用户名: 密码: 验证码:
水泥基材料中氯离子传输试验方法的基础研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
氯离子渗入并引起的钢筋锈蚀是氯盐环境下钢筋混凝土结构最主要的耐久性问题,每年由此造成了巨大的经济损失。因而,该问题成为混凝土及其结构工程领域的研究热点之一,研究内容主要包括耐久性设计、寿命预测和降低混凝土氯离子渗透性的技术措施等,这几方面均涉及到混凝土氯离子渗透性的试验方法。
     在过去的几十年里,提出了许多测量混凝土氯离子扩散系数的试验方法。试验方法主要有自然扩散和电加速迁移试验方法,根据混凝土内部氯离子浓度是否随时间变化,又分为稳态和非稳态试验方法。不同的试验方法,其理论基础和试验条件不同,试验结果也不同;自然扩散试验方法比较符合实际情况,但试验耗时太长且操作繁琐。为在较短试验时间内得出能准确反映混凝土抗氯离子渗透性的试验结果,有必要对混凝土氯离子迁移试验进行系统的基础研究,以得到科学、实用的试验方法与用于预测模型的输入参数。
     本文对非稳态自然扩散的NT build 443,稳态电迁移的NT build355和上游流量法和非稳态电迁移的NT build 492、临界时间法、等量时间法(AC1)、拟和法(AC2)和截距时间法(AC3),以及它们之间的相关性进行了大量的试验研究与分析。
     稳态电迁移试验的对比研究表明:NT build 355得到的混凝土氯离子电迁移系数比上游流量法得到的结果低,分析认为其原因是上游流量法的计算公式没有考虑吸附氯离子的影响,因而,导致试验结果偏大;NT build 355的精确度比上游流量法要高。因此,NT build 355法是更实用的稳态试验方法,其结果更适用于预测氯离子在混凝土中的传输。
     非稳态试验方法的对比研究表明:AC1和NT build 492两种方法得到的电迁移系数D_(nssm)与NT build 443得到的自然扩散系数D_(nssd)具有良好的线性相关性:D_(nssm)=λD_(nssd),其线性相关系数λ与混凝土的水胶比和所含矿物掺合料种类有关;AC2法得到的电迁移系数与NTbuild 443得到的自然扩散系数无相关性;AC3法得到的电迁移系数略高于NT build 443得到的自然扩散系数;临界时间法得到的电迁移系数比NT build 443得到的自然扩散系数低。不同试验溶液的浓度与温度下的非稳态试验结果表明:当试验溶液的氯离子浓度高于1mol/1时,浓度对电迁移系数D_(nssd)和自然扩散系数D_(nssm)锄的影响都不大;试验溶液的温度对自然扩散系数D_(nssd)和电迁移系数D_(nssm)影响不同,扩散系数活化能具有水胶比依赖性,而电迁移系数活化能似乎趋于20KJ/mol。基于理论基础、试验方法的适应性和试验结果的精确度,认为在已有的非稳态电迁移试验方法中,NT build 492法最适合于实际应用。
     试验结果表明从电迁移试验和扩散试验得到的氯离子等温吸附曲线与经典的平衡法得到的结果相似。本文解释了试验过程中出现的水泥基材料孔溶液中氯离子浓度的浓缩现象,认为其实质是水泥基材料孔壁表面双电层作用的结果。
     一般在混凝土的氯离子扩散预测模型中,认为氯离子扩散系数沿扩散方向是恒定的,分析认为氯离子扩散系数是随扩散深度而变化的,因为氯离子扩散过程中混凝土不同深度处的氯离子浓度不同,因而不同深度处的氯离子扩散系数也不一样,一方面由于电化学的原因使扩散系数具有浓度依赖性;另一方面压汞试验结果显示氯离子吸附对孔结构的影响很大,混凝土不同深度处的氯离子吸附不一样,孔结构也可能发生不同的变化,从而影响扩散系数。据此,本文提出了一个分段函数来描述氯离子扩散系数,并将该系数和从扩散试验测得的氯离子等温吸附曲线代入多粒子扩散模型中,得到的混凝土中的总氯离子和自由氯离子的浓度分布的数值模拟结果与试验结果非常吻合。所以,该模型适用于预测饱和混凝土中氯离子的传输。
Chloride-induced corrosion is the major durability issue of reinforced concrete structures in marine environment and in cold areas where de-icing salts are used, which causes enormous economic loss for the society. Thus, this is a hot topic in concrete field, which mainly includes durability design, service life prediction and techniques for reducing chloride permeability of concrete. These aspects are all related to the test methods for chloride transport in concrete.
     Numerous methods have been developed for the measurement of chloride transport in saturated concrete in the past decades, which mainly includes electrically accelerated and natural diffusion test methods. Based on whether chloride concentration changes with time, test methods can be roughly grouped into steady-state and non-steady-state test methods. The existing methods are based on different theoretical bases, and are tested under different conditions. This may lead to different results. Natural diffusion tests are close to reality, but it needs long test duration. To obtain an accurate test result within a reasonable time and a practical method, it is necessary fundamentally investigate the existing test methods and their relationships.
     This thesis experimentally studied and analyzed natural diffusion test of NT build 443, steady-state migration tests of NT build 355 and upstream method, non-steady-state migration tests of NT build 492, breakthrough time method and equivalent time method (AC1), fitting method (AC2) and intersection time method (AC3), and their relationships.
     Results showed that stead-state migration coefficient obtained from NT build 355 was lower that that of upstream method. This was because bound chloride was also counted as free chloride when using upstream method. In addition, NT build 355 showed a much better repeatability than that of upstream method. Compared to upstream method, NT build 355 is more practical and suitable for service life prediction models.
