用户名: 密码: 验证码:
基于典型岸坡深部裂缝的岩石力学试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
西南部地处我国第一个地形梯度带,区内水能资源十分丰富,一系列已建和拟建大型水电工程座落于这一地区。由于该区域大地构造上位于青藏断块的东部边缘地带,受青藏高原近百万年来持续隆升的影响,地质环境条件特殊复杂。因此,在这些地区进行大型、超大型工程建设,有一系列制约工程设计,施工和运营的重大工程地质问题亟需加以研究和解决,其中之一便是岸坡深部裂缝问题。本文以青藏高原东侧的西南地区为主要研究对象,通过选取雅砻江锦屏一级,大渡河瀑布沟、深溪沟、双江口等大型水电工程勘察中所揭示的深部裂缝为研究素材,采用归纳与演绎的哲学思维方式,强调地质原型现场调研与地质过程分析,重视自然边坡的形成演化过程和深部裂缝所赋存的地质力学环境,运用现代数值模拟技术和岩石力学的理论与方法,对深部裂缝的发育分布及变形破坏特征从地质原型调研、数值模拟反演、岩石力学试验、损伤理论分析四大方面进行了综合集成研究,初步建立了一套深部裂缝研究的基本框架和技术方法体系,取得以下主要成果:
     (1)通过对典型岸坡深部裂缝的系统研究,归纳总结了裂缝发育的一般性特点,即:①裂缝多发育于距谷底70~120m以上的岸坡岩体中;②裂缝大多呈带状产出,破裂带之间为相对完整的岩体;③裂缝中很干净,几乎未见次生夹泥;④裂缝发育程度总体有随高程增加而增强、随水平埋深增大而减弱;⑤裂缝形成时间总体有随高程增加而变老、随水平埋深增加而变新;⑥裂缝主要沿与坡向大体平行的陡倾角构造结构面发育;等。
     (2)通过对典型岸坡深部裂缝生成的地质环境的综合分析,归纳提出了裂缝生成所须满足的地质环境条件,即:①在构造改造过程中能存储较高应变能的质坚性脆的岩性条件;②有利于应变能存储和释放的地质构造(如褶皱体)和结构条件(岩性结构和构造裂隙);③作为广义“荷载”能导致岸坡岩体产生压缩变形和强烈卸荷回弹的高地应力条件;④能导致岩体应变能强烈释放的地壳快速抬升(即河谷快速下切)条件;等。
     (3)认为深部裂缝是在河谷(或叠加横向沟谷)地貌形成演化过程中,伴随区域性剥蚀和河谷下切过程,岸坡应力场不断变化调整,引起岸坡岩体内部先期储存的应变能(与构造改造程度和方式有关)强烈释放,向临空方向产生差异回弹卸荷形成的,属浅生时效结构。
     (4)依据岸坡地质体的形成演化过程,厘定了岸坡岩体的改造模式,提出岸坡岩体由坡表向内可划分为表生改造、浅生改造、构造改造三个带,表生改造带又可细分为外侧的卸荷拉裂带和内侧的紧密挤压带,浅生改造带则由深部裂缝带及带间板梁组成。并对各带岩体的应力、声波、点荷载、裂隙密度、裂隙开度等进行了统计分析。
     (5)由典型岸坡实测地应力的详细分析表明:深部裂缝发育地区均存在较大的地质构造作用,属高(中)地应力区,岩体应力主要以水平构造应力为主。
     (6)依据典型岸坡实测应力值随水平埋深的变化特点,对岸坡应力场进行了分带,即将岸坡岩体应力由坡表向内划分为应力降低、应力增高、应力波动、应力趋稳四个带。其中应力降低和应力波动带,可分别与岸坡卸荷带的范围和深部裂缝发育的范围对照。分析认为,应力波动带的底界即为河谷应力场的影响深度,由此统计显示,我西南河谷地区这一深度大致为150~387m。
     (7)岸坡应力场的分布特征,与岸坡岩体的浅表生改造过程密切相关,依据成因,将岸坡应力场由坡表向内划分为斜坡应力场区、过渡区和构造应力场区三个区,可分别与表生改造、浅生改造和构造改造三个带相对应,分析了各区应力分布的特点,提出斜坡应力场区主要以自重应力为主、过渡区是构造应力场向自重应力场转化的一个过渡区域、构造应力场区主要以构造应力为主的观点,并根据实测最大主应力倾角随埋深的变化特征验证了这一认识。
     (8)采用现代数值模拟技术,对岸坡应力场的分带特征进行了验证分析,并探讨了构造应力对分带范围的影响;同时还分析了岸坡应力场演化的基本特点以及深部裂缝的形成过程,并根据地质过程中裂缝单元应力Mohr圆的变化特点,探讨了深部裂缝的生成时间,得出近坡表和高高程裂缝分别比深部和低高程裂缝形成时期要早,验证了地质分析的成果。
     (9)以深部裂缝形成过程中实际的应力变化状态为试验设计的依据,开展了不同围压、不同卸荷速率下的卸荷岩石力学对比试验,由试验揭示,在卸荷条件下:①随破坏围压的增加,试样破坏形式均从张性破坏向剪切破坏过渡,且在相同围压下,随卸荷速率的增大,试样张性破裂的比例也越重;②试样表现出累进性破坏特征,通常在试样表面附近有卸荷剥落的张性薄片,一般剪切破裂面在部分地段追踪张性破裂面发育,破坏具张剪性质;③卸荷对试样横向应变ε3和体积应变εV影响较大,进入卸荷阶段后,ε3变化梯度明显增大,εV则从压缩变形转为扩容;④多数试样应力-应变曲线在峰后存在较大跌落,表明试样卸荷破坏时的塑性变形较小,破坏更具突发性和脆性等特点;⑤应力-应变曲线峰后与峰前差别较大,峰前曲线较平滑,峰后曲线则凹凸不平,显示峰后试样内部应力、应变分布较峰前要复杂;⑥多数试样应力-应变曲线峰后呈“Ⅱ型”,显示出脆性特征;⑦围压对试样强度的影响要比加荷条件大,并在相同初始围压下,试样的强度和变形模量随卸荷速率的增大呈降低趋势;⑧随卸荷速率的增大,试样的抗剪强度参数c值增大而φ值减小,与加荷条件相比,岩石的抗剪强度参数c值降低而φ值增高;等。依据这些试验成果,对深部裂缝的发育分布及变形破坏特征进行了合理解释。
     (10)通过假定岩石微元强度及其分布,构建了以名义应力应变表述的损伤演化方程及本构模型,并用其对不同试验条件下岩石的损伤演化特征进行了对比分析,认为试样在受荷过程中的损伤发展演化可分为三个阶段:第一阶段与试验曲线的屈服极限前段对应,该段应力-应变曲线近似成直线,岩石微元主要以弹性变形为主,仅有极少数岩石微元发生破坏,损伤演化从0呈缓慢增加态势,演化曲线斜率缓慢增大;第二阶段与试验曲线屈服极限→残余强度段对应,该段应力-应变曲线成非线性,岩石微元主要以塑性变形为主,大量岩石微元开始屈服破坏,损伤演化呈快速增加态势,演化曲线斜率迅速增大,最后稳定在某一水平保持不变;第三阶段与试验曲线残余强度段对应,该段岩石试样已发生宏观破裂,但仍有一定的承载力,少数岩石微元继续屈服破坏,损伤演化幅度逐渐变缓,演化曲线斜率逐渐减小并趋于1。初步揭示:①在相同围压下,卸荷条件下试样损伤发展的速率要比加荷条件下快得多;②相同围压下,试样损伤发展的速率随卸荷速率的增大而增大;③试样的强度只与损伤演化速率有关,而与各试样破坏时已破坏岩石微元总数的多少无关;等。并依据诸类分析成果,合理解释了深部裂缝的发育分布及变形破坏特征。
The southwest is located in the first Terrain gradient band where is rich in hydropower resources. A series of built and ready to build large-scale hydropower project located in the area. Because the region is located in the eastern fringe of Qinghai-Tibet fault block, Qinghai-Tibet Plateau in recent millions years continued to uplift , the Geo-environmental conditions is special complex in the region. Therefore, in these areas for large-scale, very large projects, a series of constraints engineering design, construction and operation of major engineering geological problems need to be studied and resolved, one of which is the deep fracture in the banks. In this paper, the east side of the south-west of the