用户名: 密码: 验证码:
深基坑桩锚支护结构稳定性及受力变形特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
桩锚支护结构是20世纪80年代开始应用及发展起来的一种新型抗滑结构,在深基坑治理、滑坡整治中已获得了广泛应用。目前国内外学者对于桩锚支护结构的耦合力学特性、数值实现方法以及稳定性影响因素相关方面的研究尚显不足。
     论文采用收集前人资料、理论分析、现场试验、数值仿真技术及工程监测等技术方法,对基坑桩锚支护效应、桩锚结构与土体的相互作用、桩锚结构参数对基坑稳定性的影响、基坑稳定性计算的数值方法以及桩锚结构之间的相互作用机理方面进行了相应研究,为理论应用和工程实践提供科学指导。
     通过桩土、土锚相互作用机理的理论分析,得到了桩锚联合支护结构与土体的相互作用模型及其变形协调条件和破坏模式。根据桩锚与土体相互作用特性,建立了桩锚数值计算单元,为进一步的数值计算奠定基础。
     通过锚杆拉拔试验和数值模拟试验,建立了锚杆极限锚固力和围压之间的拟合模型以及锚杆极限锚固力和锚杆长度之间的拟合模型,从而实现了锚固力同围压以及锚杆长度之间的定量分析,表明随着拉拔荷载的增大,锚杆的位移呈非线性增长;拉拔力较小时,荷载主要由界面胶结力和摩擦力承担;随着滑移增大,界面胶结力丧失很快,摩擦阻力也因颗粒磨细而衰减;锚杆轴力分布均为锚头处最大,沿着锚杆体逐渐减小。拉拔位移的增大导致锚杆发挥的锚固力逐渐增大;而围压的增大导致锚杆的破坏荷载逐渐增大,二者符合指数关系。
     通过对比极限平衡法和强度折减法分析基坑稳定性的异同,说明了极限平衡法分析基坑稳定性的机理和其局限性及强度折减法研究基坑稳定性的优点,验证了强度折减法的有效性。
     利用基于强度折减的FLAC3D数值模拟方法对基坑滑动面的分布情况及其影响因素进行了分析,表明随着粘结力的增大,滑动面逐渐从浅层滑动面转换为深层滑动面,滑动面上缘逐渐远离基坑项部;随着内摩擦角的增大,滑动破坏模式从深层破坏转变为浅层破坏,滑动面上缘逐渐靠近基坑顶部。
     利用桩单元和锚杆单元的特性,采用节点删除,重新建立连接的方法,在FLAC3D中实现了二者相互作用的数值模拟;通过桩锚支护结构参数的影响分析,建立了不同锚杆倾角下锚杆长度与安全系数之间的拟合模型,实现锚杆参数对稳定性影响的定量研究,表明基坑的安全系数和锚杆长度之间的关系呈高度线性相关;随着锚杆长度的增加,基坑滑动面逐渐从浅层滑动面转化为深层滑动面。
     桩锚支护过程中,桩单元和锚杆单元之间的相互作用的耦合特性及其应力和变形的传递特征表明:支护桩主要承受压力作用,压力的分布沿桩身呈现先增大后减小的趋势;随着锚杆长度的增加,支护桩所承受的压力逐渐减小;开挖过程中支护桩的轴力沿桩深方向分布不均匀,开挖初期支护桩主要承受拉力;随着开挖的进行,支护桩受力形式逐渐由受拉转换受压形式。
     通过一典型工程实例的现场监测和数值计算结果的对比分析,说明了本文数值方法的可靠性以及数值计算结果的有效性。
The pile-anchor reinforcement structure is a new type of slip resisting structure and was applied developed from 80s, 20 century, which is widely used in the reinforcement of deep foundation and slope. But in recently, the studies on the couple mechanical characteristic of pile-anchor reinforcement structure, its numerical realization method and foundation stability influential factors are still not enough.
     According to the former material, theoretical analysis, insitu test, numerical simulation technique and engineering monitoring, the reinforcement effect of pile-anchor for foundation, the interaction between pile-anchor structure and soil, the effect of pile-anchor reinforcement parameters to the foundation stability, the numerical method of foundation stability calculation and the interaction between pile structure and anchor structure are studied in the present paper, which will give guidance for the theoretical application and real engineering.
     The interaction mechanism of the pile-soil and cable-soil is analyzed, the interaction model of pile-anchor structure and soil is founded to study the deformation condition and failure modes. The pile-anchor numerical calculation element is built according to the interaction between pile-anchor and soil, which will give the foundation for the further numerical calculation.
     According to insitu monitoring, the fitting models for limit anchoring force with surrounding pressure, and the anchoring force with the cable length are built, then the relationship between the ancoring force with surrounding pressure and cable length can be quantitilized analyzed, which shows that, with the increase of loading, displacement of cable increases gradually in the nonlinear way; when the loading is small, the load is mainly resisted by the cohesion and friction of the interface; with the slip of cable increases, the cohesion of the interface decreases rapidly, while the friction decreases as well for the grain been milled; the distribution of the cable axial force shows the maximum magnitude at the cable and decreases along the cable shaft; with the increase of the tensile displacement, the anchoring force of the cable becoming gradually large; with the increase of the surrounding stress, the failure load of the cable increases gradually, whose relationship meets the exponential equation.