     Non-steady-state migration coefficients (D_(nssm)) obtained from NT build 492 and AC1 were well linearly related with non-steady-state diffusion coefficients(D_(nsSd)) obtained from NT build 443: D_(nssm)=λD_(nssd), the coefficientλdepends on water-to-binder ratio and supplementary cementing materials. D_(nssm) obtained from AC2 had the worst relation with D_(nssd) obtained from NT build 443. D_(nssm) obtained from AC3 were general higher than D_(nssd) obtained from NT build 443. While the results obtained from breakthrough method was generally lower than that from diffusion tests. Results indicated that the effect of chloride concentration on diffusion and migration tests were slight when chloride concentration was higher than 1mol/1. Temperature affected migration and diffusion tests in different manners. Activation energy of diffusion coefficient depended on water-to-binder ratio, Activation energy of migration coefficient was close to 20kJ/mol. In view of the theoretical base, manipulation and presicion of test methods, NT build 492 is more suitable for the engineering applications.
     The binding isotherms determined from diffusion/migration tests were similar to that from equilibrium method. Results and analysis revealed that the truth of condensation phenomena was the effect of electrical double layer of the pore wall.
     In most prediction models, diffusion coefficient is regarded as a fixed value along the depth. However, diffusion coefficients vary with depth. This is because that chloride concentrations at different depths of concrete are different, on one hand, chloride diffusion is concentration dependent because of electrochemical reasons; on the other hand, MIP results showed that chloride binding modified the pore structure, thus diffusion coefficient. A new depth-dependent diffusion coefficient was proposed in this thesis, which was implemented in the multi species model. Experimental results were in perfect agreement with simulation results obtained by the model.
引文
[1] Federal Highway Administration, Corrosion Costs and Preventative Strategies in the United States, FHWA. United States Department of Transportation: McLean, VA, 2002, 773 pp.
    [2] Bickley, J. A., Going with the flow: The mass transport of all those nasty little b.. g. .rs, , International conference on ion and mass transport in cement-based materials, Toronto, 1999.
    [3] Thomas M. D. A. (a), and Bamforth, P. B., Modelling chloride diffusion in concrete Effect of fly ash and slag, Cement and Concrete Research 29 (1999) 487 - 495.
    [4] Thomas M. D. A. (b), Shehata M. H., Shashiprakash S. G., Hopkins D. S., Cail K., Use of ternary cementitious systems containing silica fume and fly ash in concrete Cement and Concrete Research 29 (1999) 1207 - 1214
    [5] Rieger Philip H. Electrochemistry. 2nd edition, Chapman&Hall, New York, 1994.
    [6] Tang, L, Concentration dependence of diffusion and migration of chloride ions Part 1. Theoretical considerations. Cement and Concrete Research 1999; 29: p. 1463-1468.
    [7] Crank, J., The Mathematics of Diffusion, 2nd ed., Oxford Univ. Press, London, 1975.
    [8] Ushiyama, H., and Goto, S., Diffusion of Various Ions in Hardened Portland Cement Pastes, 6~(th) International Congress on the Chemistry of Cement, Moscow, 1974, Vol. Ⅱ: p. 331-337.
    [9] Orellan, Herrera J. C., Escadeillas, G., Arliguie, G., Electro-chemical chloride extraction: Influence of C_3A of the cement on treatment efficiency, Cement and Concrete Research 2006, 36: p. 1939 - 1946.
    [10] Toumi, A., Francois, R., Alvarado, O., Experimental and numerical study of electrochemical chloride removal from brick and concrete specimens. Cement and Concrete Research 2007, 37(1): p. 54-62.
    [11]Andrade,C.,Calculation of chloride diffusion coefficients in concrete from ionic migration measurements,Cement and Concrete Research 1993,23(3):p.724-742.
    [12]Thomas,M.D.A.,Pantazopoulou,S.J.,and Martin-Perez,B.,Service life modelling of reinforced concrete structures exposed to chlorides-A literature review,prepared for the Ministry of Transportation,Ontario,at the University of Toronto,1995.
    [13]Shi,C.,Unpublished document.2006
    [14]Streicher,P.E.,Alexander,M.G.,A critical evaluation of chloride diffusion test methods for concrete,Third CANMET/ACI international conference on durability of concrete,Supplementary Papers,Nice,France,1994,p.517-530.
    [15]Stanish,K.D.,Hooton,R.D.,Thomas,M.D.A.,Testing the chloride penetration resistance of concrete:a literature review,FHWA Contract DTFH61-97-R-00022,University of Toronto,Toronto,ON,Canada,June 2000,31 p.
    [16]史才军,元强,邓德华,郑克仁.混凝土中氯离子迁移特征的表征.硅酸盐学报.2007;35(4):p.522-530.
    [17]Chatterji,S.On the non-applicability of unmodified Fick' s laws to ion transport through cement based materials.in:L.O.Nilsson,J.P.Ollivier(Eds.),Proceedings of the International RILEM Workshop-Chloride Penetration Into Concrete,Paris,1995,pp.64-73.
    [18]Page,C.L.,Short,N.R.and E1-Tarras,A.,Diffusion of Chloride Ions in Hardened Cement Pastes,Cement and Concrete Research 1981,11(3):p.395-406.
    [19]Byfors,K.,Influence of silica fume and fly ash on chloride diffusion and pH values in cement pastes,Cement and Concrete Research 1987,17(1):p.115-130.
    [20]Hanson,C.M.,Sorensen,B.,The influence of cement fineness on chloride ciffusion and chloride cinding in hardened cement paste,Nordic Concrete Research 1987,6:p.57-72.
    [21] Arsenault, J, Gigas, J. P., Ollivier, J. P., Determination of chloride diffusion coefficient using two different st(?)ady-state methods: influence of concentration gradient, Proceedings of the international RILEM workshop, edited by L. O.Nilsson and J. P. Ollivier, 1995: p. 150-160.
    [22] AEC Laboratory, Concrete Testing, Hardened Concrete. Chloride Penetration, APM 302, 2~(nd) ed., AEC Laboratory, Vedbek, Denmark, May 1991.
    [23] NORDTEST NT BUILD 443, Accelerated chloride penetration, FINLAND, 1995.
    [24] Bockris, J. M. and Conway, B. E. Modern aspects of electrochemistry. Fourteenth edition Plenum, New York, 1982.