Qinghai-Tibet Plateau is the main research subjects, by choosing the deep fracture revealed in the Yalong Jinping I Hydropower Station, Dadu Pubugou, Shen Xigou, Shuang Jiangkou large-scale hydropower projects as research material, using inductive and deductive philosophy thinking way, stress the geological scene prototype research and geological processes analysis, attach importance to the process of formation and evolution of natural slope and the environmental geomechanics of deep fracture, apply modern numerical simulation technology and rock mechanics theory and method, integrated research the deep fracture’development characteristics and formation mechanism from the four aspects: geological prototype research, numerical simulation of inversion, rock mechanics experiments, Theoretical Analysis of Damage. A set of deep fracture in the basic framework of research and technical methods of system was initially established. Achieved the following main results:
     (1) By systemic studying the deep fracture in the typical banks, summarized the general development characteristics of deep fracture. That is :①More cracks developed in the distance 70 ~ 120m above the bottom of the slope rock mass;②Most cracks were banded output, there is relatively complete rock between the rupture zones of the rock;③It is very clean in the Cracks, almost no secondary Mud ;④The development degree of cracks increases with the elevation increasing and decreases with the horizontal depth increasing;⑤The formed time of cracks gets old with the elevation increasing and gets fresh with the horizontal depth increasing;⑥These cracks formed along the steep inclination of tectonic structure which generally parallel with the slope.etc.
     (2) By comprehensive analyzing deep fracture’geological environment in the typical banks , put forword to the geological environment conditions which are deep fracture can be generated that must be met by:①The hard and brittle lithology which can store a higher strain energy in the process of structural transformation;②The geological structure (such as body folds) and structural conditions (lithology and tectonic fractures) which conducive to the release and storage of strain energy ;③As a generalized "load" could lead to slope compressive deformation and rock mass have a strong rebound of the Heights stress conditions;④Rapid crustal uplift (rapid incised valley) can lead to strongly release the rock mass strain energy.etc.
     (3) Put forward the formation mechanism of deep fracture. In the valley (or superimposed horizontal valley) process of formation and evolution of landforms, going with regional erosion and the process of valley cutting, the banks to adjust to changing stress field, caused rock slope by pre-stored internal strain energy release strongly and produced the difference unloading rebound to the direction of the overhead,then formed the deep fracture,which belong to epigenetic time_dependent structures.
     (4) According to the process of the formation and evolution of rock slope, determined the transformation mode of rock slope, rock slope inward from the slope table is divided into there zone : surface reformation zone, epigenetic reformation zone , structural reformation zone . Surface reformation zone can be broken down unloading cracking zone and tightly compressing zone ; eqigenetic reformation zone is made up of deep fracture zone and inter-plate girder zone .Had done a Statistical analysis to the rock stress , sound wave, point load, fracture density, fracture aperture and so on .
