)对多孔渗水泥质页岩隧道围岩的变形进行了数值分析与实测的对比分析。分别对围岩内部位移量测、围岩与初期支护之间接触压力量测、型钢支撑与格栅支撑内力量测、喷射混凝土层应力量测以及模筑混凝土二次衬砌内力量测数据进行了分析讨论;研究了多孔渗水泥质页岩隧道的变形破坏成因、变形破坏特点、失稳破坏机理和破坏形式,得出了多孔介质隧道围岩的破坏机理,即多孔结构在渗水环境下的损伤扩容、剪胀引起隧道的收敛变形。
     (6)在程序实现、数值模拟和现场实测的基础上,研究了隧道围岩的变形预测。将隧道围岩变形预测分为超前预测和过程预测两个部分的基础上,引入了基于粘、弹、塑性理论的切向应变超前预测方法,采用等维灰数递补数据处理技术建立等维灰数递补GM(1,1)模型来对灰色GM(1,1)模型进行修正,预测结果能较为真实地反映现场实测数据。
The constitutive model of the soil mass determines the computation results greatly in the numerical Geomechanics. Based on the former researches, this dissertation presents a constitutive relations coupling with the solid-fluid-air for the porous medium, and designs a new integration arithmetic for elasto-plastic deformation, and then a finite element program is coded by FORTRAN. Utilizing a porous argillaceous shale tunnel as the research project, the deformation mechanism of the surrounding wall mass in porous tunnel is studied systematically. The main contents are as follows:
     (1) The governing three-phase mathematic and mechanics model about the deformation and strain localization is derived in porous medium from nonlinear continuum mechanics and mixture theory. According from mass balance equations, momentum balance equations and energy balance equations, the solid-fluid-air model is set up. These constitutive laws relate: the evolution of the constitutive effective stressσ~* with imposed solid matrix deformations; the degree of saturation s_r with suction stress s; the intrinsic mass densities with intrinsic pressure on all three phase; and the relative flow vector with intrinsic pressure p_αfor the water and air phase. Also, the fully Lagrangian form of the Darcy law is resolved by Piola algorithm and then the flow law is gained, leading to the implementing of a modified pore water pressure in the constitutive model.
     (2) An improved stress integration algorithm is proposed based on the nonlinear elasto-plastic constitutive laws, and then a new iterative algorithm is designed here. The dissertation introduces the Newton-PCG (Preconditioned Conjugate Gradient) composite algorithm to solve the iterative algorithm in large-scale problems with huge stiffness matrixes, which is coded by FORTRAN program, together with an efficiency analysis compared with standard Newton's iterative method. Next the necessary condition for localization is obtained by introducing the first tangent operator, which presents a theoretical basis in deformation simulation.
     (3) A large-scale finite element numerical software is written based on the FEM theory, leading the code implementing of the above constitutive relation frame. This dissertation presents a systemic numerical computational program with the FORTRAN language, as well as the Q9P4 numerical simulation element. Next this program is interfaced with Matlab, which leads to the implementing of figure output.
     (4) The deformation behavior of the porous sand and argillaceous shale tunnel are simulated with the self-written FEM program. Numerical simulation on saturated sand under the undrained condition is performed to study the onset and development of the shear band, and the mesh sensitivity is studied. Next the deformation and the stress of the soft argillaceous shale under construction are simulated to study the deformation behavior of porous medium.
     (5) The dissertation presents comparative analysis between the numerical simulation and in-situ testing in a porous argillaceous shale tunnel. The inner displacement of the surrounding rock mass, the contact pressure between the surrounding rock and the primary support, the force between the steel support and the grating support, the force of the primary support and the force of the secondary support, are all studied here according to the in-situ testing data. Then we systematically discuss the deformation failure condition, deformation failure character, instability failure mechanism and failure mode, leading to the study of tunnel deformation mechanism.
