用户名: 密码: 验证码:
基于系统动力响应的锚固结构无损检测及模型试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
岩土锚固技术的先进性、可靠性以及经济性是无可置疑的。然而由于材料、施工、地质条件等因素的影响,锚固结构系统在施工和使用过程中必然存在许多损伤。对于岩土工程中众多锚杆,其锚固质量如何、锚杆的长度是否与设计长度一致、其砂浆是否饱满,即锚杆是否起到了应有的作用等,这些问题对于岩土加固工程来说显得十分重要。因此,对锚固工程的损伤识别、质量诊断以及实时检测和补强等问题,一直是岩土工程界广泛关注的问题。目前,工程界锚杆锚固质量及受力状态的检测大多仍然停留在利用液压千斤项进行破坏性拉拔试验阶段,这种检测手段既费工又费时,更重要的是这种检测手段对经锚杆加固的岩体产生较强的扰动,降低了锚杆对围岩的加固作用,对软岩或较破碎岩层尤为不利,故需要一种新的检测锚杆锚固质量的方法弥补以至取代传统的锚固体系检测方法,以适应大规模工程施工需要,这也是目前岩土加固工程急需解决的关键技术问题。
     本文在总结国内外文献资料的基础上,通过理论分析得出了波在锚杆体内传播、衰减的物理机制,锚固段内波的能量分配规律以及锚固段内波速发生改变和锚杆底端反射的主要原因,对锚杆锚固质量问题开展了多途径的讨论,研究了锚固系统的安全质量保障体系。本文主要结论如下:
     (1)通过对波在锚固体系中传播规律的研究,得到了弹性波在锚固体系中的能量分配规律和衰减规律,为锚杆锚固质量的无损检测提供了重要的理论依据。
     (2)首次使用有限差分软件FLAC对锚固系统动测信号进行模拟,通过开展特征激振频率和典型振动荷载条件下锚固体系的数值模拟研究,结果表明应力波在锚固体系的传播过程当中,其波形随激振频率的增大,衰减越快,随振动荷载的加大,衰减越快。
     (3)通过试验研究,分析结果表明,锚杆杆体与粘结剂(砂浆)的粘结强度(即锚固的饱和度)和固结波速呈负相关性,锚固质量越好,则固结波速越慢,锚固质量越差,则固结波速越快,其倾向趋势值为钢筋的波速和锚固介质的波速。
     (4)用小波分析和小波包分析分别对检测信号进行处理。在用小波分析处理信号时,分别应用“db4”、“coif4”、“sym4”小波对信号进行多尺度分解,结果表明采用“db4”小波对信号进行处理,所得的低频重构信号(降噪信号)与原始信号有最好的近似性,能较好地反映原始信号的特征;所得的最高尺度分解系数的高频重构信号对缺陷信息有一定反映。小波包分析是对小波分析手段的丰富,在高频信息细分方面有较好的发挥。
It is indubitable of advanced Nature, reliability and economy of geotechnical anchoring technology. However, because of materials, construction, geological conditions and other factors, there is bound to be much damage in anchor structure of the system during the construction process. For the most rock bolts in geotechnical engineering, the quality of anchorage, the anchor length is consistent to design length or not, the quality of grouting, that is, whether the bolt could play an efficient role is very important for geotechnical reinforcement project. Therefore, the problem of damage identification, quality diagnosis and real-time detection and reinforcement, are of widespread concern to the geotechnical field. At present, most detection on anchorage quality is stayed in the step of using fluid pressure operated jacks, which needs too much work and time, and of the most important thing is that this method will do a lot of perturbation turbulence on rock mass and weakens the reinforcement action. As a result, a new detection method of the quality of anchorage, which could meet the needs of large-scale construction, is required to make up or even replace traditional method, and this is also an urgent key technical issue of geotechnical strengthening engineering.
     Based on summarizing literature information at home and abroad, the paper educed the physical mechanism of wave diffusion, attenuation in the bolt body, wave energy distribution in anchored section and the main reason of different wave velocity in anchored section and the reflection at the bolt bottom through theoretical analysis. The anchorage quality problem is discussed in many ways to study the safety quality assurance system of the anchorage system. The main conclusions of this paper include:
     (1) According to studying wave diffusion rule at anchoring system, energy distribution and attenuation law of wave elastic in anchoring system is gained to provide an important theoretical basis for the nondestructive testing of anchorage quality.
     (2) A finite difference software FLAC is used to simulate the dynamic testing signal of anchoring system for the first time. According to numerical simulation research on anchoring system under the conditions of the typical excitation frequency and representative vibration load, it is shown that when the stress wave transmits in anchoring system, its waveform attenuates faster along with rising excitation frequency, and also along with increasing vibration load.