     (5) By analyzing the measured stress of typical slope indicated that there is a big geological tectonism in the development region of deep fracture, belong to the high(middle) stress area, rock stress is mainly composed of the horizontal tectonic stress.
     (6) Based on the changing characteristics of the measured stress with the level of depth, the rock slope stress field can be divided into four zone: stress decreasing zone, stress increasing zone, stress rebounding zone and stress stability zone. Stress decreasing zone can be compare with the scope of unloading zone.Stress rebounding zone can be compare with the scope of deep fracture formation region. Analysis showed that the bottom boundary of stress rebounding zone represent the impact depth of the valley stress field. Statistics reveal that the depth is about 150 ~ 387m in China's south-west valley region.
     (7) The distribution of stress field is closely related to the process of surface- epigenetic reformation in rock slope . Based on the formation mechanism , bank stress field can be divided into there regions from outside to inside : Stress field slopes, Transition zone and Tectonic stress field. They can be compare with the surface reformation zone, epigenetic reformation zone and structural reformation zone. Analyzing the stress distribution characteristics in various zones, put forwoed that the slope stress field based mainly on the self-weight stress field. Transtion zone is that region where the tectonic stress field transit gradually into the self-weight stress field . Tectonic stress filed is made mainly up of tection stress, this viewpoint can be validate according to the Maximum principal stress angle changing with the depth .
     (8) Using modern numerical simulation techniques, check and analyse the stress field of the slope characteristics of the sub-band, and to explore the impact that the tectonic stress ; At the same time, also analyzing the basic characteristics of evolution of stress field and the deep fracture formation process. In the geological process, according to the changing characteristics of crack unit stress Mohr circle, explore formation times of the deep fracture ,and then, draw a conclusion that come close to the slope table and cracks of high-elevation are earlier ,respectively, than the deep fracture and cracks of low-elevation in the formation period, and verify the results of geological analysis.
     (9) The basis is the actual state of stress changes in the formation process of deep fractures for experimental design , to carry out comparison of unloading rock mechanics test in a different confining pressure and different unloading rates . Revealed by the test in unloading conditions :①With the destruction of confining pressure increasing, specimen failure damage to the transition from tensile to shear failure, and at the same confining pressure, with the unloading rate increasing, the tensile damage also more serious;②Specimen show the progressive damage of characteristics, usually near the surface of the specimen there are the tension cracks, the general shear failure surface developed from the parts of tensile fracture surface , they are tension-shear nature;③Unloading have a great impact for the specimen horizontal strainε3 and volumetric strainεV, into the unloading stage, horizontal strains’gradient changes significantly increased , volumetric strain changed from compression to expansion ;④The stress - strain curves of the majority of the samples have a large drop after the curves’peak. Show that the destruction of the specimen have a small plastic deformation at the time of unloading , damage to more sudden and brittle features ;⑤There are larger difference between the behind-peak and the front-peak in stress-strain curves, stress - strain curves are more smoothness before the peak and more uneven after the peak . Show that the stress-strain of samples are more complex after the peak;⑥The majority of the sample stress - strain curve after the peak was "Ⅱ-type", showing that the brittle characteristics;⑦confining pressure impact on the specimen strength more larger than loading , and the same initial confining pressure, the specimen strength and deformation modulus decreased with the unloading rate increasing ;⑧with unloading rate increasing, the sample shear strength parameters c values increased andφvalues of decreased, compared with the loading conditions, the shear strength parameters c values decrease andφvalue increased ; etc . Based on these test results , making a reasonable explanation for the deformation and failure characteristics of the deep fractures.
     (10) Through assumed that the rock micro-element strength and distribution, constructed the damage evolution equation and constitutive model on nominal stress-strain formulation, and using it to compare and analyse the characteristics of damage evolution of rock in different experimental conditions, the development and evolution of samples can be divided into three stages in the loading and unloading process . The first phase compare with the forepart of the curves’Yield limit , the above stress - strain curve is near a line , rock micro–element is elastic deformation mainly, only a very small number of rock micro-element damaged, damage evolution was slowly increasing from 0 momentum, the curves’slope increased slowly. The second phase compare with the sample curves’Yield limit→residual strength, stress - strain curve into a nonlinear, rock is plastic deformation mainly, a large number of rock micro–element began to yield-damage, damage evolution was rapidly increasing in momentum, the curves’slope increased quickly. Finally, it remains stability in a certain level. The third phase compare with the sample curves’residual strength, the curves’macro-rupture occurred, but there is still a certain degree of capacity, a small number of rock micro-element continue to yield-damage, the rate of damage evolution gradually slow down, the curve slope gradually decreased and tends to 1. Revealed initially :①In the same confining pressure, the rate development of sample damage is more faster in unloading condition than the loading conditions ;②the same confining pressure, the rate development of damage increases with the unloading rate increasing ;③the samples’strength is only related with the rate of damage evolution , but they have nothing to do with the total number of rock micro-element which have damaged when the sample damaged; etc. And based on the results of the various types of analysis, a reasonable explanation have made for the characteristics of development and distribution of deep fractures and the characteristics of deformation and damage of deep fractures.
引文
[1]王兰生等.地壳浅表圈层与人类工程活动[M].北京:地质出版社,2004.
    [2]张倬元,王兰生,王士天.工程地质分析原理(第二版)[M].北京:地质出版社,1994.
    [3]张文居.边坡支挡结构可靠性设计探讨[D].成都:成都理工大学硕士学位论文,2004.