     (6) Based on the coding, numerical simulation and in-situ testing, this dissertation develops the prediction researches on tunnel deformation. Systematic advanced prediction and process prediction researches into tunnel deformation are carried out, based on the solid mechanics theory and the grey systems theory; especially in process prediction, we adopt the data processing of filling vacancies in the proper order and establish the A GM (1,1) model to modify the grey GM (1,1) model. The prediction well matches the in-situ testing data when this method is applied in the Guankouya tunnel.
引文
[1] Hao, Y.H., Azzam, R.. The plastic zones and displacements around underground openings in rock masses containing a fault [J]. Tunnelling and Underground Space Technology, 2005(20), 49-61.
    [2] Peng, L.M, Huang, L.C., Shi, C.H. Safety Evaluation about Existing Underground Shelter Cave during Constructing of High Building Foundation[C]. Progress in Safety Science and Technology Volume 4. Shanghai, China, Science Press, 2004.10. 2052-2056.
    [3] Addenbrooke, T.I., Potts, D.M., Puzrin, A.M., 1997. The influence of prefailure soil stiffness on the numerical analysis of tunnel construction[J]. Geotechnique 47 (3), 693 - 712.
    [4] Bakker, J.K.. Soil retaining structures, development of models for structural analysis[D]. PhD thesis, Technical University of Delft, 2000.
    [5] Karakus, M.. Appraising the methods accounting for 3D tunnelling effects in 2D plane strain FE analysis[J]. Tunnelling and Underground Space Technology 2007(22), 47 - 56.
    [6] Sulem, J, Panet, M, Guenot, A. An analytical solution for time-dependent displacement in a circular tunnel[J]. Int J. Rock Mech Mi Sci & Geomech Abstr, 1987,24(3):155-164.
    [7] Stille H, Holmoery M, Mord G. Support of week rock with grouted bolts and shoterete[J]. Int J Rock Mech Mi Sci & Geomech Abstr, 1989, 26(l):99-103.
    [8] Anagnostou G A Model for Swelling Rock in Tunneling. Rock Mechanics and Rock Engineering, 1993,26 (4): 307-331.
    [9] Aydan O., Akagi T. & Kawamoto. T. The Squeezing Potential of Rocks Around Tunnels; Theory and Prediction. Rock Mechanics and Rock Engineering, 1993, 26:137-163.
    [10] Lade P V. Elasto plastic stress strain theory for cohesionless soil with curved yield surface[J]. Int J Soilds Struct, 1977,13:1019-1035.
    [11] Agar J G, Morgensteren N R, Scott, J. Shear strength and stress strain behaviour of Athabasca oil sand at elevated temperatures and pressure[J]. Can GeotechJ 1985, 24(1):1-10.
    [12] Santarelli F. Theoretical and experimental investigation of the stability of the axisy metric borehole[D].University of London,1987.
    [13]Ghaboussi,J,Yun,G.J.;Hashash,Y.M.A.A novel predictor-corrector algorithm for sub-structure pseudo-dynamic testing[J].Earthquake Engineering and Structural Dynamics,2006,10:453-476.
    [14]Ito,Daisaku,Evaluation of miscibility of 4-substituted polystyrene polydiene blends[J].Polymer Preprints,Japan,Japan,2005,10:3460-3461.
    [15]Ghaboussi,Jamshid Source.New method of reduced order feedback control using genetic algorithms[J].Earthquake Engineering & Structural Dynamics,1999,2:193-212.
    [16]Rowe,R.K.,Lee,K.M.Finite element modelling of the three-dimensional ground deformations due to tunnelling in soft cohesive soils.Part Ⅰ-method of analysis.[J].Source:Computers and Geotechnics,1990,2:87-109.
    [17]Lee,K.M.,Rowe,R.K.Analysis of three-dimensional ground movements[J].Canadian Geotechnical Journal,1991,28:25-41.
    [18]何满潮.软岩隧道工程概论[M].徐州:中国矿业大学出版社,1993:83.