     The differences between limit equilibrium method and shear strength reduction method are compared, in which the mechanism and limitation of the limit equilibrium method are analyzed, while the characteristic and implementation procedure of the shear strength reduction method is studied, which validates the strength reduction method.
     The FLAC3D numerical simulation method based on thhe strength reduction method is used to study the distribution of foundation slip plane and their influential factors, which show that with the increase of the cohesion, the slip plane moves from shallow part of foundation to the inter part of foundation; the upper part of the slip plane moves farther to the vertex of foundation; with the increase of internal friction angle, the failure mode of the foundation changes from deep slippage to shallow slippage, the upper part of the slip plane moves closer to the vertex of the foundation.
     According to the characteristic of pile element and cable element, the join nodes of the two elements are deleted, then the new connection between them is built, the interaction between them in the FLAC3D is numerical realized; the influencing factors for pile-anchor structure are analyze, and fitting model for the cable length and safety factor with different cable inclination is studied, which shows that the relationship between foundation safety factor F and cable length can be described by linear equation with high coefficient; with the increase of cable length, the slip plane of foundation changes from shallow slip plane to the deep slip plane;
     The interaction effect of pile and cable is analyzed as well as their stress and deformation transformation characteristic, which show that, the reinforcement pile mainly resists the compression in the axial direction; the distribution of the compression shows the trend of first increases then decreases along the pile shaft; with the increase of cable length, the compression along the pile shaft decreases gradually; during the excavation procedure, the mode for the axial force of reinforcement pile changes from tensile to compressive.
     According to the monitoring and numerical calculation results for a typical engineering, the validations for the numerical method and numerical calculation results are proved.
引文
[1]Mahmoud Ghazavi,Arash Alimardani Lavasan.Interference effect of shallow foundations constructed on sand reinforced with geosynthetics[J].Geotextiles and Geomembranes,2008,26(5):404-415.
    [2]Allen Lunzhu Li,R.Kerry Rowe.Effects of viscous behavior of geosynthetic reinforcement and foundation soils on the performance of reinforced embankments[J].Geotextiles and Geomembranes,2008,26(4):317-334.
    [3]R.Kerry Rowe,C.Taechakumthorn.Combined effect of PVDs and reinforcement on embankments over rate-sensitive soils[J].Geotextiles and Geomembranes,2008,26(3):239-249.
    [4]Krystyna Kazimierowicz-Frankowska.Influence of geosynthetic reinforcement on the load-settlement characteristics of two-layer subgrade[J].Geotextiles and Geomembranes,2007,25(6):366-376.
    [5]J.Prabakar,Nitin Dendorkar,R.K.Morchhale.Influence of fly ash on strength behavior of typical soils[J].Construction and Building Materials,2004,18(4):263-267.
    [6]唐业清,李启民,崔江余.基坑工程事故分析与处理[M].北京:中国建筑工业出版社,1999.
    [7]曾宪明,林润德,易平.基坑与边坡事故警示录[M].北京:中国建筑工业出版社,1999.
    [8]P.M.Naghdi.A new derivation of the general equations of elastic shells[J].International Journal of Engineering Science,1965,3(3):335-337.
    [9]F.A.B.Danziger,B.R.Danziger,M.R Pacheco.The simultaneous use of piles and prestressed anchors in foundation design[J].Engineering Geology,2006,87(3/4):163-177
    [10]S.Narasimha Rao,K.Hema Latha,B.Pallavi,S.Surendran.Studies on pullout capacity of anchors in marine clays for-mooring systems[J].Applied Ocean Research,2006,28(2):103-111.
    [11]Charles Aubeny,J.Donald Murff.Simplified limit solutions for the capacity of suction anchors under undrained conditions[J].Ocean Engineering,2005,32(7):864-877.
    [12]Arching effects behind a soldier pile wall[J].Computers and Geotechnics,2001,28(6/7):379-396.
    [13]K.Ilamparuthi,E.A.Dickin.Predictions of the uplift response of model belled piles in geogrid-cell-reinforced sand[J].Geotextiles and Geomembranes,2001,19(2):89-109.
    [14]Lymon C Reese.Analysis of laterally loaded piles in weak rock[J].Journal of Geotechnical and Geoenvironmental Engineering,1997,123(11):1 010-1 017.
    [15]Rollins Kyle M,Peterson Kris T,Weaver Thomas Z.Lateral load behavior of full-scale pile group in clay[J].Journal of Geotechnical and Geoenvironmental Engineering,1998,124(6):468-478.
    [16]Chen L T,Poulos H G.Piles subjected to lateral soil movements[J].Journal of Geotechnical and Geoenvironmental Engineering,1997,123(9):802-811.
    [17]田景贵,范草原.预应力锚索抗滑桩的机理初步分析及设计[J].重庆交通学院学报,1998,17(4):59-64.