    [4]刘晶晶.多节点加载预应力锚索格构梁模型试验研究[D].成都:成都理工大学硕士学位论文,2006.
    [5]李天斌.岩质工程高边坡稳定性及其控制的系统研究[D].成都:成都理工大学博士学位论文,2002.
    [6]黄润秋.论中国西南地区水电开发工程地质问题及其研究对策[J].地质灾害与环境保护,2002,13(1):1-5.
    [7]伍法权.中国21世纪若干重大工程地质与环境问题[J].工程地质学报,2001,9(2):115-119.
    [8]丁恩保.金沙江水电开发中的超高陡边坡问题[J].工程地质学报,2000,8(2):131-135.
    [9]成都理工大学环境与土木工程学院.雅砻江锦屏一级水电站工程边坡稳定性评价[R].成都:成都理工大学,2003.
    [10]国家电力公司成都勘测设计研究院.雅砻江锦屏一级水电站坝址选择研究报告(4)工程地质条件(初稿)[R].成都:国家电力公司成都勘测设计研究院,2001.
    [11]国家电力公司成都勘测设计研究院.四川大渡河瀑布沟水电站初步设计调整及优化报告(3)工程地质[R].成都:国家电力公司成都勘测设计研究院,2003.
    [12]国家电力公司成都勘测设计研究院.四川大渡河深溪沟水电站预可行性研究报告(4)工程地质[R].成都:国家电力公司成都勘测设计研究院,2003.
    [13]中国水电顾问集团成都勘测设计研究院.四川省大渡河双江口水电站可行性研究阶段坝型选择研究报告(4)工程地质[R].成都:中国水电顾问集团成都勘测设计研究院,2006.
    [14]杨永明.苗家坝水电站坝区边坡典型楔形体的变形破坏特征[J].甘肃电力,1995,(2):28-33.
    [15]黄润秋,王士天,张倬元等.中国西南地壳浅表层动力学过程及其工程环境效应研究[M].成都:四川大学出版社,2001.
    [16]王兰生,李天斌,赵其华.浅生时效构造与人类工程[M].北京:地质出版社,1994.
    [17]韩文峰等.黄河拉西瓦大柳树松动岩体工程地质研究[M].兰州:甘肃科学技术出版社,1992.
    [18]祁生文,伍法权,丁振明等.从工程地质类比的角度看锦屏一级水电站左岸深部裂缝的形成[J].岩石力学与工程学报,2004,23(8):1380-1384.
    [19]安关峰,伍法权.锦屏水电站左坝肩岩体深卸荷带成因分析[J].岩土力学,2003,24(2):300-303.
    [20]祁生文,伍法权.锦屏一级水电站普斯罗沟左岸深部裂缝变形模式[J].岩土力学,2002,23(6):817-820.
    [21]祁生文,伍法权,兰昌星.锦屏一级水电站普斯罗沟左岸深部裂缝成因的工程地质分析[J].岩土工程学报,2002,24(5):596-599.
    [22]陈鸿,赵其华,陈卫东.瀑布沟水电站库首右岸深部裂缝成因分析[J].工程地质学报,2005,13(3):289-293.
    [23]王小群,王兰生,徐进.西南某电站岸坡深裂缝成因机制的物理模拟试验[J].岩土工程学报,2004,26(3):389-292.
    [24]王小群,王兰生,沈军辉等.西南某电站坝址区岸坡深裂缝分布规律[J].重庆大学学报,2003,26(9):14-17.
    [25]许强,严明,黄润秋.某水电站左岸深裂缝对工程荷载下边坡稳定性影响的FLAC3D分析[J].地质灾害与环境保护,2002,13(1):81-84.
    [26]赵其华,王兰生.边坡地质工程理论与实践[M].成都:四川大学出版社,2000.
    [27] Stini, J., Unsere Taler Wachsen zu. Geol. Bauwes, 1941, 13, 71-79.
    [28] Zischinsky, U., Movement of unstable valley sides. Gesellschaft der Geologic and Bergbaustudenten, Mitteilungen 17, 1966, 127-168.
    [29] Huntchinson J N. Morphological and geotechnical parameters of landslides in relation to geology and hydrogeology. Proc. 5th Int, Symp. On landslides. 1988, Vol.1, 3-35.
    [30] Varnes D J, Radbruch-Hall D H, Savage W Z. Topographic and conditions in area of gravitational spreading of ridges in the westem United States. U. S. Geol. Surv. prof. Pap. 1989, 1496.
    [31] Chighira M. Long-term gravitational deformation of rock by mass rock creep, Eng. Geol., 1992, 32(3): 157-184.
    [32] Dikau R, Brunsden D, Schrott L & Ibsen M-L. Landslide recognition:identification, movement and courses. Report N0.1 of the European Commission Environment Programme Contract No. EVSV-CT94-D454. New York:John Wiley & Sons Ltd, 1996.
    [33] Broili-Luciano. New knowledges on the geomorphology of the Vaiont slide slip surfaces. Felsmechanik and Ingenieurgeologie, 1967, 5:1, 38-88.
    [34] Dramis F & Sorriso-Valvo M. Deep seated slope deformations, related landslides and tectonics. Engng. Geol, 1994, 38: 231-243.
    [35] Pritchard M A & Savlgny K W. The Heather Hill landslide: an example of a large scale toppling failure in a natural slope. Can. Getechnical J, 1991, 28, 410-422.
    [36] Forlati F, Gioda G & Scavia C. Finite element analysis of a deep-seated slope deformation.Rock mech、Rock Eng, 2001, 32(4): 135-159.