    [19]罗清明,李亮,杨小礼.软岩隧道的围岩变形计算[J].长沙铁道学院学报,2003,21(2):14-18
    [20]张志强,关宝树.软弱围岩隧道在高地应力条件下的变形规律研究[J].岩土工程学报,2000,22(6):696-700.
    [21]李永林.二郎山隧道在高地应力条件下大变形破坏机理的研究及治理原则[J].公路,2000,12:2-5.
    [22]张祉道.关于挤压性围岩隧道大变形的探讨和研究[J].现代隧道技术,2003,40(2):5-12.
    [23]杨英杰,张清.人工神经网络在岩石工程系统RES中的应用[J].铁道学报,1997,19(2):68-74.
    [24]冯夏庭,张治强,杨成祥,林韵梅.位移反分析的进化神经网络方法研究[J].岩石力学与工程学报,1999,18(5):497-502.
    [25]黄文熙.土的工程性质[M].北京:水利电力出版社.1983.
    [26]Oda,M.,Konishi,J.Microscopic defonnation mechanism of granular material in simple shear[J].Soil and Foundations,1974,14(4):25-38.
    [27]Matsuoka,H,A.microscopic study on shear mechanism of granular materials[J].Soil and Foundations,1974,14(1):29-43.
    [28]Matsuoka,H.Stress-strain relationships of sands based on the mobilized plane[J]. Soil and Foundations,1974,14(2):47-61
    [29]松岗元(著).罗汀,姚仰平(编译).土力学[M].北京:中国水利水电出版社,2001.
    [30]沈珠江.土体结构性的数学模型一21世纪土力学的核心问题[J].岩土工程学报,1996,18(1):95-97.s
    [31]沈珠江.土体变形特性的损伤力学模拟.第五届全国岩土力学数值分析与解析方法的讨论会论文集(第一卷)[M].武汉:武汉测绘科技出版社,1994:1-8.
    [32]Desai,C.S.,Shao,C.,Park,I.J.Disturbed state modeling of cyclic behavior of soil and interface in the dynamic soil structure interaction[M].9th International Conference ComPuter Methods and Advances in Geomechanics,wuhan,1997,(1):31-42.
    [33]赵锡宏,孙红,罗冠威.损伤土力学[M].上海:同济大学出版社,2000.
    [34]沈珠江.结构性粘土的堆砌体模型[J].岩土力学,2000,21(1):1-4.
    [35]Duncan,J.M.,Chang,C.Y.Nonlinear analysis of stress and strain in soil[J].Joumal of the Soil Mechanics and Foundations Division,1970,96:1629-1653
    [36]沈珠江.理论土力学[M].北京:中国水利水电出版社,2000.
    [37]李海波.岩土力学连续介质本构模型研究[D].哈尔滨工程大学,1995,2004.
    [38]Drucker,D.C.,Gibson,R.E.,Henkel,D.J.Soil mechanics and work-hardening theories of Plasticity[J].Transactions ASCE.1957,122:338-346.
    [39]Chang,C.Y,Duncan,J.M.Analysis of soil movement around a deep excavation[J].Joumal of the Soil Mechanics and Foundations Division,1970,96:1655-1681.
    [40]屈智炯.土的塑性力学[M].成都:成都科技大学出版社,1987.
    [41]Chen,W.F.,Saleeb,A.F.Constitutive equations for engineering materials Vol.1:Elasticity and modeling[M].John Wiley-Interscience,New York,1982.
    [42]Domaschuk,L.ValliapPan,P.Nonlinear settlement analysis by finite element[J].Joumal of the Soil Mechanics and Foundations Division,1975,101:601-614.
    [43]Izumi,H.,Kamemura,K.,Sato,S.Finite element analysis of stresses and movements in excavations[J].Intemational Joumal for Numerical Analytical Methods in Geomechanics,1976,1:701-712.
    [44]沈珠江.考虑剪胀性的土和石料的非线性应力应变模式[J].水利水运科学研究,1986,4:1-14.