    [18]余振锡.预应力锚索抗滑桩在滑坡治理中的应用[J].金属矿山,1998,27(4):10-12.
    [19]曾德荣,凌天清,范草原.预应力锚索在滑坡治理中的设计与施工[J].水文地质工程地质,2000,(5):53-54.
    [20]洪文聪,陈建欣.北厢工程锚索桩板墙的设计与施工[J].云南交通科技,1999,15(1):33-35.
    [21]邹兴普。锚索抗滑桩的设计计算[J].路基工程,2000,(2):9-11.
    [22]徐勇,杨挺,王心联.桩锚支护体系在大型深基坑工程中的应用[J].地下空间与工程学报,2006,2(4):646-665。
    [23]邓修甫,白云峰.桩锚支护体系的受力和变形研究[J].焦作工学院学报(自然科学版),2003,22(3):191-193。
    [24]李宝平,张玉,李军.桩锚式支护结构的变形特性研究[J]。地下空间与工程学报,2007,3(7):1291-1294.
    [25]吴文,吴玉山。深基坑桩锚支护体系主动区土压力试验研究[J].岩土工程技术,1999,(2):26-29。
    [26]吴文,徐松林,汪大国.深基坑桩锚支护体系中的土锚试验研究[J].土工基础,2000,14(1):27-30.
    [27]时伟,刘继明,章伟.深基坑桩锚支护体系水平位移试验研究[J].岩石力学与工程学报,2003,22(sl):2355-2358.
    [28]姜晨光,林新贤,黄家兴.深基坑桩锚支护结构变形监测与初步分析[J]. 岩土工程界,5(8):55-56.
    [29]欧吉青。某深基坑桩锚支护体系计算方法与结果分析[J].南华大学学报(自然科学版),2007,21(3):73-77.
    [30]许锡昌,葛修润.基于最小势能原理的桩锚支护结构空间变形分析[J].岩土力学,2006,27(5):705-710.
    [31]Jun Gao,Xu Zhang,Jun Liu,Kuishan Li,Jie Yang.Numerical and experimental assessment of thermal performance of vertical energy piles:An application[J].Applied Energy,2008,85(10):901-910.
    [32]Jun-Jie Zheng,Sail W.Abusharar,Xian-Zhi Wang.Three-dimensional nonlinear finite element modeling of composite foundation formed by CFG-lime piles[J].Computers and Geotechnics,2008,35(4):637-643.
    [33]Mee-Seub Lim,Joonhong Lim.Visual measurement of pile movements for the foundation work using a high-speed line-scan camera[J].Pattern Recognition,2008,41(6):2025-2033.
    [34]M.Cubrinovski,R.Uzuoka,H.Sugita,K.Tokimatsu,et al.Prediction of pile response to lateral spreading by 3-D soil-water coupled dynamic analysis:Shaking in the direction of ground flow[J].Soil Dynamics and Earthquake Engineering,2008,28(6):421-435.
    [35]R.Uzuoka,M.Cubrinovski,H.Sugita,M.Sato,et al.Prediction of pile response to lateral spreading by 3-D soil-water coupled dynamic analysis:Shaking in the direction perpendicular to ground flow[J].Soil Dynamics and Earthquake Engineering,2008,28(6):436-452.
    [36]孙福,魏道垛主编.岩土工程勘察设计与施工[M]。北京:地质出版社,1998
    [37]John C.Small,Hana L.S.Liu.Time-settlement behaviour of piled raft foundations using infinite elements[J].Computers and Geotechnics,2008,35(2):187-195.
    [38]Val(?)rio S.Almeida,Jo(?)o B.de Paiva.Static analysis of soil/pile interaction in layered soil by BEM/BEM coupling[J].Advances in Engineering Software,2007,38(11/12):835-845.
    [39]M.Tariq,Amin Chaudhary.FEM modelling of a large piled raft for settlement control in weak rock[J].Engineering Structures,2007,29(11):2901-2907.
    [40]Cernica J N.Foundation Design[M].John Wiley &Sons Inc,1995.
    [41]王立明,高广运,郭院成.单支点桩锚支护结构的侧移计算[J].地下空间与工程学报,2005,1(4):510-513.
    [42]陈占.预应力锚索桩设计与计算[J]。地球科学-中国地质大学学报,2001,26(4):352-356.
    [43]刘全林,杨有莲.加筋水泥土斜锚桩基坑维护结构的稳定性分析及其应用[J]。岩石力学与工程学报,2005,24(s2):5331-5336.
    [44]王立明,高广运,郭院成。考虑竖向土拱的桩锚与土钉的联合支护[J]。岩土工程学报,2006,28(s):1481-1484。
    [45]严薇,曾友谊,王维说。深基坑桩锚支护结构变形和内力分析方法探讨[J].重庆大学学报,2008,31(3):344-348.
    [46]陈松,黄雄.弹性地基梁法在桩锚支护结构设计中的应用[J].铁道建筑,2007,(12):77-79.