    [37] Agliardi F, Crosta G & Zanchi A. Structure constraints on deep-seated slope deformation kinematics. Eng. Geology, 2001, 59: 83-102.
    [38] Zischinsky, U., 1966. Movement of unstable valley sides. Gesellschaft der Geologic and Bergbaustudenten, Mitteil ungen 17, 127-168.
    [39] Bovis M J. Rock-slope deformation at Affliction Creek, southem Coast Mountains, British Columbia. Can.J Earth Sci, 1990, 27: 243-254.
    [40]王士天,黄润秋,李渝生等.雅砻江锦屏水电站重大工程地质研究[M].成都:成都科技大学出版社,1998.
    [41]李愿军.深部裂缝带——一种新的地震构造样式[J].中国工程科学,2006,8(4):12-18.
    [42]成都理工大学环境与土木工程学院.大渡河瀑布沟水电站库首右岸拉裂变形体稳定性研究[R].成都:成都理工大学,2004.
    [43]成都理工大学环境与土木工程学院.深溪沟水电站坝区右岸岸坡岩体稳定性研究[R].成都:成都理工大学,2005.
    [44] Da Vinci L, Testing the strength of iron wires of various lengths(Notebook.ca.1500). In: W.B.Parsons. Engineers and Engineering in Renaissance, Baltimore: Williams and Wilkins, 1939, 661.
    [45] Von Karman. Festigkeitsversuche unter allseitigem, Druck. Zeitscht. Ver. Dentsch. Ing. 1911, 55: 1749-1757.
    [46] Cook.N.G..W, Hojem.J.P.M.A rigid 50-ton compression and tension testing machine. South Africa Mech. Eng. 1966, 16: 89-92.
    [47] Mogi K. Effect of the intermediate principal stress on rock failure J. Geophys. Res. 1967, 72(20): 5117-5131.
    [48]葛修润,任建喜,蒲毅彬等.煤岩三轴细观损伤演化规律的CT动态试验[J].岩石力学与工程学报,1999,18(5):497-502.
    [49]王恩元,何学秋.煤岩变形破裂电磁辐射的试验研究[J].地球物理学报,2000,43(1):131-137.
    [50]刘维国,单钰铭,傅荣华.岩石扩容过程中的体积应变与超声横波速度[J].成都理工大学学报(自然科学版),2006,33(4):360-364.
    [51]刘维国,单钰铭,傅荣华等.岩石扩容现象与超声横波特征参数相互关系研究评述[J].成都理工大学学报(自然科学版),2003,30(1):87-91.
    [52] Jaeger J.C. Brittle Fracture of Rocks[A]. Proceedings of the Eighth Symposium on Rock 1VEchanics[M], Baltimore: Port City Press, 1967: 3-57.
    [53] Swanson S.R.et al.An Observation of Loading Path Independence of Fracture Rock[M]. Int.J. Rock 1VEch. Mn. Sci., 1971, 8(3): 277-281.
    [54] Crouch S.L.A Note on Post-Failure Stress-Strain Path Ikpen-dence in Norite[J]. Int.J. Rock 1VEch. Mn. Sci., 1972, 9(2): 197-204.
    [55]陈颙,姚孝新,耿乃光.应力路径、岩石的强度和体积膨胀[J].中国科学,1979,(11):1093-1100.
    [56]陈旦熹,戴冠一.三向应力状态下大理岩压缩变形试验研究[J].岩土力学,1982,3(1).
    [57]吴玉山,李纪鼎.大理岩卸载力学特性研究[J].岩土力学,1984,5(1).
    [58]许东俊,耿乃光.岩体变形和破坏的各种应力途径[J].岩土力学,1986,7(2):17-25.
    [59]尹光志,李贺,鲜学福等.工程应力变化对岩石强度特性影响的试验研究[J].岩土工程学报,1987,9(2):20-27.
    [60] Ling Jianming. Appl. of Compute 1Vbth. in Rock 1Vbch. Shanxi Science and Technology Press, 1993: 727-732 .
    [61]李天斌,王兰生.卸荷应力状态下玄武岩变形破坏特征的试验研究[J].岩石力学与工程学报,1993,12(4):321-327.
    [62]吴刚.红砂岩卸荷破坏特性的试验研究[A].岩土力学与工程的理论与实践[C].大连:大连理工大学出版社,1995:228-236.
    [63]吴刚.完整岩体卸荷破坏的模型试验研究[J].实验力学,1997,12(4):549-555.
    [64]吴刚,孙钧.卸荷应力状态下裂隙岩体的变形和强度特性[J].岩石力学与工程学报,1998,17(6):615-621.
    [65]吴刚.不同应力状态下岩石类材料破坏的声发射特性[J].岩土工程学报,1998,20(2):82-85.
    [66]吴刚.岩体在加、卸荷条件下破坏效应的对比分析[J].岩土力学,1997,18(2):13-16.
    [67]周维垣等.岩体边坡非连续非线性卸荷及流变分析[J].岩石力学与工程学报,1997,16(3):210-216.
    [68]哈秋舲.岩石边坡工程与卸荷非线性岩石(体)力学[J].岩石力学与工程学报,1997,16(4):386-391.
    [69]尤明庆,华安增.岩石试样的三轴卸围压试验[J].岩石力学与工程学报,1998,17(1):24-29.
    [70]陶履兵,夏才初,陆益鸣.三峡工程花岗岩卸荷全过程特性的试验研究[J].同济大学学报,1998,26(3):330-334.
