用户名: 密码: 验证码:
岩石类材料的动态性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
岩石类材料动态力学特性的研究是岩石力学较为基础的研究分支,这方面的工作较早源于原子能设施安全防护以及地震工程的研究。随着工程爆破在岩矿开采、地下洞室的营造以及场平开挖等工程中的广泛应用,岩石类材料的动态力学特性的研究有了较大的发展。与岩石类材料的静力学相比,其动力学问题在实验研究和力学分析上要复杂得多,物理和数学处理上也困难得多,因此到目前为止岩石类材料在动态实验研究和动力学理论分析上还处于不成熟阶段,某些研究领域还仅仅处于起步阶段。虽然国内外研究人员对岩石类材料在动荷载作用下的强度和变形特性做了一些卓有成效的工作,但这些工作主要集中在实验研究方面,而且大部分限于中低应变率下简单应力作用的实验研究,因此对其进行实验与理论相结合的系统研究是十分必要的。
     本文采用纯铜波形整形器改进后的分离式Hopkinson压杆装置(SHPB),分别对新加坡地区的花岗岩和混凝土试件进行了中高应变率下的单轴冲击压缩和动态巴西圆盘实验。从动态实验研究出发,结合考虑多裂纹相互作用的滑移型裂纹模型、元件模型理论、反演分析以及数值计算等理论分析方法,将材料的微观特征与宏观现象相结合、理性与物性相结合,研究岩石类材料的内部微观结构与宏观动态力学特性的内在联系和规律,从宏观和微观两个角度对岩石类材料的动态力学特性进行充分地研究。旨在提出能为工程界所接受,便于数值分析的考虑损伤的岩石类材料动态本构模型及其研究方法。本文的研究内容和结果为:
     (1)花岗岩和混凝土材料在动态单轴荷载作用下的实验研究。针对岩石类材料的特性采用黄铜波形整形器改进了SHPB装置,有效地避免了加载冲击荷载时,脆性材料在内部应力达到均衡之前过早的破坏,并且有效地降低了应力波的高频震荡给实验数据带来的波动。利用改进后的SHPB装置对新加坡地区的花岗岩和混凝土试件在不同应变率下进行了动态单轴压缩实验和动态巴西圆盘实验。研究表明在中高应变率下,花岗岩和混凝土材料的单轴冲击压缩强度、破坏程度、能量吸收以及冲击拉伸强度等动态力学性能有较强的应变率相关性,而材料的弹性模量、动态破坏应变、能量吸收率等参数可视为应变率无关量;
     (2)花岗岩和混凝土材料的动态断裂性能研究。在实验的基础上,利用考虑多裂纹相互作用的滑移型裂纹模型,深入分析岩石类材料的微观内部缺陷对其宏观动态断裂特性的影响。分析表明裂纹面的摩擦系数决定了最易扩展的初始裂纹角度;正则化动态应力强度因子随着裂纹间距的增加而减小;动态应力强度因子与裂纹初始长度成正比;随着应变率的增加,临界裂纹初始长度有减小的趋势等;
     (3)花岗岩和混凝土材料的动态本构模型研究。通过考虑应变率强化因子和损伤弱化因子修正静态线弹性和非弹性本构模型,建立岩石类材料的动态弹性损伤本构方程,并通过标准应力-应变曲线的几何特征初步确定出本构方程的部分参数;在总结现有元件模型以及岩石类材料力学特性的基础上,通过弹性元件、粘元件、塑性元件以及损伤元件的串并联组合,建立了岩石类材料的粘弹塑性损伤动态本构模型,并推导出其微分形式的本构方程;
     (4)花岗岩和混凝土材料的动态力学特性反演分析。用计算机语言C++,编写基于下山法改进的自适应混合遗传算法的反演分析程序。结合SHPB实验结果,对花岗岩和混凝土材料的动态本构关系中的待定参数进行了反演分析。通过对再生应力-应变曲线与实验曲线的比较分析,证明该反演算法的参数识辨能力可以很好的满足SHPB实验的精度要求,并且验证了动态本构模型对于岩石类材料的适用性。
     (5)花岗岩和混凝土材料的动态特性数值分析。结合岩石类材料动态本构模型,分别建立了应力波在考虑损伤的非线弹性和粘弹塑性细长杆件中的一维波动方程,以及基于损伤动态弹性本构模型的空间轴对称波动方程。利用有限差分法,在非线弹性波的传播理论研究的基础上,数值模拟从子弹撞击入射杆到试件破碎的整个加载过程中应力波在两压杆和试件中的传播,并与实验结果比较得到了可靠性验证。编制了可以考虑径向变形的岩石类材料的多维数值模拟程序,为材料动态特性研究提出了新的思路和方法。
Experiments of granite and concrete in high strain-rate unaxial compressive loading were produced in the modified split Hopkinson pressure bar (SHPB) with copper as the pulse shaper. It can be used to ensure the symmetrical stress in the specimens before fracture and avoid the fluctuation of test data due to input shaky stress pulse. Based on the results of the dynamical experiments and the theoretical analysis with the dynamic microcrack model and constitutive model theory, the relations and rule between the microcosmic frame and macroscopical mechanics characteristic of rock materials are discussed adequately. Furthermore, the optimization method based on the mixed genetic algorithmsand numerical analysis with the finite difference methods on rock materials are used to validate the results of the theory analysis. The research method can be applied to the other brittleness materials and laigh impedance materials. The main content in this thesis can be shown as follow:
     The results of dynamic experiments on rock materials show that not only the compression strength of granite and concrete increase, but also the fragment size decrease and fragment numbers increase with the increasing strain rate. On the other hand, the results of experiments show also that the failure of the granite cylinder is typical tensile splitting failure mode by sudden splitting parallel with the direction of uniaxial compressive loading at different strain rates. Through analyzing contrastively the stress-strain curves, the energy absorbency-time curves and the energy absorptivity-time curves of granite with concrete, it is illuminated the brittleness, impedance, compression deformation capability of rock-like materials is crucial factor on the dynamic fracture.