    [47]郭院成,王新玲,吕伟.单支点桩锚结构中锚杆预应力锁定值的反演分析[J].工业建筑,2002,32(9):46-48.
    [48]刘代文,廖小平,王浩,程建军。抗滑桩全桩计算的有限差分法[J].中国地质灾害与防治学报,2007(sl):42-46.
    [49]戴自航,沈蒲生,彭振斌。弹性抗滑桩内力计算新模式及其有限差分解法[J].土木工程学报,2003,36(4):99-104.
    [50]杨佑发.弹性抗滑桩内力计算的有限差分"m-k"法[J].重庆建筑大学学报,2002,24(1):13-18.
    [51]戴自航,彭振斌.基于抗滑桩内力计算“m”法的有限差分法[J].中南工业大学学报,2001,32(5):461-464。
    [52]张强勇.弹性地基梁杆系有限元法在深大基坑工程支护设计中的应用[J].建筑结构学报,2005,26(3):114-118.
    [53]杨春发,张括.多支点锚桩支护结构计算方法及锚点位置优化的探讨[J].水利与建筑工程学报,2008,6(2):81-83.
    [54]龚晓南,高有潮。深基坑工程设计施工手册[M].北京:中国建筑出版社,1998。
    [55]秦四清.深基坑工程优化设计[M].北京:地震出版社,1998.
    [56]李仁民,施占新,刘松玉.弹性地基梁法和等值梁法进行基坑支护设计研究[J]。西部探矿工程,2007,(10):17-20。
    [57]卢晓莉,李琦。弹性地基梁的计算方法[J].枣庄学院学报,2008,25(2):68-70.
    [58]丁大钧,刘忠德.弹性地基梁计算理论和方法[M].南京:南京工学院出版社,1986.
    [59]黄义,何芳社.弹性地基上的梁、板、壳[M].北京:科学出版社,2005。
    [60]沈健,王建华,高绍武.基于“m”法的深基坑支护结构三维分析方法[J]。地下空间与工程学报,2005,1(4):530-533.
    [61]赵锡宏,李蓓等,大型超深基坑工程计算理论与实践研究.上海外环隧道浦西基坑工程[J].岩土工程学报,2003,25(3):258-263.
    [62]俞建霖,龚晓南,基坑王程变形性状研究[J]。土木工程学报,2002,35(8):86-90.
    [63]李好,周绪红。深基坑桩锚支护的弹塑性有限元分析[J].湖南大学学报,2003,30(3):86-89.
    [64]王启云.桩锚体系弹性支点法和三维有限元法比较与分析[J]。岩土工程界,2008,11(3):29-31.
    [65]冯紫良,冯时恩。桩锚试验的数值模拟[J]。同济大学学报(自然科学版),2006,34(2):175-180.
    [66]马平,申平,秦四清,等.深基坑桩锚与土钉墙联合支护的数值模拟[J].工程地质学报,2008,16(3):401-407.
    [67]郑明新,蒋新龙,殷宗泽.预应力锚索抗滑桩工程效果的数值计算评价[J].岩土力学,2007,28(7):1381-1386。
    [68]魏宁,傅旭东,邹勇.预应力锚索抗滑桩的有限元计算与应用[J].武汉大学学报(工学版),2004,37(5):73-76.
    [69]Itasca Consulting Group.Theory and Background[Z].Minnesota:Itasce Consulting Group,2002.
    [70]Itasca Consulting Group.User's Mannal[Z].Minnesota:Itasce Consulting Group,2002.
    [71]Itasca Consulting Group.Command Reference[Z].Minne- sota:Itasce Consulting group,2002.
    [72]Jin-zhong SUN,Xiao-fu TIAN,Xu-dong GUAN,et al.Stability Analysis for Loosened Rock Slope of Jinyang Grand Buddha in Taiyuan,China[J].Earth Science Frontiers,2008,15(4):227-238.
    [73]Tiziana Apuani,Marco Masetti,Marcello Rossi.Stress-strain-time numerical modelling of a deep-seated gravitational slope deformation:Preliminary results [J].Quaternary International,2007,171(8):80-89.
    [74]沈金瑞,林杭.节理边坡锚杆加固效应分析[J].工程建设与设计,2006,12:70-72。
    [75]Zhi-Liang Wang,Faiz I.Makdisi,John Egan.Practical applications of a nonlinear approach to analysis of earthquake-induced liquefaction and deformation of earth structures[J].Soil Dynamics and Earthquake Engineering,2006,26(2):231-252.
    [76]沈金瑞,林杭.多组节理边坡稳定性FLAC3D数值分析[J].中国安全科学学报,2007,17(1):29-33.
    [77]Jinoh Won,Kwangho You,Sangseom Jeong,et al.Coupled effects in stability analysis of pile-slope systems[J].Computers and Geotechnics,2005,32(4):304-315.
    [78]D.N.Petley,F.Mantovani,M.H.Bulmer,et al.The use of surface monitoring data for the interpretation of landslide movement patterns[J].Geomorphology,2005,66(1):133-147.