    [71]任建喜,葛修润,蒲毅彬等.岩石卸荷损伤演化机理CT实时分析初探[J].岩石力学与工程学报,2000,19(6):697-701.
    [72]任建喜,葛修润.单轴压缩岩石损伤演化细观机理及其本构模型研究[J].岩石力学与工程学报,2001,20(4):425-431.
    [73]任建喜,杨更社,葛修润.裂隙花岗岩卸围压作用下损伤破坏机理CT检测[J].长安大学学报(自然科学版),2002,22(6):46-49.
    [74]赵明阶,许锡宾,徐蓉.岩石在三轴加卸荷过程中的一种本构模型研究[J].岩石力学与工程学报,2002,21(5):626-631.
    [75]代革联,李新虎.岩石加卸荷破坏细观机理CT实时分析[J].工程地质学报,2003,12(1):104-108.
    [76]刘维国,单钰铭,张莲花等.岩石三轴实验中的应力路径与应力应变分析[J].成都理工大学学报(自然科学版),2005,32(4):356-361.
    [77]高春玉,徐进,何鹏等.大理岩加卸载力学特性的研究[J].岩石力学与工程学报,2005,24(3):456-460.
    [78]张黎明,王在泉,王建新等.岩石卸荷破坏的试验研究[J].四川大学学报(工程科学版),2006,38(3):34-37.
    [79]谢和平.岩石混凝土损伤力学[M].北京:中国矿业大学出版社.1990.
    [80] Kachanov L.M. On the time to failure under creep condition, Izv, Akad, Nauk, USSR, Otd. Tekhn. Nauk, 1958. 8, 26-31.
    [81] Kachanov L.M. Introduction to Continuum Damage Mechanics.Martinus Nijhoff publishers, Dordrecht, The Netherlands, 1986.
    [82] Rabotnov Y.N. On the equations of state for creep. In: Progress in Applied Mechanics, 1963. 307-315.
    [83] Rabotnov Y.N. Creep ruptures. In: Applied Mechanics, Processing of the 12th Interna-tional Congress of Applied Mechanics. Edited by Hetenyi M., et al, Standford-Springer-Verlag, Berlin, 1969. 342-349.
    [84] Lemaitre J. and Chaboche J. L.. Aspect phenomen-lolgique dela Ruptrue parendommagement. J. demec. Appl., Vol. 2, No. 3, 1978.
    [85] Lemaitre J.. How to use damage mechanics. Nuclear engineering and design, Vol. 80, PP: 233-245, 1984.
    [86] Chaboche J. L.. Lifetime predictions and cumulative damage under high temperature conditions. Int. Sump. on low cycle fatigue and life prediction, Firming. France. ASTMSTP 770(1980).
    [87] Chaboche J. L.. Continuous damage mechanics: a tool to describe phenomena before crack initiation. Nuclear Engineering and design, Vol. 64, 1981, 233-247.
    [88]于骁中,谯常忻,周群力.岩石和混凝土断裂力学[M].长沙:中南工业大学出版社.1991.
    [89] Budiansky B.. Micromechanics, advances and trens in structural and solid mechanics(Eds: Noor A.K. and Housner, J.M.), Pergamon Press, PP: 3-12, 1983.
    [90] Dougill J.W., Lau J.C. and Burt N.J.. Toward a theoretical model for progressive failure and softening in rock, concrete and similar materials. Mech in Engng., ASCE-END, 335-355, 1976.
    [91] Dragon A. and Mroz Z. A.. Continuum model for plastic-brittle behaviour of rock and concrete. Int. J. Engng. Sci, 1979, 17: 121-137.
    [92] Costin L. S.. Time-dependent damage and creep of brittle rock. Damage Mechanics and Continuum Modeling(Eds: N. Stubbs and D. Krajcinovic), ASCE. New York, 1985: 25-38.
    [93]谢和平.分形损伤力学[J].朱维申主编.中国青年学者岩土工程力学及其应用讨论会论文集,北京:科学出版社.1994.23-33.
    [94]谢和平.分形-岩石力学导论[M].北京:科学出版社.1997.
    [95]谢和平.动态裂纹扩展中的分形效应[J].力学学报.1995:27(1),1-10.
    [96]凌建明.节理岩体损伤力学及时效损伤特征的研究[D].上海:同济大学博士学位论文,1992.
    [97]叶黔元.岩石的内时损伤本构模型[J].袁建新主编.第四届全国岩土力学数值方法与解析方法讨论会论文集,武汉:武汉测绘科技大学出版社.1991.85-90.
    [98]李广平,陶振宇.真三轴条件下的岩石细观损伤力学模型[J].岩土工程学报.1995:17(1),24-31.
    [99]卢应发,葛修润.岩石损伤本构理论[J].岩土力学.1990:11(2),67-72.
    [100]杨更社.岩石细观损伤力学特性及本构关系的CT识别[J].岩石力学与工程学报,2000,25(增刊):102-106.
    [101]杨更社,谢定义,张长庆等.岩石损伤特性的CT识别[J].岩石力学与工程学报,1996,15(1):48-54.
    [102]杨更社,谢定义,张长庆等.岩石损伤CT数分布规律的定量分析[J].岩石力学与工程学报,1998,17(3):279-285.
    [103]杨更社,谢定义,张长庆等.岩石单轴受力CT识别损伤本构关系的探讨[J].岩土力学,1997,18(2):29-34.
    [104]葛修润,任建喜,蒲毅彬等.煤岩三轴细观损伤演化规律的CT动态试验[J].岩石力学与工程学报,1999,18(5):497-502.