     The numerical calculation based on a dynamic interacting sliding microcrack model is adopted to investigate quantificationally the influence on the macro-mechanics properties of rock materials from microcracks included the different initial crack length, crack angle, crack space and friction coefficient under different strain rates. Accordingly, the strain-dependency of mechanics characteristic on rock materials can be explained reasonably.
     Based on the statistical damage theory and constitutive model theory, the non-linear elastic and viscoelastoplastic dynamic constitutive relation of rock materials are constructed. The characteristic parameters of the dynamic constitutive model of rock materials are ascertained with the inverse analysis method with the adaptive hybrid genetic algorithms.
     The non-linear elastic stress wave and viscoelastoplastic stress wave equation are derived with constitutive equation of rock materials and stress wave theory. Numerical simulation programs on the dynamic mechanics characteristic of rock materials based on the stress wave equation are programmed. Through contrastively analyzing the results of Numerical simulation and experiments, the correctness of the theory analysis on the dynamic mechanics characteristic of rock materials and the stress wave equations can be testified.
引文
[1]冯明辉.粘塑性统一本构理论[D].大连:大连理工大学,1994.
    [2]Kolsky H.An investigation of the mechanical properties of materials at very high rates of loading [J].Proc.Phys.Soc,1949,62:676-700.
    [3]Takeda J,Tachikawa H,Fujimoto K.Mechanical behaviour of concrete under higher rate loading than in static test,mechanical behaviour of materials [M].Kyoto:Society of Materials Science,1974.
    [4]Jacob I.Rome.Experimental characterization and micromechanical modeling of the dynamic response and failure modes of concrete [D].University of California,2002.
    [5]吕培印,宋玉普,吴志敏.变速率加载下有侧压混凝土强度和变形特性[J].大连理工大学学报,2001,6:716-720.
    [6]J.W.Tedesco,J.C.Powell,C.Allen Ross.A strain rate-dependent concrete materials model for ADINA [J].Computer& structure.1997,6:1053-1067.
    [7]Friedman M,Perkins RD and Green SJ.Observation of brittle-deformation features at the maximum stress ofwestly granite and solenhofen limestone [J].Int J Rock Mech Min Sci,1970,7:297-306.
    [8]Janach W.The role of bulking in brittle failure of rock under rapid compression [J].Int J Rock Mech MinSci,1976,13:177-186.
    [9]Chong KP,Hoyt PM,Smith JW.Effects of strain rate on oil shale fracturing [J].Int J Rock Mech Min Sci,1980,17:35-43.
    [10]Grady DE.The mechanics of fracture under high-rate stress loading[J].Mechanics of Geomaterials,1985,129-155.
    [11]Grady D E,kipp,M.E.Continuum modeling of explosive fracture in oil shale [J].Int J Rock Mech MinSci,1980,17:147-157.
    [12]Lankford J.The Role of Tensile Microfracture in the strain rate dependence of the compressive strength of fine-grained limestone analogy with strong ceramics [J].Int J Rock Mech Min Sci,1981,18:173-175.
    [13]Olsson WA.The compressive strength of Tuff as a function of strain rate from 10~(-6) to 10~3/sec [J].Int J Rock Mech Min Sci,1991,24(3):231-250.
    [14]Serdengecti S,Boozer GD.The effect of strain rat and temperature on the behavior of rocks subjected to triaxial compression [R].Bulletin of the Mineral industries experiment station 4~(th) symposium on rock mechanics,1961.