     (3) According to study on experiment, it is revealed that there was a negative correlation between the bond strength(saturation of the anchor) of bolt body with the adhesive (cement mortar) and concretion velocity, the concretion velocity is slower with the better anchorage quality, is faster with the worst anchorage quality, and its tendency values are the wave velocity of reinforcing steel bar and anchorage medium.
     (4) Wavelet analysis and wavelet packet analysis are used to deal with the detect signal. When using wavelet analysis to dispose detect signal, "db4", "coif4", "sym4" wavelet are applied separately to multi-scale decompose signals, it is shown that low-frequency reconstruction signal (denoise signal), which used "db4" wavelet to process signals, has the best approximation to the original signal, and can reflect the characteristics of the original signal better; and the reconstruction signal of highest-scale decomposition coefficient could reflect the defect information. Wavelet packet analysis is an abundant means to wavelet analysis, and it played better at high-frequency information subdivision.
引文
[1]程良奎,范景能.岩土锚固.北京:中国建筑工业出版社,2003.
    [2]陈建功.锚杆一围岩结构系统低应变动力响应理论与应用研究:[博士学位论文].重庆:重庆大学土木工程学院,2006
    [3]韩立军,张茂林,贺永年等.岩土加固技术.徐州:中国矿业大学出版社,2005
    [4]T.H.汉纳.胡定等译.锚固技术在岩土工程中的应用.北京:中国建筑工业出版社,1987
    [5]单忠刚,锚杆种类与选择.煤炭技术,2003.23(4)
    [6]许明.锚固系统质量的无损检测与智能诊断技术研究:[博士学位论文].重庆:重庆大学土木工程学院,2002
    [7]陆士良,汤雷,杨新安.锚杆锚固力与锚固技术.北京:煤炭工业出版社,1998
    [8]贾颖绚,宋宏伟.土木工程中锚杆支护机理研究现状与展望.岩土工程界,2004.8(6):53-56
    [9]阎莫明,徐祯祥,苏自约.岩土锚固技术的新进展.北京:人民交通出版社,2000
    [10]苏自约等.岩土锚固技术与工程应用.北京:人民交通出版社,2004
    [11]田裕甲.岩土锚固新技术及实践.北京:中国建材工业出版社,2006
    [12]秦莹.锚杆无损检测及锚固质量评价:[硕士学位论文].武汉:武汉理工大学资源与环境工程学院,2003
    [13]柯玉军.锚杆检测技术研究及应用:[博士学位论文].兰州:兰州大学地质工程系,2006
    [14]柯玉军,苗天德,薛有平.USR检测锚杆的机理探讨及其应用.工程物探.2006.93(2)
    [15]柯玉军,苗天德,薛有平.USR检测锚杆的机理探讨及其应用.工程物探论文集.云南科技出版社,2006
    [16]李维树,甘国权,朱容国等.工程锚固注浆质量无损检测技术研究与应用.岩土力学.2003.10(24)
    [17]王军民,陈义群,陈华.高速公路锚杆锚固质量检测技术研究.地球物理学进展,2004,19(6)
    [18]王军民,刘春生.锚杆锚固质量安全检测.安全与环境工程.2003.10(1)
    [19]陈长征.结构损伤检测与智能诊断.北京:科学出版社,2001
    [20]劭泽波.无损检测技术.北京:化学工业出版社,2003
    [21]刘贵民.无损检测技术.北京:国防工业出版社,2006
    [22]施克仁.无损检测新技术.北京:清华大学出版社,2007
    [23]王仲生,万小朋.无损检测诊断现场使用技术.北京:机械工业出版社,2002
    [24]李家伟,王怡之.超声波检测.北京:机械工业出版社,2005
    [25]刘福顺,汤明.无损检测基础.北京:北京航空航天大学出版社,2002
    [26]孙国,李桂华,顾元宪.基于小波包分解的应力波无损检测分析方法.振动工程学报,2002,15(4)
    [27]汪明武,王鹤龄,罗国煜.锚杆锚固质量无损检测的研究.工程地质学报,1999,7(1)
    [28]刘海峰,崔自治,朱学福.锚杆锚固质量无损检测技术研究.宁夏工程技术,2003,2(3)
    [29]李义,刘海峰,王富春.锚杆锚固状态参数无损检测及其应用.岩石力学与工程学报,2004,23(10)
    [30]汪明武,王鹤龄.锚固质量的无损检测技术.岩石力学与工程学报,2002,21(1)
    [31]许明,张永兴,阴可.某隧道锚杆完整性的无损检测方法.土木工程学报,2004,37(5)
    [32]张丽梅,田迎春,杜守军.无损检测技术在土木工程中的新发展.河北农业大学学报,2002,25