    [45]Chen,W.F.,Mizuno,E.Nonlinear analysis in soil mechanics-Theory and Implementation[M],Elsevier Science Publishers B.V,Amsterdam,1990.
    [46]Chen,W.F.Constitutive equations for engineering materials Vol.2:Plasticity and modeling[M].Elsevief,Amsterdam,1994.
    [47]Coufomb,C.A.,朱百里(译).极大极小原理在建筑静力学中的应用[J],岩土工程学报,1993,15(6):110-121.
    [48]Drucker.D.C.,Prager,W.Extended limit design theorems for continuous medium[J],Quarterly of APPlied Mathematics,1952,9:381-389
    [49]Drucker,D.C.,Prager,W.Soil mechanics and plastic analysis or limit design[J],Quarterly of APPlied Mathematics.1952,10:157-165.
    [50]黄文熙.土的弹塑性应力一应变模型理论[J].清华大学学报,1979,19(1):1-26.
    [51]黄文熙.硬化规律对土的弹塑性应力-应变模型影响的研究[J].岩土工程学报,1980,2(1):1-12.
    [52]黄文熙,淮家骆,陈愈炯.土的硬化规律和屈服函数[J].岩土工程学报,1981,3(3):19-27.
    [53]Dimaggio,F.L.,Sandier,I.S.Material model for granular soil[J].Joumal of Engineering Mechanics Division,1971,97:935-950.
    [54]Sandier,I.S,Dimaggio,F.L.,Baladi,G.Y.Generalized cop model for geological materials[j].Journal of Geotechnical Engineering Division,1976,102:683-699.
    [55]Resende,L.,Martin,J.B.Fonnulation of Drucker-Prager cap model[J].Journal of Engineering Mechanics,1985,111(7):855-881.
    [56]Vermeer,P.A.A double hardening model for sand[J].Geotechnique,1978,28(4):413-433.
    [57]Nova,R.On the hardening of soil[J].Archives of Mechanics,1977,29(3):445-458.
    [58]Nova,R.,Wood,D.M.A constitutive model for sand in triaxial compression[J].International[J]Journal for Numerical Analytical Methods in Geomechanics,1979,3:255-278
    [59]Nova,R.,Hueckel,T.A unified approach to the modeling of liquefaction and cyclic mobility of sands[J].Soil and Foundations,1981,21(4):13-28.
    [60]Jefferies,M.G.Nor-sand:a simple critical state model for sand[J].Geotechnique,1993,43(1):91-103.
    [61]Lade,P.V,Duncan,J、M.Elasto-plastic stress-strain theoryfor cohesionless soil[J].Journal of Geotechnical Engineering,1975,101(10):1037-1064.
    [62]Lade,P.V.,Nelson,R.B.,Ito,Y.M.Instability of granular materials with nonassociated flow[J].Joumal of Engineering Mechanics,1988,114(12):2173-2191.
    [63]Kim,M.K.,Lade,P.V.Single hardening constitutive model for frictional materials 1:Plastic Potential function[J].Computers and Geotechnics,1988,5(4):307-324.
    [64]Lade,P.V,Kim,M.K.single hardening constitutive model for frictional materials 2:Yield criterion and Plastic work contours[J].Computers and Geotechnics,1988,6(1):13-29.
    [65]Zienkiewicz,O.C.广义塑性力学和地力学的一些模型[J].应用数学与力学,1982,3(3):267-280
    [66]沈珠江.土的三重屈服面应力应变模式.固体力学学报[J],1984,4(2):163-174.
    [67]殷宗泽.一个土体的双屈服面应力-应变关系.岩土工程学报[J],1988,10(4):64-71.
    [68]郑颖人.土的多重屈服面理论与模型.塑性力学和细观力学文集[M],北京:北京大学出版社,1993:75-84.
    [69]孔亮,郑颖人,王燕昌.一个基于广义塑性力学的土体三屈服面模型[J].岩土力学,2000,21(2):108-112.