    [105]任建喜,葛修润,杨更社.单轴压缩岩石损伤扩展细观机理CT实时试验[J].岩土力学,2001,22(2):130-133.
    [106]任建喜,葛修润,杨更社.单轴压缩岩石损伤演化细观机理及其本构模型研究[J].岩石力学与工程学报,2001,20(4):425-431.
    [107]刘立,邱贤德,阎宗岭等.复合岩石的微结构损伤破坏[J].矿山压力与顶板管理.1990:(2),77-80.
    [108]李广平.考虑裂纹闭合效应的岩石损伤本构关系[J].应用力学学报.1996:13(1),93-97.
    [109]李广平.岩石类材料微裂纹损伤模型分析[J].岩石力学与工程学报.1995:14(2),107-117.
    [110]李广平,陶振宇.裂纹相互作用的统计有效场方法[J].武汉水利电力大学学报.1994:27(2),172-177.
    [111]李浩,任林娥.岩石软化的细观损伤模型[J].武汉大学学报.2001:34(2),6-9.
    [112]赵永红.岩石弹脆性分维损伤本构模型[J].地质科学.1997:32(4),487-494.
    [113]周光泉,陈德华,席道瑛.岩石连续损伤本构方程[J].岩石力学与工程学报.1995:14(3),229-235.
    [114]殷有泉.岩石的塑性、损伤及其本构表述[J].地质科学.1995:30(1),63-70.
    [115]吴政.单向荷载作用下岩石损伤模型及其力学特性研究[J].岩石力学与工程学报.1996:15(1),55-61.
    [116]吴政.基于损伤的混凝土拉压全过程本构模型研究[J].水利水电技术.1995:15,58-63.
    [117]刘世华.混凝土全应力应变曲线分析[J].沈阳大学学报.2000:12(4),25-27.
    [118] Gao feng, Xie heping.Statistically fractal strength theory for brittle materials[J].Acta Mechanica Solids Sinica.1996:9(1),42-51.
    [119]董毓利,谢和平,李世平.砼受压损伤力学本构模型的研究[J].工程力学.1996:13(1),44-53.
    [120]龚晓南.21世纪岩土工程发展展望[J].岩土工程学报.2000:22(2),238-242.
    [121]杨晓华,俞永华,顾安全.水泥黄土损伤力学模型探讨[J].第九届全国土力学及岩石工程学术会议论文集,北京:清华大学出版社.2003.265-268.
    [122]胡黎明,濮家骝.损伤模型接触面单元在有限元计算分析中的应用[J].土木工程学报.2002:35(3),73-77.
    [123]胡黎明,濮家骝.土与结构物接触面损伤本构模型[J].岩土力学.2002:23(1),6-11.
    [124]刘公瑞,周维垣,杨若琼.岩体弹脆性本构模型及其工程应用[J].岩土工程学报.1998:20(5),54-57.
    [125]郑永来,周澄,夏颂佑.岩土材料粘弹性连续损伤本构模型探讨[J].河海大学学报.1997:25(2),114-116.
    [126]杨友卿.岩石强度的损伤力学分析[J].岩石力学与工程学报.1998:18(1),23-27.
    [127] Fouche O, Wright H, Le C. Fabric control on strain and rupture of heterogeneous shale samples by using a non-conventional mechanical test. Applied Clay Science, 2004, 26(1-4): 367-387.
    [128]陈瑜海.用Weibull理论研究脆性材料的损伤概率[J].水利学报.1996:6(6),45-48.
    [129]李宏,朱浮生,王泳嘉等.岩石统计细观损伤与局部化失稳的尺寸效应[J].岩石力学与工程学报.1999:18(1),28-32.
    [130]曹文贵,方祖烈,唐学军.岩石损伤软化统计本构模型之研究[J].岩石力学与工程学报.1998:17(6),628-633.
    [131]曹文贵,赵明华,唐学军.岩石破裂过程的统计损伤模拟研究[J].岩土工程学报.2003:35(2),184-187.
    [132]曹文贵,赵明华,刘成学.基于Weibull分布的岩石损伤软化模型及其修正方法研究[J].岩石力学与工程学报.2004:23(19),3223-3231.
    [133]曹文贵,赵明华,田政海.岩石变形破坏全过程的概率损伤方法研究[J].湖南科技大学学报(自然科学版).2004:19(4),21-24.
    [134]曹文贵,张升.基于Mohr-Coulomb准则的岩石软化本构模型之损伤随机统计方法研究[J].湖南大学学报.2005:32(1),43-48.
    [135]曹文贵,赵明华.岩石损伤统计本构模型及其参数确定探讨[J].第九届全国土力学及岩石工程学术会议论文集,北京:清华大学出版社.2003.412-415.
    [136]曹文贵,赵明华,刘成学.基于统计损伤理论的德鲁克-普拉格岩石强度准则的修正[J].水利学报.2004:35(9),18-23.
    [137]曹文贵,赵明华,刘成学.岩石损伤统计强度理论研究[J].岩土工程学报.2004:26(6),820-823.
    [138]石平立,高召宁.顶煤损伤统计力学模型[J].长安大学学报.2003:1(1),58-60.
    [139]徐卫亚,韦立德.岩石损伤统计本构模型研究[J].岩石力学与工程学报.2002:21(6),787-791.
    [140]朱万成,唐春安,杨天鸿等.岩石破裂过程分析(REPA2D)系统的细观单元本构关系及验证[J].岩石力学与工程学报.2003:22(1),24-29.
    [141]唐春安,赵文.岩石破裂全过程分析软件REPA2D[J].岩石力学与工程学报.1997:16(4),368-374.