    [33]汪明武,王鹤龄.无损检测锚杆锚固质量的现场试验研究.水文地质工程地质,1998,(1)
    [34]李维,贾欣.无损检测在工程检测与控制中的应用.山西建筑,2004,30(20)
    [35]H.F.Thurner.Non-destructive Test Method For Rock Bolts.International Society for Rock Mechanics,International Congress on Rock Mechanics,Montreux(Suisse),1979
    [36]Stateham,Raymond M.Roof Bolt Bond Tester;A Device For Nondestructive Testing of Grouted Bolts.West Virginia Univ,1982,p 183-187
    [37]Bergman,Sten G.A.;Krauland,Norbert;Martna,Juri;Paganus,Taisto.Non-destructive Field Test of Cement-grouted Bolts with the Boltometer.Proceedings -Congress of the International Society for Rock Mechanics,1983,p A177-A181
    [38]H.F.Thurner.Boltometer-instrument for non-destructive testing of grouted rock bolts.The 2nd International Symposium on Field Measurements in Geomechanics,1988
    [39]朱国维,彭苏萍,王怀秀.高频应力波检测锚固密实状况的试验研究.岩土力学,2002,23(6)
    [40]汪明武,王鹤龄.声频应力波在锚杆锚固状态检测中的应用.地质与勘探,1998,34(4)
    [41]王成,恽寿榕.应力波理论在动测锚杆锚固质量中的应用.地震工程与工程振动,2001,21(3)
    [42]李义,王成.应力反射波法检测锚杆锚固质量的实验研究.煤炭学报,2000,25(2)
    [43]郭世明.弹性应力波法锚杆质量检测初探.西部探矿工程,1999,11(2)
    [44]王礼立.应力波基础.北京:国防工业出版社,2005
    [45]廖振鹏.工程波动理论导论.北京:科学出版社,2002
    [46]J.L.罗斯.固体中的超声波.北京:科学出版社,2004
    [47]何琳,朱海潮,邱小军等.北京:科学出版社,2006
    [48]许肖梅.声学基础.北京:科学出版社,2003
    [49]岳向红,刘明贵,李祺.锚杆检测技术研究发展.土工基础2005,19(3)
    [50]岳向红.基于三维导波理论的基桩和锚杆无损检测技术研究:[博士学位论文].武汉:中国科学院武汉岩土力学研究所,2008
    [51]M.D.Beard,M.J.S.Lowe and P.Cawley.Ultrasonic Guided Waves for Inspection of Grouted Tendons and Bolts.Journal of Materials in Civil Engineering,v15,n3,May/June,2003,p212-218
    [52]王让甲.声波岩石分级和岩石动弹性力学参数的分析研究.北京:地质出版社,1997
    [53]T.C.耶格,N.G.W.库克.岩石力学基础.北京:科学出版社,1981.
    [54]张清,杜静.岩石力学基础.北京:中国铁道出版社,1997.
    [55](美)鲍亦兴,毛昭宙著.刘殿魁,苏先褪译.弹性波的衍射与动应力集中.北京:科学出版社,1993.
    [56]叶金汉主编.岩石力学参数手册.北京:水利电力出版社,1991.
    [57]Lin Y,Sansalone M,Carino NJ.Impact-echo response of concrete shaft.Geotech Test J
    [58]Kim DS,Kim HW,Kim WC.Parametric study on the impact-echo method using mock-up shafts.NDT&E Int 2002;35:595-608.
    [59]殷有泉.固体力学非线性有限元引论.北京:北京大学出版社,1987
    [59]Onoe M,McNiven H,Mindlin R.Dispersion of axially symmetric waves in elastic solids.J Appl Mech 1962;29:729-34.
    [60]Friedrich M,Laurence J,Qu J.Modeling elastic wave propagation in wave guides with the finite element method.NDT&E Int 1999;32:225-34.
    [61]Kolsky H.Stress waves in solids.New York:Dover Publications;1963.
    [62]Madenga V,Zou DH.An experimental study of guided wave characteristics in grouted rock bolts.Project report,Dalhousie University,2004.
    [63]Achenbach JD.Harmonic guided waves in elastic cylinders.In:Wave propagation in elastic solids.Applied mathematics and mechanics,vol.16.Amsterdam:North-Holland Publishing Company;1973.p.202-58.
    [64]傅鹤林等.岩土工程数值分析新方法.长沙:中南大学出版社,2006.