    [15]Brace WF,Martin RJ.A test of the law of effective stress for crystalline rock of low porosity [J].Int J Rock Mech Min Sci,1968,5:415-426.
    [16]Donath FA,Fruth LS.Dependence of strain-rate effects on deformation mechanism and rock type [J].J Geol Soc,1971,79:347-371.
    [17]Sangha CM,Dhir RK.Strength and deformation of rock subjected to multiaxial compressive stress [J].Int J Rock Mech Min Sci,1975,12:277-282.
    [18]Blanton TL.Effect of strain rate from 10~(-2)-10/sec in triaxial compression tests on the three rocks [J].Int J Rock Mech Min Sci,1981,18:47-62.
    [19]Masuda K,Mizutani H,Yamada I.Experimental study of strain-rate dependence and pressure dependence of failure properties of granite [J].J.Phys.Earth,1987,35:37-66.
    [20]Gran JK,Florence AL and Colton JD.Dynamic triaxial tests of high-strength concrete [J].J Eng Mech,1989,115(5):891-904.
    [21]吴绵拔,刘远惠.中等应变速率对岩石力学特性的影响[J].岩土力学,1980,(1):51-58.
    [22]朱瑞赓,吴绵拔.不通加载速率下花岗岩的破坏判据[J].爆炸与冲击,1984,4(1):1-9.
    [23]鞠庆海,吴绵拔.岩石类材料的三轴压缩动力特性的实验研究[J].岩土工程学报,1993,15(3):72-80.
    [24]杨春和,李廷芥.地质材料率相关内变量本构理论的研究[J].岩土力学,1992,13(1):12-17.
    [25]鞠庆海.不同加载速率不同围压条件下混凝土的破裂判据与动态性能研究[D].武汉:中国科学院武汉岩土力学研究所,1993.
    [26]Kumar A.The effect of stress rate and temperature on the strength of basalt and granite [J].Geophysics,1968,33:501-510.
    [27]Swan G,Cook J,Bruce S and Meethan R.Strain rate effect in Kimmeridge Bay Shale [J].Int J Rock Mech Min Sci,1989,26(2):135-149.
    [28]Brace W.F,Joncs A.H.Comparision of uniaxial deformation in shock and static loading of three rocks [J].Geophys.Res,1971,76:4913-4921.
    [29]逯静洲.三轴受压混凝土损伤特性理论与实验研究[D].大连:大连理工大学,2001.
    [30]Z.P.Bazant,B.H.C.Oh.Crack band theory for fracture of concrete [J].Mat and Struct,1983,16(4):155-177.
    [31]L Vargas-Loli,G.L Fenves.Effects of concrete cracking on earthquake response of dames [J].Earthquake Engng Struct Dyn,1989,18(4):575-592.
    [32]B.EI-Aidi,J.F.Hall.Nonlinear earthquake response of concrete gravity dams [J].part1:modeling part:part 2:behavior,Earthquake Engng Struct Dyn,1989,18(6):837-865.
    [33]Espandar Rdin,Loffi Vahid.Application of the fixed smeared crack model in earthquake analysis of arch dams [J].Dam Engineering,2000,10(4):219-247.
    [34]J.Lee,G.L.Fenves.A plastic-damage concrete model for earthquake analysis of dams [J].Earthquake Engng and Struct Dyn,1998,27(9):937-956.
    [35]Z.P Bazant,F.C Caner,I CAROL.Microplane model M4 concrete.I:Formation with work-conjugate deviatoric stress [J].J Engrg Mech,ASECE,2000,126(9):944-953.
    [36]杜成斌,苏擎柱.混凝土材料动力本构模型研究进展[J].世界地震工程,2002,18(2):94-98.
    [37]朱兆祥,徐大本,王礼立.环氧树脂在高应变率下的热粘弹性本构方程和温等效性[J].宁波:宁波理工大学学报(理工版),1988,1:58-68.
    [38]Bazant Z P,Byung H.Strain-rate effect in rapid triaxial loading of concrete [J].ACI Materials Journal 1982,180:764-782.
    [39]Izzuddin B A,FQ.Rate-senitive analysis of framed structures.Part I:Model formulation and verification [J].Structure Engineering & Mechanics,1997,2:221-239.
    [40]尚仁杰.混凝土动态本构行为研究[D].大连:大连理工大学,1994.
    [41]Chong KP and Boresi AP.Strain rate dependent mechanical properties of new albany reference shale [J].Int J Rock Mech Min Sci,1987,20(3):107-120.
    [42]Malvern L E.The propagation of longitudinal waves of plastic deformation in bar of material exhibiting a strain-rate effect [J].Journal of Applied Mechanics,ASME,1951,18:203-208.
    [43]Perzyna f.Fundamental problents in viscoplasticity [J].Advances in Applied Mechanics,1966,9:243-377.