    [70]杨光华.岩土类材料的多重势面弹塑性本构模型理论[J].岩土工程学报,1991,13(5):99-107
    [71]杨光华.21世纪应建立岩土材料的本构理论[J].岩土工程学报,1997,19(3):116-118.
    [72]杨光华等.土的多重势面模型及其验证[J].岩土工程学报,1999,21(5):578-582.
    [73]介玉新等.平面应变情况下多重势面模型与邓肯一张模型的比较[J].工程力学,2004,21(1):148-152.
    [74]薛琳.直墙拱形隧道围岩粘弹性位移解析解[J].岩土工程学报,1996(5):96-101.
    [75]朱大勇,钱七虎,周早生.复杂形状硐室围岩应力弹性解析分析[J].岩石力学与工程学报,1999(4):402-404.
    [76]张路青,杨志法,吕爱钟.两平行的任意形状硐室围岩位移场解析法研究及其 在位移反分析中的应用[J].岩石力学与工程学报,2000(3):584-589.
    [77]王思敬,杨志法等.地下工程岩体稳定分析[M].北京:科学出版社,1984.
    [78]Kumar,P..Infinite Elements for Numerical Analysis of Underground Excavations.Tunneling and Underground Space Technology,2000,15(1):117-124.
    [79]朱伯芳著.有限单元法原理与应用[M].北京:中国水利水电出版社,1998.
    [80]Lucy,L.B.A numerical approach to the testing of the fission hypothesis[J].The Astronomy Journal,1977,8(12):1013-1024
    [81]Swegle,J.W.,Hicks,D,Ataway,S.W.Smoothed particle hydrodynamics stability analysis[J].Journal Computational Physics,1995,1 16(1):124-96.
    [82]Nayroles,B Touzot,G.Generalizing the finite element method:difuse approximation and difuse[J].Computational Mechanics,1992,10(2):307-318.
    [83]Belytschko,T.,Fish J.,Engelmann,B.E.A finite element with embedded localization zones[J].Computer Methods in Applied Mechanics and Engineering,1988,70(1):59-89.
    [84]Belytschko,T.,Lu,Y.Y,Go,L.Element-free Galerkin Methods[J].International Journal for Numerical Methods in Engineering,19 94,37(2):229-256.
    [85]Duarte,C.A.,Oden,J.T.An h-p adaptive method using clouds[J].Computer Methods in Applied Mechanics and Engineering,1996,139(2):237-262.
    [86]Liu,W.K.,Chen,Y.J.Wavelet and multiple scale reproducing kernel methods[J].International Journal for Numerical Methods Fluids.1995,21(2):901-931.
    [87]Liu,W.K.,Jun,S.,Li,S.F.,Adee,J.,Belytschko,T.Reproducing kernel particle methods for structural dynamics[J].International Journal for Numerical Methods,1995,38(10):1655-1679.
    [88]Liu W.K.,Li S.Moving least-square reproducing kernel method[J].Computer Methods in Applied Mechanics and Engineering,1996,1 39(2):159-193.
    [89]Li,S.F,Han,W.,Liu,W.K.Mesh-free simulations of shear banding in larged formation[J].International Journal of Solids and Structures,2000,37(48):7185-7206.
    [90]Brebbia,C.A.Recent advances in boundary element methods[M].Pentech Press,19-76.
    [91]Bazant,Z.P.,Pijaudier-Cabot,G.Nonlocal continuum damage,localization instability and convergence[J].Journal of Applied Mechanics,Transactions ASME,1988,92(1):79-85.
    [92]Bazant,Z.P.,Belytschko,M.,Chang,T.P.Continuum theory for strain softening[J].Journal Engineering Mechanics,ASCE,1984,110(8):1666-1691.
    [93]冯夏庭.智能岩石力学导论[M].北京:科学出版社,2000.
    [94]Y.Yang and Q.Zhang.A Hierarchical for Rock Engineering Using Artificial Neural Networks.Rock Mechanics and Rock Engineering,1997,30(4):207-222.