    [25] Andrade, C., Sanjua'n, M. A., Recuero, A., Calculation of chloride diffusivity in concrete from migration experiments, in non steadystate conditions, Cement and Concrete Research 1994, 24 (7): p. 1214-1228.
    [26] Andrade, C., Castellote M., Alonso C., Gonz(?)lez C., Non-steady-state chloride diffusion coefficients obtained from migration and natural diffusion tests. Part 1: comparison between several methods of calculation, Materials and Structures 2000, 33, January-February: p. 21-28.
    [27] Tang, L. and Nilsson, L., Rapid determination of the chloride diffusivity in concrete by applying an electrical field, ACI Materials Journal 1992, 89 (1): p. 49- 53.
    [28] Tang, L., Chloride Transport in Concrete - Measurement and Prediction. Ph.D. Thesis. 1996, Department of Building Materials, Chalmers University of Technology, Goteborg, Sweden.
    [29] Zhang, T., and Gjorv O. E., An electrochemical method for accelerated testing of chloride diffusion, Cement and Concrete Research 1994, 24(8): p. 1534-1548
    [30] Zhang, T., Chloride diffusivity in concrete and its measurement from steady state migration testing, building materials, NTNU, Trondheim, 1997, 215.
    [31] Truc, O. (a), Ollivier, J. P., Carcasses, M., A new way for determining the chloride diffusion coefficient in concrete from steady state migration test, Cement and Concrete Research 2000, 30: p. 217 - 226.
    [32] Truc, O. (b), Prediction of chloride penetration into saturated concrete - multi - species approach. Ph.D. Thesis. 2000, Department of Building Materials, Chalmers University of Technology, Goteborg, Sweden.
    [33] Samson, E., Marchand, J., Snyder, K. A., Calculation of ionic diffusion coefficients on the basis of migration test results. Materials and Structures 2003, 36: p. 156-165.
    [34] Friedmann, H., Amiri, O., A(?) t-Mokhtar, A., Dumargue, P., A direct method for determining chloride diffusion coefficient by using migration test. Cement and Concrete Research 2004, 34: p. 1967-1973.
    [35] Krabbenh(?)ft, K, Krabbenh(?)ft, J., Application of the Poisson-Nernst-Planck equations to the migration test, Cement and Concrete Research 2008, 38: p. 77-88.
    [36] NORDTEST NT BUILD 355, chloride diffusion coefficient from migration cell experiments, Finland, 1997.
    [37] Zhang, T., Gjr(?)v, O. E. Effect of ionic interaction in migration testing of chloride diffusivity in concrete. Cement and Concrete Research 1995, 25(7): p. 1535-1542.
    [38] Truc, O., Olliver, J., Nilsson, L., "LMDC test method" . In: R. Doug Hooton, Michael D. A. Thomas, Jacques Marchand, James J. Beaudoin (eds.) Ion and mass transport in cement-based materials. USA, 2001, p. 121-128.
    [39] NORDTEST NT BUILD 492, Chloride migration coefficient from non-steady-state migration experiments, Finland, 1999.
    [40] McGrath, P. (b), Hooton, R. D., Influence of voltage on chloride diffusion coefficients from chloride migration tests, Cement and Concrete Research 1996, 26(8): p. 1239-1244.
    [41] Stanish, K., Hootonb, R. D. and Thomas, M. D. A., A novel method for describing chloride ion transport due to an electrical gradient in concrete: Part 1. Theoretical description, Cement and Concrete Research, Vol.34, pp. 43-49, 2004.
    [42] Voinitchi, D., Julien, S., Lorente, S., The relation between electrokinetics and chloride transport through cement-based materials, Cement and Concrete Composites 2008, 30: p. 157-166.
    [43] Halamickova, P., Detwiler, R. J., Bentz, D. P., Garboczi, E. J., Water permeability and chloride ion diffusion in Portland cement mortars: relationship to sand content and critical pore diameter, Cement and Concrete Research 1995, 25(4): p. 790-802.
    [44] Yang, C. C., Cho, S. W., An electrochemical method for accelerated chloride migration test of diffusion coefficient in cement-based materials, Materials Chemistry and Physics 2003, 81: p. 116-125.
    [45] Yang, C. C., Wang, L. C., The diffusion characteristic of concrete with mineral admixtures between salt ponding test and accelerated chloride migration test, Materials Chemistry and Physics 2004, 85: p. 266 - 272.
    [46] Yang, C. C., Chiang, S. C., Wang L. C., Estimation of the chloride diffusion from migration test using electrical current, Constrution Building Materials 2007, 21: p. 1560-1567.
    [47] McGrath, P., Development of Test Methods for Predicting Chloride Penetration into High Performance Concrete, 1996, Ph.D. Thesis, Department of Civil Engineering, University of Toronto, Canada.
    [48] Boddy, A., Hooton, R. D. and Gruber, K. A., Long-term testing of the chloride-penetration resistance of concrete containing metakaolin, Cement and Concrete Research 2001, 31: p. 759-765.
    [49] Castellote, M., Andrade, C., Round-Robin test on methods for determining chloride transport parameters in concrete. Materials and Structures, 2006, 39: p. 955-990.
    [50] Castellote, M. (b), Andrade, C., Alonso, C., Non-steady-state chloride diffusion coefficients obtained from migration and natural diffusion tests. Part Ⅱ: Different experimental conditions joint relations, Materials and Structures, 2001, 34, July: p. 323-331.
    [51] Castellote, M. (a), Andrade, C., Alonso, C., Measurement of the steady and non-steady-state chloride diffusion coefficients in a migration test by means of monitoring the conductivity in the anolyte chamber Comparison with natural diffusion tests, Cement and Concrete Research 2001, 31: p. 1411 -1420.
    [52] Narsili, G. A., Li, R., Pivonka, P., Smith, D. W., Comparative study of methods used to estimate ionic diffusion coefficients using migration tests, Cement and Concrete Research 2007, 37: p. 1152-1163.
    [53] Lu, X. Application of the Nernst-Einstein equation to concrete. Cement end Concrcte Research 1997, 27(2): p. 293-302.