    [44]杨桂通,熊祝华.塑性动力学[M].北京:清华大学出版社,1984.
    [45]于亚伦.用三轴SHPB装置研究岩石的动载特性[J].岩土工程学报,1992,14(3):71-77.
    [46]Wang W.Stationary and propagative instabilities in meatls a computational point of view [D].TU Delft,Netherlands,1997.
    [47]Winnicke,C.J Pearce,and N.Bicanic.Viscoplastic Hoffman Consistency Model for Concrete [J].Computers and structures,2001,79:7-19.
    [48]肖诗云,林皋,王哲.Drucker-Prager材料一致率型本构模型[J].工程力学,2003,20(4):147-151.
    [49]王哲,林皋,途静洲.混凝土单轴率型本构模型[J].大连理工大学学报,2000,40(5):597-601.
    [50]Hatada T,Kobori T and Ishida M.Dynamic analysis of structure of Maxwell model [J].Earthquake Engineering and Structural Dynamics,2000,29:159-176.
    [51]Juan J.Analysis of reinforced concrete structure subjected to dynamic loads with a viscoplastic Druker-Prager Model [J].Applied Mathematical Modelling,1998,22:495-515.
    [52]Bicanic N,and Zienckiewicz O.C.Constitutive model for concrete under dynamic loading [J].Earthquake Engineering and structure Dynamics,1983,11:689-711.
    [53]过镇海.混凝土的强度和变形[M].北京:清华大学出版社,1997.
    [54]Scott,B.D.,Park,R.,and Priestley.Stress-strain behavior of concrete confined by overlapping hoops at low and high strain rates [J].ACI J,1982,10:13-27.
    [55]Mander J.B.,Priestly M.J.N.and Park R.Theoretical stress-strain model of confined concrete [J].Journal ofStructureEngineering,ASCE,1988,8:1804-1826.
    [56]PoPovics S.A numerical approach to the complete stress-strain cures for concrete [J].Cement and concrete research.1973,5:583-589.
    [57]Soroushian P,Ki-Bong Choi and Abdulaziz Alhamad.Dynamic constitutive behavior of concrete [J],Mag.Concrete Res,1981,33:154-160.
    [58]刘保国,郭忠平.岩体粘塑性流动系数γ的反演计算p].岩土工程学报,1999,21(2):213-216.
    [59]朱浮声,薛琳,李宏,等.粘弹性围岩力学参数分析的一种数值法[J].岩石力学与工程学报,2002,16(5):566-602.
    [60]陈沅江,潘长良,曹平,等.基于人工神经网络的岩土流变本构模型辨识[J].中国有色金属学报,2002,12(5):1027-1034.
    [61]高玮,郑颖人.采用快速遗传算法进行岩土工程反分析[J].岩土工程学包,2001,23(1):120-122.
    [62]左红伟,冯紫良,田玉静,等.岩石粘弹塑性时效模型的遗传算法多参数辨识[J].岩石力学与工程学报,2002,21(2):2527-2531.
    [63]陈炳瑞,冯夏庭,丁秀丽,等.基于模式-遗传-神经网络的流变参数反演[J].岩石力学与工程学报.2005,24(4):553-558.
    [1]P.H.Bischoff,S.H.Perry.Compressive behaviour of concrete at high strain rates [J].Materials and structures,1991,24:425-450.
    [2]Kolsky H.An investigation of the mechanical properties of materials at very high rates of loading [J].Proc.Phys.Soc.B62,1949,676-700.
    [3]Green S,Maiden C.J.,Babcock,S.G.In Inelastic Behavior of Solids [J].Mc GrawHill,New York,1970,521-542.
    [4]Lindholm.U.S.In Techniques of Metals Research,Part 1 [J].Interscience,New York,1971,5:199-271.
    [5]Li X.B,Gu D.S.Rock impact dynamics [M].Changsha:Central South University of Technology Press,1994.
    [6]Nemat-Nasser,S lsaacs,J Ravichandran.In Proc of TICP TIP-1[R].Australia:Workshop on New Techniques of Small Scale High Strain Rate Studies,1989.
    [7]Ravichandran G,Nemat-Nasser S.Advances in Fracture Proc[J].Houston,Texas March,1989,20-24.
    [8]Ravichandran G,Subhash G.Critical appraisal of limiting strain rates for compression testing of ceramics in a split Hopkinson pressure bar [J].J Am Ceram Soc,1994,77:263-267.
    [9]Chen W,Zhang B,Forrestal M.J.Split Hopkinson bar technique for low-impedance materials [J].Exp.Mech,1999,39:81-85.
    [10]Frew D.J,Forrestal M.J,Chen W.A split Hopkinson pressure bar technique to determine compressive stress-strain data for rock materials [J].Exp.Mech,2001,41:40-46.