    [79]蓝航.基于FLAC-(3D)的边坡单元安全度分析及应用[J].中国矿业大学学报,2008,37(4):570-574.
    [80]李维朝,戴福初,李宏杰.基于强度折减的岩质开挖边坡加固效果三维分析[J].水利学报,2008,39(7):877-882.
    [81]宋克勇,王延军,刘保松.基于FLAC~(3D)的路基边坡稳定性数值分析[J].水利科技,2008,(1):37-40。
    [82]苗胜军,李长洪,佟慧超。水厂铁矿边坡开挖FLAC~(3D)数值模拟与分析[J].有色金属,2008,60(1):29-34。
    [83]Shigekazu Seki,Shinobu Kaise,Yasutaka Morisaki,et al.Model experiments for examining heaving phenomenon in tunnels[J].Tunnelling and Underground Space Technology,2008,23(2):128-138.
    [84]华渊,朱赞成,周太全,等。基于有限差分法的隧道新型支护结构稳定性分析[J]。岩石力学与工程学报,2005,24(15):2718-2722.
    [85]N.Benmebarek,S.Benmebarek,R.Kastner.Numerical studies of seepage failure of sand within a cofferdam[J].Computers and Geotechnics,2005,32(4):264-273.
    [86]唐剑,付洶,莫阳春。明月山隧道施工力学响应FLAC~(3D)数值模拟[J].路基工程,2008,(2):86-88.
    [87]C.B.Kooi,A.Verruijt.Interaction of circular holes in an infinite elastic medium[J].Tunnelling and Underground Space Technology,2001,16(1):59-62.
    [88]X.Chen,C.P.Tan,C.M.Haberfield.Numerical evaluation of the deformation behaviour of thick-walled hollow cylinders of shale[J].International Journal of Rock Mechanics and Mining Sciences,2000,37(6):947-961.
    [89]莫阳春,周晓军.侧部岩溶隧道围岩变形特征数值模拟分析[J].水文地质工程地质,2008(2):30-35.
    [90]F.Kirzhner,G.Rosenhouse.Numerical analysis of tunnel dynamic response to earth motions[J].Tunnelling and Underground Space Technology,2008,15(3):249-258.
    [91]李兆平,刘军,李名淦.采用矿山法构筑区间盾构隧道渡线段的方案探讨[J].岩土力学,2007,28(6):1156-1160。
    [92]Harald H(?)kmark.Numerical study of the performance of tunnel plugs[J].Engineering Geology,1998,49(3/4):327-335.
    [93]M.Cai.Influence of stress path on tunnel excavation response - Numerical tool selection and modeling strategy[J].Tunnelling and Underground Space Technology,2008,23(6):618-628.
    [94]宋卫东,梅林芳,谭玉叶。大间距无底柱分段崩落法采场地压变化规律研究[J].金属矿山,2008,(8):13-17。
    [95]宋卫东,梅林芳,谭玉叶.大间距无底柱分段崩落法采场地压变化规律研究[J].金属矿山,2008,(8):13-17.
    [96]韩放,谢芳,王金安.露天转地下开采土体稳定性三维数值模拟[J].北京科技大学学报,2006,28(6):509-515。
    [97]卜万奎,白海波,徐慧.S矿区采动覆岩破坏的实例研究[J].煤炭工程,2008,(3):60-63.
    [98]卢宏建,陈超,甘德清.石人沟铁矿露天转地下开采南区房间矿柱稳定性[J].河北理工学院学报,2006,28(3):10-12.
    [99]A.C.Waltham,G.M.Swift.Bearing capacity of rock over mined cavities in Nottingham[J].Engineering Geology,2004,75(1):15-31.
    [100]Meeok Kim,Marcos Freeman,Brendan T.FitzPatrick.Use of an apron to stabilize geomembrane tubes for fighting floods[J].Geotextiles and Geomembranes,2004,22(4):239-254.
    [101]L.R.Alejano,P.Ramirez-Oyanguren,J.Taboada.FDM predictive methodology for subsidence due to flat and inclined coal seam mining[J].International Journal of Rock Mechanics and Mining Sciences,1999,36(4):475-491.
    [102]黎永索,林杭。钉土相互作用的宏观效应分析[J].铁道建筑,2008,(4):61-63.
    [103]刘继国,曾亚武。FLAC~(3D)在深基坑开挖与支护数值模拟中的应用[J].岩土力学,2006,27(3):505-508.
    [104]王清,郭惟嘉,刘正兴。修正剑桥模型在基坑开挖分析中的应用[J].上海交通大学学报,2001,35(4):565-569.
    [105]黎永索,林杭.土钉与土体相互作用的仿真试验分析[J]。中国地质灾害与防治学报,2008,19(2):76-79.
    [106]刘辉,蔡美峰,朱彦鹏.基于FLAC~(2D)的深基坑支护设计数值分析[J].四川建筑科学研究,2008,34(2):138-142。
    [107]黎永索,林杭。深基坑土钉加固的变形和力学响应[J].工程勘察,2008,(5):17-19.