    [95]胡建华,王福寿,张世雄等.地下工程围岩稳定性的MBP神经网络识别[J].岩土工程界,2001,4(12):63-64.
    [96]安红刚,冯夏庭.大型洞室群稳定性与优化的进化有限元方法研究.岩土力学,2001,22(4):373-377.
    [97]刘宝琛,张家生.近地表开挖引起的地表沉降的随机介质方法[J].岩石力学与工程学报,1995,14(4):289-296.
    [98]施成华,黄林冲.顶管施工隧道扰动区土体变形计算[J].中南大学学报,2005,36(2):323-328.
    [99]施成华,彭立敏,刘宝琛.盾构法施工隧道纵向地层移动与变形预计[J].岩土工程学报,2003,25(5):585-590.
    [100]石根华.工程实践是计算方法的源泉[J].岩土工程学报,2002,21(11):1739.
    [101]凌建明,孙钧.建立在损伤应变空间的岩体破坏准则[J].同济大学学报,1995,23(5):483-488.
    [102]徐则民,黄润秋,张倬元,王士天.软岩向深埋隧道的流动[J].铁道工程学报,2000(2):73-77.
    [103]刘高.高地应力区结构性流变围岩稳定性研究[D].成都理工大学博士学位论文,2001.
    [104]Zhiyin Wang,Yunpeng Ling.Sijing Wang.Numerical simulation of the geomechanical processes in rock engineering[J].International Journal of Rock Mechanics and Mining Sciences,2000,37:439-507.
    [105]Alsiny,A.,Vardoulakis,I.,Drescher,A.Deformation localization in cavity inaction experiments on dry sand[J].G(?)otechnique.1992,42:395-410.
    [106]Belytschko,T.Liu W.K.,Moran B..Nonlinear Finite Elements for Continua and Structures[m].John Wiley & Sons Ltd.,West Sussex,UK,2000.
    [107]Borja R.I.,Andrade J.E..Critical state plasticity,Part Ⅵ:Meso-scale finite element simulation of strain localization in discrete granular materials[J].Computer Methods in Applied Mechanics and Engineering,2006,195: 5115-5140.
    [108]Borja R.I.,Tamagnini C..Cam-Clay plasticity,Part Ⅲ:Extension of the infinitesimal model to include finite strains[J].Computer Methods in Applied Mechanics and Engineering,1998,155:73-95.
    [109]Andrade,J.E,Borja R.I..Capturing strain localization in dense sands with random density[J].International Journal for Numerical Methods in Engineering,2006,67:1531-1564.
    [110]Malvern,L.E.Introduction to the Mechanics of a Continuous Medium[M].Prentice-Hall,Inc.,Englewood Cliffs,NJ,1969.
    [111]Landis E.N.,Nagy E.N.,Keane D.T.,Microstructure and fracture in three dimensions[J].Engineering Fracture Mechanics,2003,70:911-925.
    [112]Vardoulakis,I.G.,Sulem,J..Bifurcation Analysis in Geomechanics[M].Chapman and Hall,London,1995.
    [113]Anand,L..Plane deformations of ideal granular materials[J].Journal of the Mechanics and Physics of Solids,1983,31:105-122.
    [114]Marsden,J.E.,Hughes.,T.J.R.Mathematical Theory of Elasticity[M].Prentice-Hall,Englewood Cliffs,NJ,1983.
    [115]http://eom.springer.de/m/m130110.htm
    [116]Desrues J.,Chambon R.,Mokni M.,Mazerolle F.,Void ratio evolution inside shear bands in triaxial sand specimens studied by computed tomography[J],G(?)otechnique,1996,46:529-546.
    [117]Borja,R.I.Cam-Clay plasticity,Part Ⅴ:A mathematical framework for three-phase deformation and strain localization analyses of partially saturated porous medium[J].Computer Methods in Applied Mechanics and Engineering,2004.193:5301-5338.