    [11]Frew D.J,Forrestal M.J,Chen W.Pulse shaping techniques for testing brittle materials with a split hopkinson pressure bar [J].Exp.Mech,2002,41.:93-106.
    [12]Chen W,Lu F,Frew D.J.Dynamic compression testing of soft materials [J].Transactions of the ASME,2002,69:214-223.
    [13]卢芳云,Chen W,Frew D J.软材料的SHPB实验设计[J].爆炸与冲击,2002,22(1):15-19.
    [14]翟越,马国伟,赵均海,等.花岗岩和混凝土在冲击荷载下的动态性能比较研究[J].岩石力学与工程学报,2007,26(4):762-768.
    [15]Zhao J,Li HB,Zhao YH.Dynamic strength tests of the Bukit Timah Granite.Technical Report [R].Nanyang Technological University,Singapore,1998.
    [16]W.N.Sharpe,K.G Hoge.Specimen strain measurement in the split-Hopkinson-pressure-bar experiment [J].EXP.Mech,1972,12:570-574.
    [17]Yadav S,Chichili D.R,Ramesh K.T.The mechanical response of a 6061-T6 Al/Al{sub 2}O{sub 3} metal matrix composite at high rates of deformation [J].Acta Metallurgica et Materialia.1995,43:4453-4464.
    [18]Lindholm U.S.Some experiments with the split Hopkinson pressure bar [J].J.Mech.Phys Solids,1964,12:317-335.
    [19]Brown ET.Rock Characterization testing & Monitoring [M].ISRM Suggested Methods,published for the Commission on Testing Methods,International Society for Rock Mechanics by Pergammon Press,1981.
    [20]Tada H.Stress analysis of cracks of cracks handbook [M].Del Research Corporation,St Louis,1973.
    [21]Z X Zhang,S Q Kou,L G Jiang.Acts of loading rate on rock fracture:fracture characteristics and energy partitioning [J].International Journal of Rock Mechanics and Mining Sciences,2000,37:745-762.
    [22]王礼立.应力波基础[M].北京:国防工业出版社,1985.
    [23]Zhao J,Li HB.Experimental determination of dynamic tensile properties of granite [J].Int J Rock Mech MinSci,2000,37(8):861-866.
    [24]Mclamore R,Gray KE.The mechanical behavior of the anisotropic sedimentary rocks [J].J Eng Ind 1967;89:62-76.
    [25]Istvan JA,Evans LJ,Weber JH.Rock mechanics for gas storage in bedded salt caverns [J].Int J Rock Mech Min Sci,1997,34:3-41.
    [26]Seto M,Nag DK,Vutukuri VS,Katasuyama K.Effect of chemical additions the strength of sandstone [J]. Int J Rock Mech Min Sci,1997,34:3-41.
    [27] S G Grantham, C R Siviour, W G Proud. High-strain rate Brazilian testing of an explosive simulant using speckle metrology [J]. Meas. Sci. Technol. 2004, 15: 1867-1870.
    [28] Galves F, Rodriguez J, Sanchez V. Tensile measurements of ceramic materials at high rates of strain [J].JPhys Ⅳ, 1997, 3: 151-156.
    [1]Wawersik W R and Brace W F.Post-failure behavior of a granite and diabase [J].Rock mechanics,1971,3:613-646.
    [2]Hallbauer DC,Wagner H and Cook NGW.Some observations concerning the microscopic and mechanical behavior of quartzite specimens in stiff,triaxial compression tests [J].Int J Rock Mech MinSci,1973,10:713-725.
    [3]H.B.Li,J.Zhao,T.J.Li.Micromechanical modelling of the mechanical properties of granite under dynamic uniaxial compressive loads [J].International Journal of Rock Mechanics and Mining Sciences,2000,37:923-935.
    [4]Nemat-Nasser S,Deng H.Strain-rate effect on brittle failure in compression [J].Acta Metall Materials,1994,42(3):1013-1024.
    [5]Nemat-Nasser S,Obertm M.A microcrack model of dialatancy in brittle material [J].J.Appl.Mech,1988,55(1):24-35.
    [6]G.Ravichandran,G.Subhash.A micromechanical model for high strain rate behavior of ceramics [J].Int J Solids structures,1995,32(17/18):2627-2646.
    [7]Horii H,Nemat-Nasser S.Brittle failure in compression:splitting,faulting,and brittle-ductile transition [J].Phil Trans Royal Soc London,1986,319:337-374.
    [8]Deng H,Nemat-Nasser S.Dynamic damage evolution in brittle solids [J].Mechanics of Materials,1992,14:83-103.
    [9]翟越,马国伟,赵均海,等.花岗岩在单轴冲击压缩荷载下的动态断裂分析[J].岩土工程学报,2007,172(3):385-390.