    [108]Stefan A.E.Kools,Marie-El(?)ne Y.Boivin,Andr(?) W.G.Van Der Wurff,et al.Assessment of structure and function in metal polluted grasslands using Terrestrial Model Ecosystems[J].Ecotoxicology and Environmental Safety,2009,72(1):51-59.
    [109]Gurkan Ozden,Cihan Taylan Akdag.Lateral load response of steel fiber reinforced concrete model piles in cohesionless soil[J].Construction and Building Materials,2009,23(2):785-794.
    [110]B.B.Soneji,R.S.Jangid.Influence of soil-structure interaction on the response of seismically isolated cable-stayed bridge[J].Soil Dynamics and Earthquake Engineering,2008,28(4):245-257.
    [111]Guocai Wang,Wei Ge,Xiaodong Pan,Zhe Wang.Torsional vibrations of single piles embedded in saturated medium[J].Computers and Geotechnics,2008,35(1):11-21.
    [112]Irshad Ahmad,M.Hesham El Naggar,Akhtar Naeem Khan.Artificial neural network application to estimate kinematic soil pile interaction response parameters[J].Soil Dynamics and Earthquake Engineering,2007,27(9):892-905.
    [113]Yong-Joo Lee,Richard H.Bassett.Influence zones for 2D pile-soil-tunnelling interaction based on model test and numerical analysis[J].Tunnelling and Underground Space Technology,2007,22(3):325-342.
    [114]Halidou Niandou,Denys Breysse.Reliability analysis of a piled raft accounting for soil horizontal variability[J].Computers and Geotechnies,2007,34(2):71-80.
    [115]Sheng-Huoo Ni,Lutz Lehmann,Jenq-Jy Charng.Low-strain integrity testing of drilled piles with high slenderness ratio[J].Computers and Geotechnics,2006,33(6/7):283-293.
    [116]F.Aboul-Ella.New iterative analysis of cable-stayed structures[J].Computers & Structures,1991,40(3):549-554.
    [117]张四平,赖明,廖贺平.带悬臂桩-锚桩抗滑体系的试验研究及计算机仿真分析[J].重庆建筑大学学报,1998,20(2):109-115。
    [118]刘小丽.新型桩锚结构的设计计算理论研究[D].成都:西南交通大学博士学位论文,2003.
    [119]桂树强。预应力锚索抗滑桩设计与计算方法研究及工程应用.武汉:中国地质大学硕士学位论文,2003.
    [120]赵明阶,何光春.边坡工程处治技术.北京:人民交通出版社,2003。
    [12]]颜恩锋,孙友宏,许振华。深层水泥土搅拌桩在基坑支护中的应用[J].岩土力学,2003,24(sl):90-93.
    [122]谢新民.既有桥高锥体近接工程支护型式研究[J].铁道学报,2003,25(4):122-125.
    [123]周应华,周德培,冯君。推力桩桩间土拱几何力学特性及桩间距的确定[J].岩土力学,2006,27(3):455-458。
    [124]吴子树,张利民,胡定。土拱的形成机理及存在条件的探讨[J].成都科技大学学报,1995,(2):15-19。
    [125]贾海莉,王成华,李江洪.关于土拱效应的几个问题[J]。西南交通大学学报,2003,38(4):398-402.
    [126]周德培,肖世国,夏雄.边坡工程中抗滑桩合理桩间距的探讨[J].岩土工程学报,2004,26(1):132-135.
    [127]王成华,陈永波,林立相.抗滑桩间土拱力学特性与最大间距分析[J].山地学报,2001,19(3):556-559.
    [128]胡敏云。深基坑护壁桩桩间距确定方法探讨[J]。中国公路学报,2000,14(2):27-29.
    [129]屠毓敏,金志玉。基于土拱效应的土钉支护结构稳定性分析[J].岩土工程学报,2005,27(7):792-795。
    [130]朱碧堂,温国炫,刘一亮.基坑开挖和支护中土层拱效应的理论分析[J].建筑技术,2002,33(3):97-98.
    [131]KARL T.Theoretical soil mechanics[M].4th edition.New York:John Wiley &Sons,1947:66-76.
    [132]胡敏云,夏永承,高渠清.桩排式支护护壁桩侧土压力计算原理[J].岩石力学与工程学报,2000,19(3):376-379.
    [133]张金民,曾进群。桩锚挡墙支扩体系挡板土压力的试验研究[J].地下空间, 2002,22(1):58-64.
    [134]陈肇元、崔京浩.土钉支护在基坑工程中的应用[M].北京:中国建筑工业出版社,2000.
    [135]杨明成.基于力平衡求解安全系数的一般条分法[J].岩石力学与工程学报,2005,24(7):1216-1221
    [136]张鲁渝.一个用于边坡稳定分析的通用条分法[J].岩石力学与工程学报,2005,24(3):496-501
    [137]Cheng YM.Locations of critical failure surface and some further studies on slope stability analysis.Comput Geotech 2003,(30):255-267.