    [54] Castellote, M. (b), Andrade, C., and Alonso, C., Modelling of the processes during steady-state migration tests: quantification if transference numbers. Materials and Structures 1999, 32: p. 180-186
    [55] Andrade, C. (b), Alonso, C., Arteage A, Tanner P, Methodology based on the electrical resistivity for the calculation of reinforcement service life. In: Nalhotra VM (ed) Proceedings of the 5th CANMET/ACI international conference on durability of concrete, June 4-9, 2000, Barcelona, Spain, Supplementary paper, 899-915.
    [56] Streicher, P. E., Alexander, M. G., A chloride conduction test for concrete, Cement and Concrete Research 1995, 25(6): p. 1284-1294.
    [57] Lu, X., Rapid determination of the chloride diffusivity in concrete, Proceedings of the second international conference on concrete under severe conditions, C0NSEC' 98, Tromso, Norway, June 21-24, 1998, pp. 1963-1969.
    [58] Lu, X., A rapid method for evaluation of the permeability of concrete, Chinese Patent CN1249427A, 1999.
    [59] Snyder, K. A. The relationship between the formation factor and the diffusion coefficient of porous materials saturated with concentrated electrolytes: theoretical and experimental considerations. Concrete Science and Engineering 2001, 3, December: p. 216-224.
    [60] Buenfeld, N. R., Newman, J. B., Examination of three methods for studying ion diffusion in cement pastes, mortars and concrete, Materials and Structure 1987, 20: p. 3-10.
    [61] Kyi, A. A., Batchelor, B., An electrical conductivity method for measuring the effects of additives on effective diffusivities in portland cement pastes, Cement and Concrete Research 1994, 24(4): p. 752-764.
    [62] Whiting, D., Rapid Determination of the Chloride Permeability of Concrete, Research Report FHWA/RD-81/119, 1981.
    [63] AASHTO T 277-86, Rapid determination of the chloride permeability of concrete, American Association of States Highway and Transportation Officials, Standard Specifications - Part Ⅱ Tests, Washington, D. C., 1990.
    [64] ASTM C1202, Electrical Indication of Concrete' s Ability to Resist Chloride Ion Penetration, Annual Book of American Society for Testing Materials Standards, 2005.
    [65] Feldman, R. F., Chan, G. W., Brousseau, R. J., Tumidajski, P. J., Investigation of the rapid chloride permeability test, AC I Materials Journal 1994, 91 (3): p. 246-255.
    [66] Pfeifer, D., McDonald, D., Krauss, P., The rapid chloride test and its correlation to the 90-Day chloride ponding test, PCI Journal 1994, January-February: p. 38-47.
    [67] Cao, H. T., Meck, E., A review of the ASTM C1202 standard test, Concrete In Australia, 1996 October: p. 23-26.
    [68] Scanlon, J. M., Sherman, M. R., Fly ash concrete: an evaluation of chloride penetration test methods, Concrete International 1996, 18(6): p. 57-62.
    [69] Shi, C., Stegemann, J. A., Caldwell, R., Effect of supplementary cementing materials on the rapid chloride permeability test (AASHTO T 277 and ASTM C1202) results, ACI Materials Journal 1998 July-August, 95(4): p. 389-394.
    [70] Shi, C., Effect of mixing proportions of concrete on its electrical conductivity and the rapid chloride permeability test (ASTM C1202 or ASSHTO T277) results, Cement and Concrete Research 2004, 34(3): p. 537-545.
    [71] Berke, N. S, Hicks, M. C., Estimating the life cycle of reinforced concrete cecks and marine piles using laboratory diffusion and corrosion data, in corrosion forms and control for infrastructure, ASTM STP 1139, 1992, p. 207-231.
    [72] Feldman, R. F., Luiz, R., Prudencio, Jr. U, Gordon, Chan, Rapid chloride permeability test on blended cement and other concretes: correlations between charge, initial current and conductivity, Construction Building Materials 1999, 13: p. 149-154.
    [73] Riding, K. A., Poole J. L., Schindler, A. K., Juenger, M. C. G., Folliard, K. J., Simplified concrete resistivity and rapid chloride permeability test method, ACI Materials Journal, 2008 July-August, 105(4): p. 390-394.
    [74] AASHTO T 259-80, Standard method of test for resistance of concrete to chloride ion penetration, (T259-80), American association of state highway and transportation officials, Washington, D. C., U.S.A., 1980.
    [75] Andrade, C., Whiting, D., A comparison of chloride ion diffusion coefficients derived from concentration gradients and non-steady state accelerated ionic migration, Materials and Structures 1996, 192 (29): p. 476-484.
    [76] Sherman, M. R., McDonald, D., Pfeifer, D., Durability aspect of precast prestressed concrete Part 2: chloride permeability study, PCI Journal 1996, July-August: p. 76-95.
    [77] McGrath, P., Hooton, R. D., Re-evaluation of the AASHTO T259 90-day salt ponding test, Cement and Concrete Research 1999, 29: p. 1239 - 1248.
    [78] Freeze, R. A., Cherry, J. A. Groundwater, Prentice-Hall, Inc., New Jersey, 1979.
    [79] Shi, M, Chen, Z., Sun J., Determination of chloride diffusivity in concrete by AC impedance spectroscopy, Cement and Concrete Research 1999, 29: p. 1111-1115.
    [80] D(?)az, B., X. R. No(?)voa. P(?)rez, M. C., Study of the chloride diffusion in mortar: A new method of determining diffusion coefficients based on impedance measurements, Cement and Concrete Composites 2006, 28: p. 237-245.
    [81] Berman, H. A., Determination of chloride in hardened portland cement paste, mortar, and concrete, Journal of Materials 1972, 7(3): p. 330-335.
    [82] Kayyali, O. A., Haque, M. N., The C1~-/OH~- ratio in chloride contaminated concrete - a most important criterion, Magazine Concrete Research 1995, 47: p. 235 - 242.
    [83] Suryavanshi, A. K. (a), Scantlebury, J. D., Lyon, S. B., Corrosion of reinforcement steel embedded in high water-cement ratio concrete contaminated with chloride, Cement and Concrete Composites 1998, 20(3): p. 263-269.