    [10]Wong TF.Geometric Probability approach to the characterization and analysis of microcracking in rocks [J].Mechanics of materials,1985,4:261-276.
    [11]Fredrich JT,Evens B and Wong TF.Micromechanics of brittle to plastic transition in Carrara marble [J].J Geophys Res,1989,94:4129-4145.
    [12]Zhang J,Wong TF and Davis DM.Micromechanics of pressure-induced grain crushing in porous rocks [J].J.Geophys.Res,1990,95:341-352.
    [13]Day TN and Wang CY.Some mechanisms of microcrak growth and interaction in compressive rock failure[J].Int J Rock Mech Min Sci,1981,18:199-209.
    [14]Krajcinovic D.Damage mechanics [J].Mechanics of materials,1989,8:117-197.
    [15]Kemeny JM and Cook NGW.Micromechanics of deformation in rocks [J].Toughening Mechanics in Quasi-brittle materials (edited by S P Shah),1991,155-188.
    [16]Kachanov M L.A microcrack model of rock inelasticity part II [J].Propagation of microcracks.Mechanics of materials,1982,1:29-41.
    [17]Y Zaitsev.Crack propagation in a composite material [J].Fracture mechanics of concrete,1983,251-289.
    [18] Fanella DA. Fracture and failure of concrete in uniaxial and biaxial loading. J Eng Mech,1990, 116(11): 2341-2362.
    [19] Krajcnovic D, Basista M, Sumarac D. Micromechanically inspired phenomenological damage model [J].J App Mech, 1991, 58: 305-310.
    [20] Gambarotta L, Lagomarsino S. A microcrack damage model for brittle materials [J]. Int J Solids Structures, 1993, 30(2): 177-198.
    [21] Ravichandran G and Subhash G.A micromechanical model for high strain rate behavior of ceramic [J]. Int J Solids Structures, 1995, 32(18): 2627-2646.
    [22] Nemat-Nasser S, Horii H. Compression- induced nonplanar crack extension with application to splitting, exfoliation and rockburst [J]. J Geophys Res, 1982, 87: 6805-6821.
    [23] Ashby MF, Hallam SD. The failure of brittle solids containing small cracks under compressive stress state [J]. Acta Metall, 1986, 34: 497-510.
    [24] Hallbauer DC, Wagner H and Cook NGW. Some observations concerning the microscopic and mechanical behavior of quartzite specimens in stiff triaxial compression tests [J]. Int J Rock Mech Min Sci, 1973, 10: 713-725.
    [25] Tapponnier P and Brace WF. Development of stress-induced microcracks in Westly granite [J]. Int J Rock Mech Min Sci, 1976, 13: 103-112.
    [26] Tada H. Stress analysis of cracks handbook [M]. Del Research Corporation, St Louis, 1973.
    [27] Zhao J, Li HB, Zhao YH. Dynamic strength tests of the Bukit Timah Granite [R]. Nanyang Technological University, Singapore, 1998.
    [28] Freund LB. Dynamic fracture mechanics [M]. Cambridge University Press, 1990.
    [29] Fredrich J.T, Evens B. Effect of grain size on brittle and semi-brittle strength: implication for micromechanics modeling of failure in compression [J]. J Geophys Res, 1990, 95(10): 907-920.
    [30] Dally JW, Fourney WL and Irwin GR. On the uniqueness of the stress intensity factor-crack velocity relationship [J]. Int J Fract, 1985, 27: 159-168.
    [31] Ravichandran G, Chen W. Dynamic failure of brittle materials under uniaxial compression [J]. Experiments in micromechanics of failure resistant materials, 1991, 130: 85-90.
    [32] Tedesco J W, Ross C A. Strain-rate-dependent constitutive equation for concrete [J]. Journal of Pressure Vessel Technology, 1998, 120: 398-405.
    [1]Bui H D,Ehrlacher.Propagation of damage in elastic and plastic solids [J].5th Int.Conference on Fracture,1983,186-204.
    [2]唐春安,岩石破裂过程中的灾变[M].北京:煤炭工业出版社,1993.
    [3]Brooks J J,Samarie N.H.Influence of rate of stressing on tensile stress-strain behaviour of concrete [M].Fracture of Concrete and Rock,Elsevier Science Publisher,1989.
    [4]陈江瑛,黄旭升,王礼立.水泥砂浆的率型损伤演化[J].中国矿业大学学报,1998,27(2):189-191.
    [5]陈江瑛,王礼立.水泥砂浆的率型本构方程[J].宁波大学学报(理工版),2000,13(2):1-5.
    [6]Mroz Z,Angelillo M.Rate-dependent degradation model for concrete and rock [R].Proc Int Symp Num Models in Geomechanics,1982:208-217.