    [138]Krahn J.The 2001 R.M.Hardy Lecture;the limits of limit equilibrium analysis.Can Geotech J 2003,40(3):643-60.
    [139]杨明成.一般条分法的安全系数显示解[J].岩土力学,2004,25(增):258-273.
    [140]陈昌富,杨宁.边坡稳定性分析水平条分法及其进化计算[J].湖南大学学报,2004,31(3):72-75
    [141]Baker R,Leshchinsky D.Spatial distribution of safety factors.J Geotech Geoenviron Eng 2001;127(2):135-145.
    [142]邹广电,蒋婉莹.边坡稳定性分析的一个改建条分法[J].岩石力学与工程学报,2003,22(12):1953-1959.
    [143]Abramson LW,Lee TS,Sharma S,Boyce GM.Slope stability and stabilization methods,second ed.USA:Wiley,2002.
    [144]邹广电.边坡稳定分析条分法的一个全局优化算法[J].岩土工程学报,2002,24(3):309-312.
    [145]Y.M.Cheng,T.Lansivaara,W.B.Wei.Two-dimensional slope stability analysis by limit equilibrium and strength reduction methods[J].Computers and Geotechnics,2007,34(3):137-150.
    [146]陈友根,朱大勇.土压力计算中条间力函数的选取[J].金属矿山,2001,(11):12-13。
    [147]宋飞,闫彭旺,孙万禾等。土坡稳定及地基承载力的精确解的工程力学推导方法[J].中国港湾建设,2004,(4):28-31.
    [148]郑颖人,时卫民.不平衡推力法与Sarma法的讨论[J].岩石力学与工程学报,.2004,23(17):3030-3026.
    [149]朱大勇,李焯芬.对3种著名边坡稳定性计算方法的改进[J].岩石力学与工程学报,2005,24(2):183-194。
    [150]徐青,陈士军,陈胜宏.滑坡稳定分析剩余推力法的改进研究[J].岩土力学, 2005,26(3):465-470.
    [151]何思明,李新坡.预应力锚杆作用机制研究[J].岩石力学与工程学报,2006,25(9):1176-1181.
    [152]余坪,余渊。滑坡防预应力锚索的试验研究[J].中国地质灾害与防治学报,1996,7(1):59-63.
    [153]蒋忠信.拉力型锚索锚固段剪应力分布的高斯曲线模式[J].岩土工程学报,2001,23(6):696-699.
    [154]Kilic A,Yasar E,Celik A G.Effect of grout properties on the pull-out load capacity of fully grouted rock bolt[J].Tunneling and Underground Space Technology,2002,17:355-362.
    [155]尤春安,战玉宝.预应力锚索锚固段应力分布规律及分析[J].岩石力学与工程学报,2005,24(6):925-928.
    [156]徐景茂,顾雷雨.锚索内锚固段注浆体与孔壁之间峰值抗剪强度试验研究[J]。岩石力学与工程学报,2004,23(22):3 765-3 769.
    [157]Farmer A.Stress distribution along a resin grouted anchor[J].International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts,1975,12:681-686.
    [158]Farmer I W,Holmberg A.Stress distribution along a resin grouted rock anchor[J].International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts,1975,12:347-351.
    [I59]Cai Y,Esaki T,Jiang Y J.An analytical model to predict axial load in grouted rock bolt for soft rock tunneling[J].Tunnelling and Underground Space Technology,2004,19:607-618.
    [160]Steen M,Valles J L.Interface bond conditions and stress distribution in a two-dimensionally reinforced brittle-materix composite[J].Composites Science and Technology,1998,58:313-330.
    [161]何思明,张小刚,王成华.基于剪切滞模型的预应力锚索作用机制研究[J].岩石力学与工程学报,2004,23(15):2 562-2 567。
    [162]Li C,Stillborg B.Analytical models for rock bolts[J].International Journal of Rock Mechanics and Mining Sciences,1999,36:1 013-1 029.
    [163]陈晓文,杨光华,张君禄,等。广州凯华城基坑采用土钉墙支护设计实践[J].岩石力学与工程学报,2004,23(17):3 021-3 029.
    [164]蒋良潍,黄润秋,许强.钢绞线逐根张拉下锚墩基床沉陷所致锚索预应力损失问题[J]。地球与环境,2005,33(增):453-458。
    [165]晏成明,曹国金,沈辉。岩土锚固技术应用和研究现状及其展望[J].岩土工程师,2002,14(2):14-18.
    [166]徐湘涛,严丽娟,汪家林。紫坪铺水利枢纽引水发电洞进水口边坡锚索预应力损失分析[J].地质灾害与环境保护,2005,16(2):207-210.
    [167]杜斌,李勇,孔思丽,等.预应力锚索抗滑桩中锚索预应力损失的试验研究[J].岩土工程界,2005,9(1):74-76.
    [168]朱晗迓,孙红月,汪会帮,等.边坡加固锚索预应力变化规律分析[J]。岩石力学与工程学报,2004,23(16):2 756-2 760.