    [84] Glass, G. K., Buenfeld N. R., The presentation of the chloride threshold level for corrosion of steel in concrete, Corrosion Science 1997, 39(5): p. 1001-1013.
    [85] Glass, G. K., Buenfeld, N. R., The Infuence of chloride binding on the chloride induced corrosion risk in reinforced concrete, Corrosion Science 2000, 42: p. 324-344.
    [86] Reddy, B., Glass, G. K., Lim, P. J, Buenfeld, N. R., On the corrosion risk presented by chloride bound in concrete, Cement and Concrete Composites 2002, 24(1): p. 1-5.
    [87] Ramachandran, V. S., Possible states of chloride in the hydration of tricalcium silicate in the presence of calcium chloride, Materials and Structures 1971, 4(1): p. 3-12.
    [88] Tang, L., and Nilsson, L-O., Chloride binding capacity and binding isotherms of OPC pastes and mortars, Cement and Concrete Research 1993, 23(2): p. 247-253.
    [89] Henocq, P., Marchand, J., Samson, E., Lavoie, J. A, Modeling of ionic interactions at the C-S-H surface -Application toCsCl and LiCl solutions in comparison with NaCl solutions, in: J. Marchand, et al., (Eds.), 2nd International symposium on advances in concrete through science and engineering, 2006, RILEM Proceedings vol. 51, RILEM Publications, France.
    [90] Zibara, H., Binding of external chloride by cement pastes. Ph. D. Thesis, 2001, department of building materials, University of Toronto, Canada.
    [91] Nagataki, S., Otsuki, N., Wee, T. H., Nakashita, K., Condensation of chloride Ion in hardened cement matrix materials and on embedded steel bars, ACI Materials Journal 1993, 90(4): p. 323-332.
    [92] Barbarulo, R., Marchand, J., Snyder, K. A., Prene, S., Dimensional analysis of ionic transport problems in hydrated cement systems part 1. Theoretical considerations, Cement and Concrete Research 2000, 30: p. 1995-1960.
    [93] Arya, C., Buenfeld, N. R., Newman, J.B., Factors influencing chloride binding in concrete, Cement and Concrete Research 1990, 20(2): p. 291-300.
    [94] Stanish, K., The migration of chloride ions in concrete. Ph.D. Thesis. 2002, Department of Civil Engineering, University of Toronto, Canada.
    [95] Blunk, G., Gunkel, P., Smolczyk, H. G., On the distribution of chloride between the hardening cement pastes and its pore solutions, Proceedings of the 8~(th) international congress on the chemistry of cement, Rio de Janeiro, Brazil, 1986, 4: p.85-90.
    [96] Rasheeduzzafar, Influence of cement composition on concrete durability, ACI Materials Journal 1992, 89(6): p. 574-585.
    [97] Dhir, R. K., Jones, M. R., McCarthy, M. J. PFA Concrete: Chloride-induced reinforcement corrosion, Magazine of Concrete Research 1994, 46(169): p. 269-277.
    [98] Rasheeduzzafar, Al-Saadoun S. S., Al-Fahtani, A. S., and Dakhil, F. H., Effect of tricalcium alumina content of cement on corrosion of reinforcing steel in concrete, Cement and Concrete Research 1990, 20(5): p. 723-738.
    [99] Ehtesham, Hussain, S., Rasheeduzzafar, Al-Gathani, A. S., Influence of sulphates on chloride binding in cements. Cement and Concrete Research 1994, 24(1): p. 8-24.
    [100] Delagrave, A(a)., Marchand, J., Olliver, J. P.,, Julien, S., Hazrati, K., Chloride binding capacity of various hydrated cement systems, Advanced Cement Based Materials 1997, 6: p.28 - 35.
    [101] Suryavanshi, A. K., Scantlebury, J. D., Lyon, S. B., The binding of chloride ions by sulphate resistant cement, Cement and Concrete Research 1995, 25(3): p. 581-592.
    [102] Suryavanshi, A. K. (a), Scantlebury, J. D. and Lyon, S. B., Mechanism of Friedel' s salt formation in cements rich in tri-calcium aluminate, Cement and Concrete Research 1996, 26(5): p. 717-727.
    [103] Justnes, H., A review of chloride binding in cementitious systems, Nordic Concrete research 2000, 21 : p. 1-16.
    [104] Beaudoin, J. J., Ramachandran, V. S., Feldman, R. F., Interaction of chloride and C-S-H. Cement and Concrete Research 1990, 20(6): p. 875-883.
    [105] Lambert, P., Page, C. L., Short, N. R., Pore solution chemistry of the hydrated system tricalcium silicate/sodium chloride/water, Cement and Concrete Research 1985, 15: p. 675-680.
    [106] Byfors, K., Chloride binding in cement paste. Nordic Concrete Research 1986; 5: pp. 27-38.
    [107] Sandberg, P., Larsson, J., Chloride binding in cement pastes in equilibrium with synthetic pore solutions. Chloride penetration into concrete structures. Nordic Miniseminar, Gotenberg, 1993, January: 98-107.
    [108] Arya, C., Xu, Y., Effect of cement type on chloride binding and corrosion of steel in concrete, Cement and Concrete Research 1995, 25 (4): p. 893-902.
    [109] Rasheeduzzafar, Ehtesham, Hussain, S., Al-Gahtani, A. S., Pore solution composition and reinforcement corrosion characteristics of Microsilica Blended Cement Concrete, Cement and Concrete Research 1991, 21 (6): p. 1035-1047.
    [110] Page, C. L. and Vennesland, Pore solution composition and chloride binding capacity of silica fume cement pastes, SINTEF Report STF65 A82025, 1982-08-18, 18 p.
    [111] Dhir, R.K., El-Mohr, M.A.K., Dyer, T. D., Developing chloride resisting concrete using PFA. Cement and Concrete Research 1997, 27(11): p. 1633-1639.