    [65]许明,张永兴,李燕.锚杆承载力的灰色系统预测法.地下空间,2003,23(4)
    [66]黄克智,黄永刚.固体本构关系.北京:清华大学出版社,1999.
    [67]张尚根,孟少平.关于“锚杆荷载传递机理分析的双曲函数模型”的讨论.岩石力学与工程学报,2004,23(16)
    [68]王成,恽寿榕,李义.锚杆—锚固介质—围岩系统瞬态激励的响应分析.太原理工大学学报,2000,31(6)
    [69]陈育民,徐鼎平.FIAC/FLAC3D基础与工程实例.北京:中国水利水电出版社,2008
    [70]刘海峰,杨维武,李义.锚杆锚固质量动测法底端反射显现规律研究.辽宁工程技术大学学报,2004,23(1)
    [72]刘波,韩彦辉.FLAC原理、实例与应用指南.北京:人民交通出版社,2005.
    [73]许明,张永兴.锚固系统的质量管理与检测技术研究.重庆建筑大学学报,2002,24(1)
    [74]许明,张永兴.锚固系统质量检测的小波分析法.岩土力学,2003,24(2)
    [75]彭斌,刘春生,肖柏勋.锚杆锚固质量无损检测数据的分析与处理.物探化探计算技术,2003,25(3)
    [75]王富春,李义,孟波.动测法检测锚杆锚固质量及工作状态的理论及应用.太原理工大学学报,2002,23(2)
    [76]唐孟雄.基坑工程预应力锚索锚固力试验研究.岩石力学与工程学报,2007,26(6)
    [77]李厚恩,秦四清,孙强.基坑支护锚杆预应力损失探讨及预测分析.工程勘察,2007,4
    [78]何思明,王成华,吴文华.基于损伤理论的预应力锚索荷载-变形特性分析.岩石力学与工程学报,2004,23(5)
    [79]邓宗伟等.基于统一强度准则的预应力锚索极限承载力计算.岩石力学与工程学报,2007,26(6)
    [80]张永兴,陈建功.锚杆-围岩结构系统低应变动力响应理论与应用研究.岩石力学与工程学报,2007,26(9)
    [81]刘海峰.激发应力波在锚杆锚固体中传播规律的实验研究.宁夏大学学报,2001,22(3)
    [82]蔡跃,蒋宇静,江崎哲郎.杆状支护系统的耦合模型及应用.岩石力学与工程学报,2003,22(6)
    [83]杨湖,王成.弹性波在锚杆锚固体系中传播规律的研究.测试技术学报,2003,17(2)
    [84]饶枭宇,唐树民,张永兴等.注浆体配合比改善岩锚抗拔特性的试验研究.岩石力学与工程学报,2008,27(2)
    [85]Pavlakovic BN,Lowe JS,Cawley P.High frequency low-loss ultrasonic modes in imbedded bars.J Appl Mech 2001;68:67-75.
    [86]Ivanovic A,Neilson RD,Rodger AA.Numerical modeling of single tendon ground anchorage systems.Geotech Eng 2001;149(2):103-13.
    [87]Y.Cui,D.H.Zou.Numerical simulation of attenuation and group velocity of guided ultrasonic wave in grouted rock bolts.Journal of Applied Geophysics 59(2006)337-344
    [88]C.S.Zhang,D.H.Zou,V.Madenga.Numerical simulation of wave propagation in grouted rock bolts and the effects of mesh density and wave frequency.International Journal of Rock Mechanics & Mining Sciences 43(2006) 634-639
    [89]任智敏.锚杆锚固质量无损检测研究:[硕士学位论文].太原:太原理工大学采矿工程系,2007
    [90]姚爱敏,孙世国,刘玉福.锚杆支护现状及其发展趋势.北方工业大学学报,2007,19(3)
    [91]Vrkljan I,Szvarits Nossan A,Kovacevic M S.Nondestructive procedure for testing grouting quality of rockbolt anchors.Proceedings of the 19th international congress of the international society for rock mechanics 1475-1478,Aug25-28,1999
    [92]A.Starkey,A.Ivanovic,R.D.Neilson,A.A.Roder.Non-destructive testing of ground anchorages using the GRANIT technique.Proceedings of the Sixth International Conference on the Application of Artificial Intelligence to Civil and Structural Engineering,2001,p 79-80
    [93]WANG Ming-wu,WANG He-ling.Nondestructive testing of grouted bolts system.Chinese Journal of Geotechnical Engineering,2001,23(1)
    [94] M. D. Beard, M. J. S. Lowe. Non-destructive testing of rock bolts using guieded ultrasonic waves. International Journal of Rock Mechanics & Mining Sciences 40 (2003) 527 - 536
    [95] Peter C.Chang and S.Chi Liu. Recent Research in Nondestructive Evaluation of Civil Infrastructures. Journal of Materials in Civil Engineering, vl5, n3, May/June, 2003, p298-304
    [96] A. Starkey, A. Ivanovic, R. D. Neilson, A. A. Rodger. Use of neural networks in the condition monitoring of ground anchorages. Advances in Engineering Software 34 (2003) 753-761