    [142]黄明利,唐春安,朱万成.岩石破裂过程的数值模拟和研究[J].岩石力学与工程学报.2000:19(4),468-471.
    [143]朱万成,唐春安.岩板中混合裂纹扩展过程的数值模拟[J].岩土工程学报.2000:22(2),231-234.
    [144]王泳嘉,邢纪波.离散单元发的改进与应用[J].岩石力学数值方法的工程应用[M].上海:同济大学出版社,1990,245-250.
    [145]邢纪波,俞良群,张瑞丰.用于模拟颗粒增强复合材料破坏过程的梁-颗粒细观模型的实验验证[J].试验力学.1998:13(3),377-382.
    [146]邢纪波,俞良群,王泳嘉.三维梁-颗粒模型与岩石材料细观力学行为模拟[J].岩石力学与工程学报.1999:18(6),627-630.
    [147]樊运晓.损伤:KAISER效应记忆力机理的探讨[J].岩石力学与工程学报.2000:19(2),254-258.
    [148]王道荣,胡时胜.冲击荷载下混凝土材料损伤演化规律的研究[J].岩石力学与工程学报.2003:22(2),223-226.
    [149]杨纪生,唐夏新.基于损伤理论的多孔介质动力分析[J].湘潭矿业学院学报.2001:16(4),48-54.
    [150]杨更社.岩石类材料单轴压缩损伤变量与纯剪切损伤变量间的关系[J].力学与实践.1994:16(1),34-36.
    [151]范华林,金丰年.岩石损伤定义中的有效模量法[J].岩石力学与工程学报.2000:19(4),432-435.
    [152]童小东,龚晓南,蒋永生.水泥土的弹塑性损伤试验研究[J].土木工程学报.2002:35(4),82-85.
    [153]唐春安.岩石破裂过程中的灾变[M].北京:煤炭工业出版社,1993:34-44.
    [154]唐春安,徐小荷.岩石损伤参量与本构关系的统计理论解及试验确定[J].岩石、混凝土断裂与强度.1988:8(1),80-86.
    [155]李晓.岩石峰后力学特性及其损伤软化模型的研究与应用[D].徐州:中国矿业大学博士学位论文,1995.
    [156]潘岳.岩石破坏过程的折迭突变模型[J].岩土工程学报.1999:21(3),299-303.
    [157]贺可强,潘岳.岩土介质的本构失稳与折迭突变模型[J].岩土工程学报.2001:23(4),506-509.
    [158]张全胜,杨更社,任建喜.岩石损伤变量及本构方程的新探讨[J].岩石力学与工程学报.2003:22(1),30-34.
    [159]纪洪广.混凝土材料损伤的声发射模式[J].声学学报.1996:17(增刊),531-536.
    [160]秦跃平.岩石损伤力学模型及其本构方程的探讨[J].岩石力学与工程学报.2001:20(4),560-562.
    [161]秦跃平,张金峰,王林.岩石损伤力学理论模型初探[J].岩石力学与工程学报.2003:22(4),646-650.
    [162]秦跃平,张文标,王磊.岩石损伤力学模型分析[J].岩石力学与工程学报.2003:22(5),702-705.
    [163]孙立军,周维垣.裂隙岩体弹塑性-损伤本构模型[J].岩石力学与工程学报.1990:9(2),108-119.
    [164]杨延毅,周维垣.裂隙岩体的渗流-损伤耦合模型及其工程应用[J].水利学报.1991:22(5),19-27.
    [165]周维垣,刘公瑞.岩石、混凝土类材料断裂损伤过程的细观力学研究[J].水电站设计.1997:13(1),1-9.
    [166]刘公瑞,周维垣,杨若琼.岩石混凝土材料细观损伤流变断裂模型及其工程应用[J].水利学报.1997:28(10),33-38.
    [167]李银平,王元汉.基于有效损伤体积的微缺陷损伤定义[J].华中科技大学学报.2001:29(5),98-100.
    [168] Khoroshun L.P. and Nazarenk L.V.. A model of the short-term damageability of a transversally isotropic material. Int. App. Mech., 2001, 37(1): 66-74.
    [169] Frantziskonis G. and Desai C.S.. Constitutive Model with Strain Softening. Int.J. Solid Structures, 1987, 23(6): 733-768.
    [170]杨松岩,俞茂宏.一种基于混合物理论的非饱和岩土类材料的弹塑性损伤模型[J].岩土工程学报.1998:20(5),58-63.
    [171] Simo J.C. and Ju J.W.. Strain-and stress-based contium damage models, part I. formulation, part II. Computational aspects. Int.J. Solid structures, 1988, 23(3): 821-869.
    [172] Ju J.W.. On energy-based coupled elastoplastic damage theories: constitutive modeling and computational aspects. Int.J. Solid structures, 1989, 25(7): 803-833.
    [173]韦立德,徐卫亚,杨春和等.具有统计损伤的岩石损伤统计本构模型的研究[J].岩石力学与工程学报.2004:23(12),1971-1975.
    [174]罗成德.金口大峡谷与大瓦山区的地貌研究[J].乐山师范学院学报,2003,18(4):84-88.
    [175] Krajcinovic D. and Silva M A G. Statistical aspects of the continuous damage theory. Int.J. Solids Structures,1982, 18(7): 551-562.
    [176]李建林.卸荷岩体力学[M].北京:中国水利水电出版社,2003.
    [177]成都理工大学环境与土木工程学院.金沙江白鹤滩水电站坝址区高边坡稳定性研究[R].成都:成都理工大学,2009.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700