    [112] Wiens, U., Schiessl, P. Chloride binding of cement paste containing fly ash. Proceedings, 10~(th) ICCC, edited by H. Justnes, Gothenburg, Sweden, 1997, p. 4-10.
    [113] Holden, W. R., Page, C. L, Short, N. R., Corrosion of reinforcement in concrete construction. Ed. A. P. Crane, Ellis, Horwood, Chichester, 1983, p. 143-150.
    [114] Xu, Y., The influence of sulphates on chloride binding and pore solution chemistry, Cement and Concrete Research 1997, 27(12): p. 1841-1850.
    [115] Tritthart, J., Chloride binding in cement: the influence of the hydroxide concentration in the pore solution of hardened cement paste on chloride binding, Cement and Concrete Research 1989, 19(5): p. 683-691.
    [116] Page, C. L., Lambert, P., Vassie, P. R. W., Investigations of reinforcement corrosion.1. the pore electrolyte phase in chloride-contaminated concrete, Materials and Structures 1991, 24 (142): p. 243-252.
    [117] Roberts, M. H., Effect of calcium chloride on the durability of pre-tensioned wire in prestressed concrete, Magazine of Concrete Research 1962, 14 (42): p. 143-154.
    [118] Larsson, J. The Enrichment of chlorides in expressed concrete pore solution submerged in saline solution, Proceedings of the nordic seminar on field studies of chloride initiated reinforcement corrosion in concrete, Lund University of Technology, Report TVBM-3064, 1995, p. 171-176.
    [119] Wowra, O. and Setzer, M. J., Sorption of chlorides on hydrated cements and C_3S pastes. Frost resistance of concrete, edited by M. J. Setzer and R.Auberg, E&FN Spon, London, 1997, p. 147-153.
    [120] Nguyen, T. S., Lorente, S., Carcasses, M., Chloride diffusion through CEM-I and CEM-V mortars: impact of the temperature, 1~(st) international conference construction heritage in coastal and marine environments. Lisbon, 28-30 January, 2008 .
    [121] Suryavanshi, A.K. (b), Narayan, S. R.. Stability of Friedel' s salt in carbonation in carbonated concrete structural elements, Cement and Concrete Research 1996, 26(5): p. 729-741.
    [122] Brown, P. W., Badger, S., The distributions of bound sulfates and chlorides in concrete subjected to mixed NaCl, MgSO_4, NaSO_4 attack, Cement and Concrete Research 2000, 30: p. 1535-1542.
    [123] Ollivier, J. P., Arsenault, J., Truc, O., and Marchand, J., Determination of chloride binding isotherms from migration tests, Mario Collepardi Symposium on Advances in Concrete Science and Technology, Rome, 1997, p. 198-217.
    [124] Castellote, M. (a), Andrade, C., and Alonso, C., Chloride binding isotherms in concrete submitted to non-steady-state migration experiments, Cement and Concrete Research 1999; 29: p. 1799-1806.
    [125] Tuutti, K(a), Analysis of pore solution squeezed out of cement and mortar. Nordic concrete research, 1982, 1: p. 25. 1-25.16.
    [126] Ramachandran, V. S., Seeley, R. C., Polomark, G. M., Free and combine chloride in hydrated cement and cement components. Materials and Structures 1984, 17 (100): p. 285-289.
    [127] Sandberg, P., Studies of chloride binding in concrete exposed in a marine environment, Cement and Concrete Research 1999, 29: p. 473-477.
    [128] Mohammed, T. U., Hamada, H., Relationship between free chloride and total chloride contents in concrete, Cement and Concrete Research 2003, 33: p. 1487-1490.
    [129] Sergi, W., Yu, S.W., Page, C. L., Diffusion of chloride and hydroxyl ions in cementitious materials exposed to a saline environment, Magazine of Concrete Research 1992, 44 (158): p. 63-69.
    [130] Xu, A., The Structure and Some Physical and Properties of Cement Mortar with Fly Ash, Licentiate Thesis. Dept. of Building Materials. Chalmers University of Technology, Goteborg, Sweden, Publication 1990; 90:9.
    [131] Dhir, R. K., Hubbard, F. H., Unsworth, H. P., XRF Thin film copper disc evaporation test for the elemental analysis of concrete test solutions. Cement and Concrete Research 1995; 25(8): p. 1627-2632.
    [132] Larsen, C. K., Chloride binding in concrete- effect of surrounding environment and concrete composition, PhD Thesis, 1998. Structural Engineering NTNU, Trondheim,
    [133] Glass, G. K., Wang, Y., Buenfeld, N. R., An investigation of experimental methods used to determine free and total chloride contents, Cement and Concrete Research 1996, 26(9): p. 1443-1449.
    [134] Glass, G. K., Stevenson, G. M., Buenfeld, N. R., Chloride binding isotherms from the diffusion cell test, Cement and Concrete Research 1998, 28(7): p. 939-945.
    [135] Bigas, J. -P., La diffusion des ions chlore dans les mortiers (in French). These de Doctorat, 1994, INSA-Genie Civil, LMDC, INSA de Toulouse.
    [136] Xi, Y., Zden(?)k, P. B., Modeling chloride penetration in saturated concrete. Journal of Materials in Civil Engineering 1999, February: p. 58-65.
    [137] Saetta, A. V., Scotta, R. V. Vitaliani, R. V., Analysis of chloride diffusion into partially saturated concrete. ACI materials Journal 1993, September-Octber: p. 441-451.
    [138] Marchand J., Modeling the behavior of unsaturated cement systems exposed to aggressive chemical environments, Materials and Structures 2001, 34: 195-200.
    [139] Ababneh, A., Benboudjema F., Xi Y.. Chloride penetration in nonsaturated concrete. Journal of Materials in Civil Engineering 2003, March-April: p. 183-191.
    [140] Martin-Perez, B., Zibara, H., and Hooton, R. D.. Thomas M. D.A, A Study of the Effect of Chloride Binding on Service Life Predictions. Cement and Concrete Research 2000; 30: p. 1215-1223.