    [7]Jean-Francois Dube,Gilles P.C,and Christian L.B.Rate dependent damage model for concrete in dynamics [J].Journal of Engineering Mechanics,1996,10:939-947.
    [8]Cervera M,Oliver J,and Manzoli O.A rate-dependent isotropic damage model for the seismic analysis of concrete dams [J].Earthquake Engineering&Structural Dynamics,1996,9:987-1010.
    [9]Eibl J,Schmidt-Hurtienne B.Strain-rate-sensitive constitutive law for concrete [J].Journal of Engineering Mechanics,1999,125 (12):1411-1420.
    [10]李兆霞.损伤力学及其应用[M].北京:科学出版社,2002.
    [11]Krajcinovic D,Silva M A G.Statistical aspects of the continuous damage theory [J].Int.J.Solids Structure,1982,18(7):551-562.
    [12]吴政,张承娟.单项荷载作用下岩石损伤模型及其力学特性研究[J].岩石力学与工程学报,1997,16(1):65-70.
    [13]陈忠辉,傅宇方,唐春安.单轴压缩下岩石损伤统计基本构模型与实验研究[J].河海大学学报(自然科学版),2004,32(2):200-203.
    [14]石平五,高召宁.顶煤损伤统计力学模型[J].长安大学学报(自然科学版),2003,23(1):58-60.
    [15]罗晓辉,白世伟.结构性土体强度的统计力学模型分析[J].岩土工程学报,2004,26(5):712-714.
    [16]曹文贵,张升.基于Mohr-Coulomb准则的岩石损伤统计分析方法研究[J].湖南大学学报(自然科学版),2005,32(1):43-47.
    [17]徐卫亚,韦立德.岩石损伤统计本构模型的研究[J].岩石力学与工程学报,2002,21(6):787-791.
    [18]韦立德,徐卫亚,杨春和,等.具有统计损伤的岩石弹塑性本构模型研究[J].岩石力学与工程学报,2004,23(12):1971-1975.
    [19]曹文贵,赵明华,唐学军.岩石破裂过程的统计损伤模拟研究[J].岩土工程学报,2003,25(2):184-187
    [20]张毅,廖华林,李根生.岩石连续性损伤统计本构模型[J].石油大学学报(自然科学版),2004,28(3):37-39.
    [21]曹文贵,赵明华,刘成学.基于Weibull分布的岩石损伤软化模型及其修正方法研究[J].岩石力学与工程学报,2004,23(19):3226-3231.
    [22]杨明辉,赵明华,刘成学.岩石损伤软化统计本构模型参数的确定方法[J].水利学报,2005,26(6):820-823.
    [23]曹文贵,赵明华,刘成学.岩石损伤统计强度理论研究[J].岩土工程学报,2004,26(6):820-823.
    [24]方秦,钱七虎.速率相关混凝土模型中一个值得商榷的问题[J].工程力学,1998,15(3):29-35.
    [25]胡时胜,王道荣.冲击荷载下混凝土材料的动态本构关系[J].爆炸与冲击,2002,22(3):242-246.
    [26]王哲,林皋.混凝土的单轴率型本构模型[J].大连理工大学学报,2000,40(5):597-601.
    [27]Ottosen NS.Constitutive Model of Short-time Loading of Concrete [J].ASCE,1979,105:127-141.
    [28]Darwin D,Pecknold D.A.Nonlinear biaxial stress-strain law for concrete [J].Journal of the Engineering Mechanics Division,1977,103:229-241.
    [29]Saenz L P.Discussion of Equation for the Stress-strain Curve of concrete by Desayi and Krishnan [J].Journal ofACI,1964,61(9):1229-1235.
    [30]Elwi A A,Murray DW.A 3D Hypoelastic Concrete Constitutive Relationship [J].Journal of Engng,1979,105(4):623-641.
    [31]CEB-FIP MODEL CODE 1990.Comite Euro-Internation du Beton [S].Bulletin Dinformation,1993,214-231.
    [32]吕西林,金国芳,吴晓涵.钢筋混凝土结构非线性有限元理论与应用[M].同济大学出版社,1996.
    [33]Zhao J,Li HB,Zhao YH.Dynamic strength tests of the Bukit Timah Granite [R].Singapore:Nanyang Technological University,1998.
    [1]王芝银,李云鹏.地下工程位移反分析法及程序[M].西安:陕西科技出版社,1993.
    [2]李守巨,刘迎曦,王登刚.基于遗传算法的结构振动参数识别方法[J].中国矿业大学学报,2001,30(3):256-260.
    [3]王登刚,刘迎曦,李守巨.岩土工程位移反分析的遗传算法[J].岩石力学与工程学报,2000,19(增):979-982.
    [4]McKinney D.Genetic algorithm solution of groundwater management models [J].Water Resour,1994,30(6):1897-1906.