    [169]胡国祥。预应力锚杆在基坑支护中的应用[J].建筑技术开发,2004,31(9):31-32.
    [170]张友葩,高永涛,吴顺川.预应力锚杆锚固长度的研究[J].岩石力学与工程学报,2005,24(6):980-986。
    [171]汪海滨,高波。预应力群锚根状效应原位试验研究[J]。岩土力学,2006,27(1):77-82.
    [172]汪海滨,高波。预应力锚索荷载分布机制原位试验研究[J].岩石力学与工程学报,2005,24(12):2 113-2 118。
    [173]朱晗迓,孙红月,汪会帮,等.边坡加固锚索预应力变化规律分析[J].岩石力学与工程学报,2004,23(16):2 756-2 760.
    [174]陈安敏,顾金才,沈俊,等.软岩加固中锚索张拉吨位随时间变化规律的模型试验研究[J].岩石力学与工程学报,2002,21(2):251-256
    [175]袁小梅。边坡锚索预应力损失估算[J].路基工程,1999,(6):46-47.
    [176]周永江,何思明,杨雪莲。预应力锚索的预应力损失机理研究[J].岩土力学,2006,27(8):1353-1357.
    [177]Zhu D Y,Lee C F,Jiang H D.Generalised framework of limit equilibrium methods and numerical procedure for slope stability analysis[J].Geotechnique,2003,53(4):377-395.
    [178]Fellenius W.Calculation of stability of earth dams[J].Transactions of the 2nd Congress on Large Dams,Washington D C,1936.
    [179]Bishop A W.The use of the slip circle in the stability analysis of slopes [J].Geotechnique,1955,1:7-17.
    [180]张天宝.土坡稳定分析和土工建筑物的边坡设计[M].成都:成都科技大学出版社,1987
    [181]Hungr O.An extension of Bishop's simplified method of slope stability analysis to three dimensions[J].Geotechnique,1987,37(1):113-117.
    [182]Lain L,Fredlund D G.A general limit equilibrium model for three dimensional slope stability analysis[J].Can Geotech J,1993,30:905-919.
    [183]Leshchinsky D,Huang C C.Generalized three dimensional slope stability analysis[J].Geotch Engng,ASCE,1992,118(11):1748-1764.
    [184]Hovland H J.Three dimensional slope stability analysis method[J].Geotech EngngDiv,ASCE,1997,103(9):971-986
    [185]Huang C C,Tsai C C.New method for 3 D and asymmetrical slope stability analysis[J].Geotechand Geoenv Engng,2000,126(10):917-927
    [186]邹广电.边坡稳定分析条分法的一个全局优化算法[J]。岩土工程学报,2002,24(3):309-312.
    [187]Duncan J M.State-of-the-Art..Limit equilibrium and finite-element analysis of slopes[J].Geotech.Engrg.,ASCE,1996,122(7):577-596
    [188]Matsui T and San K C.Finite Element Slope Stability Analysis by Shear Strength Reduction Technique[J].Soils and foundations,JSSMFE,1992,32(1):59-70
    [189]Colby C.Swan and Young-Kyo Seo.Limit State Analysis of Earthen Slopes Using Dual Continuum/FEM Approaches.Int.J.Numer.Anal.Meth.Geomech,1999,(23):1359-1371
    [190]吕擎峰。土坡稳定性分析方法研究[D].河海大学博士学位论文,2005。
    [191]栾茂田,武亚军,年廷凯.强度折减有限元法中边坡失稳的塑性区判据及其应用[J].防灾减灾工程学报,2003,23(3):1-8.
    [192]刘金龙,栾茂田,赵少飞等.关于强度折减有限元方法中边坡失稳判据的讨论[J].岩土力学,2005,26(8):1345-1348.
    [193]迟世春,关立军.基于强度折减的拉格朗日差分方法分析土坡稳定性[J]。岩土工程学报,2004,26(1):42-46.
    [194]宋二祥.土工结构安全系数的有限元计算[J].岩土工程学报,1997,19(2):1-7.
    [195]郑宏,李春光,李焯芬等.求解安全系数的有限元法[J].岩土工程学报,2002,24(5).626-628
    [196]Griffiths DV,Lane PA.Slope stability analysis by finite elements.Geotechnique 1999;49(3):387-403.
    [197]Ugai K A.Method of calculation of total factor of safety of slopes by elaso-plastic FEM[J].Soil and Foundation,1989,29(2):190- 195.
    [198]Dawson E M,Roth W H,Drescher A.Slope stability analysis by strength reduction[J].Geotechnique,1999,49(6):835-840.
    [199]连镇营,韩国城,孔宪京.强度折减法研究开挖边坡的稳定性[J].岩土工程学报,2001,23(4):407-411.
    [200]刘祚秋,周翠英,董立国,等.边坡稳定及加固分析的有限元强度折减法[J].岩土力学,2005,26(4):558-561.
    [201]赵尚毅,郑颖人,张玉芳.极限分析有限元法讲座-有限元强度折减法中边坡失稳的判据探讨[J].岩土力学,2005,26(2):332-336.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700