    [141] Samson, E., Marchand, J. and Beaudoin, J. J., Modeling the influence of chemical reactions on the mechanisms of ionic transport in porous materials-An overview, Cement and Concrete Research 2000, 30: p. 1895-1902.
    [142] Maage, M., Helland, S., Poulsen E., Vennesland, (?)., Carlsen J. E., Service life prediction of existing concrete structures exposed to marine environment, ACI Materials Journal 1996, November-December: p. 602-608.
    [143] Boddy A., Bentz E., Thomas M. D. A., Hooton R. D. An overview and sensitivity study of a multimechanistic chloride transport model, Cement and Concrete Research 1999, 29: p. 827-837
    [144] Maaddawy, El., Soudki, T. K., A model for prediction of time from corrosion initiation to corrosion cracking. Cement and Concrete Composites 2007, 29(3): p. 168-175.
    [145] Gulikers, J., Probabilistic service life modeling of of concrete structures: improvement or unrealistic? Concrete under Severe Conditions: Environment and Loading, Tours France, 2007, 891-902.
    [146] Nilsson, L. O. Concepts in chloride ingress modelling, Third RILEM workshop on testing and modelling the chloride ingress into concrete, 9-10 September 2002, Madrid, Spain, p. 29-48.
    [147] Amey, S. L., Johnson, D. A., Miltenberger, M. A. Predicting the service life of concrete marine structures: an environmental methodology, ACI Structural Journal 1998, 95(1): p. 27-36.
    [148] Weyers, R. E., Service life model for concrete structure in chloride laden environments, ACI Materials Journal, 1998, July-August, 445-453.
    [149] Kassir, M. K., Ghosn, M. Chloride-induced corrosion of reinforced concrete bridge decks, Cement and Concrete Research 2002, 32 (1): p. 139-143.
    [150] Tang, L., Lars-Olof, N., Modeling chloride penetration into concrete - tracing five years field exposure. Concrete Science Engineering 2000, 2 December: p. 170-175.
    [151] Tang, L., Engineering expression of the ClinConc model for prediction of free and total chloride ingress in submerged marine concrete, Cement and Concrete Research 2008, 38: p. 1092-1097.
    [152] Takewaka, K., Mastumoto, S., Quality and cover thickness of concrete based on the estimation of chloride penetration in marine environments, in: V.M. Malhotra (Ed.), Proceedings of 2nd International Conference Concrete in Marine Environment, ACI SP-109, 1988, p. 381 - 400.
    [153] Tang, L., Joost Gulikers, On the mathematics of time-dependent apparent chloride diffusion coefficient in concrete, Cement and Concrete Research 2007, 37: p. 589-595.
    [154] DuraCrete, Modelling of Degradation, EU-Project (Brite EuRam Ⅲ) No. BE95-1347, Probabilistic performance based durability design of concrete structures, 1998. Report, vol. 4-5.
    [155] Mangat, P. S., Molloy, B.T., Predicting of long term chloride concentration in concrete, Materials and Structure 1994., 27: 338-346.
    [156]Stanish,K.,Thomas,M.,The use of bulk diffusion tests to establish time dependent concrete chloride diffusion coefficients,Cement and Concrete Research 2003,33:p.55-62.
    [157]Nokken,M.T.,Boddy,A.,Hooton,R.D.,Thomas,M.D.A.,Time dependent diffusion in concrete--three laboratory studies,Cement and Concrete Research 36(2006) 200-207.
    [158]余红发,盐湖地区高性能混凝土的耐久性、机理与使用寿命预测方法:[博士学位论文].南京:东南大学.2004
    [159]Masi,M.,Colella,D.,Radaelli,G.,Bertolini,L.,Simulation of chloride penetration in cement-based materials,Cement and Concrete Research,27(1997),pp.1591-1601.
    [160]Samson,E.(d),Marchand J.,Robert J.L.and Bournazel J.P.,Modeling the mechanisms of ion diffusion in porous media,International Journal for Numerical Methods in Engineering,46(1999),pp.2043-2060.
    [161]Khitab,A.,Lorente,S.,Ollivier,J.P.,Predictive model for chloride penetration through concrete,Magazine of Concrete Research 2005,57(9):511-520.
    [162]Samson,E(a).and Marchand J.,Numerical solution of the extended Nernst-Planck Model,Journal of Colloid and Interface Science,215(1999),pp.1-8.
    [163]Samson,E.(b),Lemaire G,Marchand J.and Beaudoin J.,Modeling chemical activity effects in strong ionic solutions,Computational Material Science,15(1999),pp.285-294.
    [164]Samson,E.(c),Marchand J.and Beaudoin J.J.,Describing ion diffusion mechanisms in cement-based materials using the homogenization technique,Cement and Concrete Research,29(1999),pp.1341-1345.
    [165]Samson,E.,Marchand J.,Modeling the effect of temperature on ionic transport in cementitous materials.Cement and Concrete Research,37(2007),pp.455-468.
    [166]Lindvall,A.,Probabilistic performance based life time design of concrete structures-Environmental actions and response, International conference on ion and mass transport in cement-based materials, Toronto, 1999.
    [167] Lindvall, A., A probabilistic, performance based service life design of concrete structures-environmental actions and response, 3rd international PhD symposium in civil engineering, Wien, Oct. 5-7, 2002, p. 1 -11.
    [168] Kirkpatrick, T. J., Weyers R. E., Anderson-Cook C. M., Sprinkel M. M., Probabilistic model for the chloride-induced corrosion service life of bridge decks Cement and Concrete Research 2002, 32: 1943 - 1960.
    [169] Ferreira, R. M., Probability-based durability analysis of concrete structures in marine environments. PhD thesis, University of Minho, school of engineering, Department of civil engineering, 2004, Portugal.
    [170] Williamson, G. S., Weyers, . E., Brown, M. C., Ramniceanu A., Sprinkel M. M., Validation of probability-based chloride-induced corrosion service-life model, ACI Materials Journal 2008, July-August, 105(4): 375-380.