    [97] Andrew Starkey. Condition Monitoring of Ground Anchorages by Dynamic Impulses: GRANIT System. Meccanica 38: 265-282, 2003
    [98] Martin Spies. Analytical Methods for Modeling of Ultrasonic Nondestructive Testing of Anisotropic Media. Ultrasonics 42 (2004)
    [99] D. H. S. Zou. Analysis of in Situ Rock Bolt Loading Status. International Journal of Rock Mechanics and Mining Sciences, v41, May, 2004, p762-767
    [100] V. Madeng, D. H. Zou, C. Zhang. Effects of curing time and frequency on ultrasonic wave velocity in grouted rock bolts. Journal of Applied Geophysics 59 (2006) 79-87
    [101] D. H. Zou, Y. Cui, V. Madenga, C. Zhang. Effects of frequency and grouted length on the behavior of guided ultrasonic waves in rock bolts. International Journal of Rock Mechanics & Mining Sciences 44 (2007) 813 - 819
    [102] Jelly AM, Jager AJ. Critically evaluate techniques for the in-situ testing of steel tendon grouting effectiveness as a basis for reducing fall of ground inhuries and fatalities. Einal prohect report to the Safety in Mines Research Advisory Committee, South Africa, Prohect no. GAP 205, Nctober 1996.
    [103] Achenbach JD. Vave propagation in elastic solids. Appl Math Mech 1973: 16:202-58.
    [104] Madenga V. Application of guided waves to grout quality testing of rock bolts. MA.Sc thesis, Dalhousie University, 2004.
    [105] Rose JL. Ultrasonic waves in solid media. Cambridge: Cambridge University Press: 1999.
    [106] Tavakoli MB, Evans JA. The effect of bone structure on ultrasonic attenuation and velocity. Ultrasonics 1992:30:389-95.
    [107] Jlimentos T, McCann C. Relationships between compressional wave attenuation, porosity, clay content and permeability of sandstones. Geophysics 1990:55:998- 1014.
    [108] N(?) Connell RD, Budiansky B. Seismic velocities in dry and saturated cracked solids. J Geophys Res 1974:79:5412-26.
    [109]Boadu FK.Fractal characterization of fractures:effect of fractures on seismic wave velocity and attenuation.PhD thesis,Georgia Institute of Technology,1994.
    [110]Butt SD.Experimental measurement of p-wave attenuation due to fractures over the 100 to 300 kHz bandwidth.Pure Appl Geophys 2001;158(9-10):1783-96.
    [111]Gibowicz SJ,Kidjko A.An introduction to mining seismology.San Diego,CA,USA:Academic Press;1994.
    [112]Alleyne D,Cawley P.A two-dimensional Fourier transform method for measurement of propagation multimode signals.J Acoust Soc Am 1991;89(3):1159-68.
    [113]肖国强等.小波多尺度分析在岩石锚杆质量弹性波无损检测中的应用.长江科学院院报,2006,23(4)
    [114]成礼智,王红霞,罗永.小波的理论与应用.北京:科学出版社,2004
    [115]李弼粥,罗建书.小波分析及其应用.北京:电子工业出版社,2003
    [116]唐晓初.小波分析及其应用.重庆:重庆大学出版社,2006
    [117]刘明才.小波分析及其应用.北京:清华大学出版社,2005
    [118]胡昌华,张军波,夏军,张伟.基于MATLAB的系统分析与设计——小波分析.西安:西安电子科技大学出版社,1999
    [119]吴亚斌,姚猛,陶莹.边坡加固中的锚固技术.山西建筑,2008,21
    [120]李政钧.锚杆加固围岩的作用机理研究.西部探矿工程,2006,8
    [121]岳向红,刘明贵,李祺.锚杆检测技术研究进展.土工基础,2005,3
    [122]朱自强,何现启.全长锚杆的无损检测研究.工程地球物理学报,2005,5
    [123]李中华,张卫平,刘甲翔.稀土材料在现代军事技术上的应用及发展趋势.湖南冶金,2006,4
    [124]漆泰岳.锚杆与围岩相互作用的数值模拟.徐州:中国矿业大学出版社,2002

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700