    [118]塑性力学课程讲义,西北大学,美国,2008.
    [119]Bear,J.Dynamics of Fluids in Porous Medium[M].American Elsevier Publishing Company,Inc.,New York,NY,1972.
    [120]Chang,C.S.,Matsushima,T.,Lee,X.,Heterogeneous strain and bonded granular structure change in triaxial specimen studied by computer tomography[J],Journal of Engineering Mechanics,2003,129:1295-1307.
    [121]Deng,N.Y,Wang,Z.Z.Theoretical efficiency of an inexact Newton method[J].Journal of Optimization Theory and Applications,2000,105:97-112.
    [122]Bojar,R.I,The analysis of consolidation by a quasi-Newton technique[J],International Journal of Numerical Analysis Methods on Geomechanics,1988,12:221-229.
    [123]Steihaug,T.The conjugate gradient method and trust region in large scale optimization[J],SIAM Journal on Numerical Analysis,1983,20:626-637.
    [124]Toint,P.L.Towards an Eficient Sparsity Exploiting Newton Method for Minimization,Sparse Matrices and Their Uses[M],Edited by I.S.Duff,Academic Press,London,England,1981,57-88.
    [125]Eisenstat,S.C,Walker,H.F.Choosing the forcing terms in an inexact Newton method[J],SIAM Journal on Scientific Computing,1996,17:33-46.
    [126]Conn,A.R,Gould,N.I.M,Toint,Ph.L.Numerical experiments with the LANCELOT package(Release A) for large-scale nonlinear optsmization,Technical Report[M],92-075,Rutherford Appleton Laboratory,Chilton,England,1992.
    [127]Borja,R.I..Bifurcation of elastoplastic solids to shear band mode at finite strains[J].Computer Methods in Applied Mechanics and Engineering,2002,191:5287-5314.
    [128]Jefferies,M.G..Nor-Sand:a simple critical state model for sand[J].Geotechnique,1993.43:91-103.
    [129]Ellison,K.C,Andrade J.E.Liquefaction mapping in finite element simulations [J].Journal of Geotechnical and Geoenvironmental Engineering.(Under review)
    [130]Rice,J.R.On the stability of dilatant hardening for saturated rock masses[J].Journal of Geophysical Research,1975,80:1531-1536.
    [131]Strack,O.E.,Verruijt,A.A complex variable solution for a deforming buoyant tunnel in a heavy elastic half-plane[J].International Journal for Numerical and Analytical Methods in Geomechanics,2002,26:1235-1252.
    [132]Bizjak,K.F.,Petkovsek,B.Displacement analysis of tunnel support in soft rock around a shallow highway tunnel at Golovec[J].Engineering Geology,2004,75:89-106.
    [133]彭立敏、刘小兵主编.交通隧道工程[M].长沙:中南大学出版社,2003.
    [134]Loganathan,N,Poulos,H.G.Analytical prediction for tunnelling induced ground movements in clays[J].Journal of Geotechnical and Geoenvironmental Engineering.1998,124:846-856.
    [135]Kasper,T.,Meschke,G..A 3D finite element simulation model for TBM tunnelling in soft ground[J].Int.J.Numer.Anal.Meth.Geomech.2004,28:1441-1460.
    [136]孙广忠.岩体结构力学[M].北京:科学出版社,1989:126.
    [137]杨新安,黄宏伟,丁全录.FLAC程序及其在隧道工程中的应用[J].上海铁道大学学报(自然科学版),1996,17(4):39-45.
    [138]Coetzee,M.J.FLAC Basic[M].Minnesota:Itasca Consulting Grouplnc,1993.
    [139]Iannacchione,A.T.Numerical simulation of coalpillar loading with the aid of astrain-softening finite difference model[J].In:Rock Mechanicsasa Guide for Efficient Utilization of Natural Resources.Rotter-dam:Balkema,1989:775-782.