    [171] Castellote, M (c), Alonso C., Andrade C., Castro P., EcheverroA M, Alkaline leaching method for the determination of the chloride content in the aqueous phase of hardened cementitious materials, Cement and Concrete Research 2001, 31: p. 233-238
    [172] Otsuki, N., Nagataki, S., Nakashita K., Evaluation of AgNO_3 solution spray method for measurement of chloride penetration into hardened cementitious matrix materials, ACI Materials Journal 1992, 89 (6): 587-592.
    [173] Ishida, T., Miyahara, S., Maruya, T., Chloride binding capacity of mortars made with various Portland cements and mineral admixtures, Journal of Advanced concrete technology 2008, 6(2): 287-301.
    [174] Haque, M. N., Kayyali, O.A., Free and water soluble chloride in concrete, Cement and Concrete Research 1995, 25(3): p. 531-542.
    [175] Vladimir P., Water extraction of chloride, hydroxide and other ions from hardened cement pastes, Cement and Concrete Research 2000, 30: p. 895-906.
    [176] Tang, L. (b), S(?)rensen H. E., Precision of the Nodic test methods for measuring the chloride diffuisn/migration coefficients of concrete. Materials and Structures 2001, 34: p. 479-485.
    [177] Pourbaix, M., Atlas of electrochemical equilibria, Pergamon Press, New York, 1966
    [178] Chatterji, S., Transportation of ions through cement based materials-Part 1: Fundamental equations and basic measurement techniques, Cement and Concrete research 1994, 24 (5): 907 - 912.
    [179] Tang, L.(a), and Nilsson, L., "Ionic migration and its relation to diffusion" In: R. Doug Hooton, Michael D.A. Thomas, Jacques Marchand, James J. Beaudoin (eds.), Ion and mass transport in cement-based materials, USA , 2001, p. 121-128.
    [180] Tong, L., Gj(?)rv, O. E., Chloride diffusivity based on migration testing, Cement and Concrete Research 2001, 31: p. 973 - 982.
    [181] Audenaeret, K., Boel V., De Schutte G. Chloride migration in self compacting concrete, Proceedings of the fifth international conference on concrete under severe conditions, C0NSEC 07, 4~(th)- 6~(th) June, Tours, France p. 291-298.
    [182] Goto, S., Roy, D M., Diffusion of ions through hardened cement pastes. Cement and Concrete Research 1981, 11: 751-757.
    [183] Atkinson, A. N., The diffusion of ions through water saturated cement. Department of the environment- UK, 1983, DOE/RW/83.137: 1-24.
    [184] Collepardi, M., Marcialis, A. Turriziani, R., Penetration of chloride ions in cement pastes and in concretes. Journal of American Ceramic Society 1972, 55: 534-535.
    [185] Lam, L., Wong, Y. L., Poon, C. S., Degree of hydration and gel/space ratio of high-volume fly ash/cement systems Cement and Concrete Research 2000, 30(5): p. 747-756.
    [186] Durekovic, A. Cement pastes of low water to solid ratio: an investigation of the porosity characteristic under the influence of a superplasticizer and silica fume, Cement and Concrete Research 1995, 25(2): p. 365-375.
    [187] Baroghel-Bouny, V (a), Belin, P, Maultzsch, M, Henry, D. AgN03 spray tests: advantages, weaknesses, and various applications to quantify chloride ingress into concrete. Part I : Non-steady-state diffusion tests and exposure to natural conditions. Materials and Structures Journal, 2007, 40(8):759-781.
    [188] Baroghel-Bouny, V(b), Belin, P, Maultzsch, M, Henry, D. AgNO3 spray tests: advantages, weaknesses, and various applications to quantify chloride ingress into concrete. Part Ⅱ: Non-steady-state migration tests and chloride diffusion coefficients. Materials and Structures Journal, 2007, 40(8):783-799.
    [189] Chatterji, S., Kawamura, M., Electrical double layer, ion transport and reactions in hardened cement paste, Cement and Concrete research 1992, 22: p. 774-782.
    [190] Klemen, B., Veronika, K., Ales, I.. Thickness of electrical double layer. Effect of ion size, Electrochimica Acta 2001, 46: p. 3033 - 3040.
    [191] Friedmann, Physical modeling of the electrical double layer effects on multispecies ions transport in cement-based materials, Cement and Concrete Research 2008, 38(12): 1394-1400.
    [192] Wiens, U, Breit, W. Schiessl, P. Influence of high silica fume and high fly ash contents on alkalinity of pore solution and protection of steel against corrosion. Proceedings of fifth international conference on the use of fly ash, silica fume, slag and natural pozzolan in concrete, SP-153, American Concrete Institute, V.2 1995, 741-762.
    [193] Collepardi, M., Quick method to determine free and bound chlorides in concrete, in: L.O. Nilsson, J.P. Ollivier (Eds.), Proceedings of the International RILEM Workshop-Chloride Penetration Into Concrete, Paris, 1995, p. 10 - 16.
    [194] Andrade, C., Castellote, M., Alonso, C., Gonzalez, C., Relation between colourimetric chloride penetration depth and charge passed in migration tests of the type of standard ASTM C1202-91, Cement and Concrete Research 1999, 29 (3): p. 417-421.
    [195] Meck, E, Sirivivatnanon, V., Field indicator of chloride penetration depth, Cement and Concrete Research 1999, 33: p. 1113 - 1117.
    [196] Zhang, J. -Z. and Buenfeld, N. R., Presence of possible implications of membrane potential in concrete exposed to chloride solution. Cement and Concrete Research 1997, 27(6): p. 853-859.
    [197] Reardon, E. J., Problems and approaches to the prediction of the chemical composition in cement/water systems. Waste management 1992, 12: p. 221-239.
    [198] Schmidt, F. Rostasy, F. S., A method of calculation of the chemical composition of the concrete pore solution, Cement and Concrete Research 1993, 23: 1159-1168.
    [199] Hussainm, S. E., Rasheeduzzafar, Al-Musallam, A., Al-Gahtani, A. S.. Factors affecting threshold chloride for reinforcement corrosion in concrete, Cement and Concrete Research 1995, 25(7): p. 1543-1555.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700