    [5]C Wang.Ientification of dynamic rock properties using a genetic algorithm [J].Int.J.Rock Mech.Min.Sci,2004,41(3):445-462.
    [6]Cieniawski S.E,Wayland J,Ranjithan S.Sing genetic algorithms to solve multiobjective groundwater monitoring problem[J].Water Resour.Res,1995,(2):399-409.
    [7]高玮,郑颖人.用快速遗传算法进行岩土工程反分析[J].土木工程学报,2001,23(1):120-122.
    [8]刘杰,王媛.体流变参数反演的加速遗传算法[J].坝观测与土工测试,2001,25(6):24-27.
    [9]Tomonari Furukawa.An automated system for simulation and parameter identification of inelastic constitutive models [J].Comput.MethodsAppl.Mech.Engrg,2002,191:2235-2260.
    [10]Potts J.C.The development and evaluation of an improved genetic algorithm based on migration and artificial selection [J].IEEE Trans.On SMC,1994,24(1):73-86.
    [11]Friswell M.I.A combined genetic eigensnetivity algorithm for the location of damage in structures [J].Comput Struc,1998,69:547-556.
    [12]郭雪莽,田明俊,秦理曼.土石坝位移反分析的遗传方法[J].华北水利水电学院学报,2001,(9):94—98.
    [13张治强,冯夏庭,杨成祥,等.非线性位移时间序列分析的遗传神经网络方法[J].东北大学学报(自然科学版),1999,20(4):422-425.
    [14]Sankarkn.Velocity inversion in cross-hole seismic to mography by counter-propagation neural network,genetic algorithm and evolutionary programming techniques [J].Geophys J Int,1999,138(1):108-124.
    [15]邓建辉,李焯芬,葛修润.岩石边坡松动区与位移反分析[J].岩石力学与工程学报,2001,20(2):171-174.
    [16]韩华,章梓茂,魏培君.流体饱和多孔介质参数反演的遗传算法.岩石力学与工程学报,2003 22(9):1458-1462.
    [17]Holland J H.Adaptation in Natural and Artificial Systems [M].Ann Arbor:MIT Press,1975.
    [18]王小平,曹立明.遗传算法-理论应用于软件实现[M].西安:西安交通大学出版社.2004.
    [19]王媛,刘杰.重力坝坝基渗透参数进化反演分析[J].岩土工程学报,2003,25(5):552-556.
    [20]Goldberg D E.Genetic algorithm in pipeline optimization [J].J of Computing in Civil Engineering,1987,1(2):128-141.
    [21]何光渝.Visual C++常用数值算法集[M].北京:科学出版社,2002.
    [22]Davis L.Handbook of Genetic Algorithms [M].New York:Van Nostrand Reinhold,1991.
    [23]Whitley D.Modeling Hybrid Genetic Algorithms [J].Int Genetic Algorithms in Engineering and Computer Science,Winter G.Wiley,1995,191-201.
    [24]Srinivas M,Patnaik L.M.Adaptive Probabilities of Crossover and Mutations in Gas [J].IEEE Trans.On SMC,1994 24(4):656-667.
    [25]Ratkowsky D A.Nonlinear Regression Modeling-a unified practical approach [M].NewYork:Marcel Dekker press,1983.
    [26]方开泰,张金廷.非线性回归模型参数估计的一个新算法[J].应用数学学报,1993,16(3),366-377.
    [27]潘正君,康立山,陈毓屏.演化算法[M].北京:清华大学出版社,1997.
    [1]江见鲸,贺小岗.工程结构计算机仿真分析[M].北京:清华大学出版社,1996.
    [2]唐志平,王礼立.SHPB实验的电脑化数据处理系统[J].爆炸与冲击,1986,6(4):320-327.
    [3]Lifshitz J.M and Leber H.Data processing in the split Hopkinson pressure bar tests [J].International Journal of Impact Engineering,1994,15 (6):723-733.
    [4]Li X B,Lok T S,Zhao J and Zhao P.J.Oscillation Elimination in the Hopkinson bar apparatus and resultant complete dynamic stress-strain curve for rocks [J].International Journal of Rock Mechanics & Mining Sciences,2000,37:1055-1060.
    [5]Follansbee P.S and Frantz C.Wave propagation in the split Hopkinson pressure bar [J].Journal of Engineering Materials Technology,1983,105:61-66.
    [6]Bertholf L.D and Karnes C.H.Two dimensional analysis of split Hopkinson pressure bar system [J].Journal of the Mechanics and Physics of Solids,1975,23:1-19.
    [7]王礼立.应力波基础[M].北京:国防工业出版社,1985.
    [8]Kolsky H.Stress wave in solids [M].New York:Dover Publications,1963.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700