    [140]WhyattJ.Astain-softening model for representing shear fracturein continuous rock masses[C].In:2~(nd) Int Symp of Rockburst and Seismicityin Mines Minn.MN:39-49.
    [141]李晓红.隧道新奥法及其量测技术[M].北京:科学出版社,2002.
    [142]铁道专业设计院.铁路隧道喷锚构筑法技术规范(TB10108-2002).北京:中国铁道出版社,2003.
    [143]吕康成.隧道工程试验检测技术[M].北京:人民交通出版社,2000.
    [144]徐干成.地下工程支护结构[M].北京:中国水利水电出版社,2002.
    [145]Brown,E.T,Bray,J.W,Ladanyi B,Hoek E.Ground response curves for rock tunnels.J.Geotech.Eng.,ASCE,1983,109:15-39..
    [146]袁锦根,余志武.混凝土结构设计基本原理[M].北京:中国铁道出版社,1997.
    [147]日本混凝土工程学会.傅沛兴、蔡光汀编译.混凝土工程技术要点[M].北京:中国建筑工业出版社,1987.
    [148]长沙金码高科技实业有限公司.金码高科工程检测类产品.
    [149]重庆交通科研设计院.公路隧道设计规范(JTG D70-2004).北京:人民交通出版社,2004.
    [150]樗木武[日].隧道力学[M].北京:中国铁道出版社,1983.
    [151]杨新安.软岩隧道锚杆支护机理与技术的研究[D].中国矿业大学博士学位论文,1995.
    [152]周建富.浅析软弱围岩隧道快速施工技术[J].西部探矿工程,2000,(6):98-100.
    [153]李丰果.隧道断层破碎带渗(涌)水特征分析及处理技术[J].西部探矿工程,2004,12:111-112.
    [154]杨新安.软岩巷道锚注支护技术及其工程实践[J].岩石力学与工程学报,1997;16(2):171-178.
    [155]曾小清,张庆贺.隧道施工过程的解析与数值结合方法.岩土工程学报,1996,18(5):14-17.
    [156]孙钧,汪炳监.地下结构有限元法解析[M].上海:同济大学出版社,1998.
    [157]周维恒.高等岩石力学[M].北京:水利电力出版社,1990:252.
    [158]孙广忠.岩体力学基础[M].北京:科学出版社,1983.
    [159]Noorishad,J.,Ayatollahi,M.S.,Witherspoon,P.A.A finite-element methods for coupled stress and fluid flow analysis in fractured rock masses[J].International Journal of Rock Mechanics and Mining Sciences.,1982,19:185-193.
    [160]Kelsall,P.C.,Case,J.B,Chanannes,C.R.Evaluation of excavation-induced changes in rock permeability[J],International Journal of Rock Mechanics and Mining Sciences.,1984,21:123-135.
    [161]宰金氓,梅国维.全过程的沉降量预测方法研究[J].岩土力学,2000,21(4):322-325.
    [162]邓聚龙.灰色系统理论教程[M].武汉:华中理工大学出版社,1990.
    [163]刘思峰,郭天榜等.灰色系统理论及其应用[M].北京:科学出版社,1999.
    [164]Asaoka,A.Observational Procedule of Settement Prediction[J].Soils and Foundations,1978,18(4):87-101.
    [165]陈一周,范杰.微机灰色预测分析系统开发.[J]武汉水利电力大学学报,1999,32(2):88-90.
    [166]郑颖人,刘兴华.近代非线性科学与岩石力学问题岩土工程学报[J].1996(1):98-100.
    [167]张仪萍,张土乔,龚晓南.沉降的灰色预测[J].工业建筑,1999,29(3):45-48.
    [168]周镜.谈谈路基工程中天然软土地基沉降预测中的某些问题[J].路基工程,2001,5:1-8.
    [169]陈举华.机械结构模糊优化设计方法[M].北京:机械工业出版社,2001:151.
    [170]吕海涛,赵林明.应用灰色模型时注意的一些问题[J].华北水利水电学院学报,2000,21(1):76-78

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700